用户名: 密码: 验证码:
潮间带多细胞趋磁原核生物的显微分离、鉴定及系统进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多细胞趋磁原核生物(Multicellular magnetotactic prokaryotes,MMPs),是一类由10~100个含有磁小体的细胞聚集而成的具有特殊形态的趋磁微生物,是研究生命起源与进化、细胞分化和生物矿化的模式生物。目前仅报道了两种形态的MMPs,分别为桑葚型(多种)和菠萝型(仅一种)。本研究利用生态调查手段,分别在荣成月湖、晋卿岛和法国马赛的潮间带沉积物中,发现了3种菠萝型MMPs和1种系统进化位置未确定的松球型MMPs。结合显微镜技术、显微操作技术和分子生物学技术,从超微结构、运动方式、分裂方式和系统进化方面,对这4种MMPs进行了分离和鉴定,并对MMPs进行分类,确定其系统进化地位。
     本研究得到的3种菠萝型MMPs,分别来自于荣成月湖、西沙晋卿岛、法国马赛。通过16S rRNA基因序列分析,确认这3种MMPs为同一属的不同种。它们虽然大小不同,但具有以下相似性特征:细胞分层排列,可分为6~8层,且相邻的两层细胞呈交错式连接;自发荧光;有脂质颗粒;可进行避光运动和复杂的乒乓运动;有铁氧型子弹头形磁小体。通过对荣成菠萝型MMPs的研究,发现该MMPs中含有三角形和“H”型两种不同形态的细胞,出现了细胞形态分化;部分MMPs中含有子弹头形和棱柱形两种类型的磁小体,其棱柱形磁小体的成分为Fe3S4;具有两种分裂方式,即沿其椭球体的长轴分裂和短轴分裂,分裂过程其长轴基本与磁场方向平行。
     松球型MMPs是一种新的形态的MMPs,最早在青岛潮间带发现,此次在荣成月湖发现,与在月湖发现的菠萝型MMPs位于同一地点。该松球型MMPs,因在光镜下形似松球而得名,是由33±5个细胞围绕一个中心呈辐射状排列而成的球体,直径为13.4±1.3μm;能够自发荧光;含有子弹头形磁小体,其成分为Fe3O4;周生鞭毛;能够进行自由移动、旋转和漫步,但与其他两种形态的MMPs不同的是,该MMPs未观察到乒乓运动;对波长小于500nm的光敏感,可进行避光运动;进行短轴分裂,分裂时呈心形扭转。通过16S rRNA序列分析,将该松球型MMPs鉴定为一个新属新种。
     基于对16S rRNA基因序列的系统进化分析,并结合桑葚型、菠萝型和松球型MMPs各自的特征,发现MMPs在属的水平上存在显著特异性,进而分别将这3类MMPs划分为3个不同的clade。目前已发现的MMPs,均属于δ-变形菌纲下的脱硫杆菌目(Desulfobacterales)。鉴于MMPs之间的共同点,以及与脱硫杆菌目中其他菌种在超微结构、运动、生活史等方面的差异,将这3个clade划归为一个新科,即多细胞趋磁原核生物科。该科所包含的菌种,都具有多细胞形态。
     本研究丰富了MMPs种类和形态的多样性,加深了对MMPs的认识并确立其系统进化地位,为研究MMPs的进化提供了依据。
Multicellular magnetotactic prokaryotes (MMPs) are a peculiar group ofmagnetotactic bacteria that are assembled from10to100cells with magnetosomes.As a model organisms, MMPs can be applied to study on life origin and evolution,cell differentiation and biomineralization. Currently, two MMP morphotypes havebeen phylogenetically identified: spherical mulberry-like (several species) andellipsoidal pineapple-like (previously one species). In this study,three species ofpineapple-like MMPs and one species of unpublished pinecone-like MMPs werediscovered in intertidal sediments of Lake Yuehu, Drummond Island and Marseilles,respectively. After magnetic collection of the samples from various intertidal sites,four species of MMPs were isolated and studied with respect to their microstructure,motility, division and phylogenetics via microscopic, micromanipulation, andmolecular biological technique approaches. Their evolutionary affiliation wasdetermined though phylogenetic analysis.
     The three species of pineapple-like MMPs were collected from Lake Yuehu,Drummond Island and Marseilles, respectively. Analysis of16S rRNA gene sequencesrevealed that they display7.8%sequence divergence, thus probably belonging todifferent species but affiliated to same genus. Although they are different in sizes, thethree kinds of ellipsoidal MMPs assembled of cells arranged in six to eight interlacedcircles. They showed autofluorescence when exposed to light with differerntwavelengths. The cells contain lipid granules and bullet-shaped magnetitemagnetosomes. All MMPs presented negative phototaxis and complicated ping-pongmotility. For the pineapple-like MMPs in Lake Yuehu, a morphological differentiation was discovered due to existence of the triangle-shaped and H-shaped cells in MMPs.Although most MMPs contained bullet-shaped magnetite magnetosomes, someMMPs could produce bullet-shaped magnetite plus equidimensional greigitemagnetosomes. During reproduction, they divided along either their long-or short-body axes.
     A morphotype of MMPs named pinecone-like MMPs have been previously observedin the samples collected in Qingdao by our laboratory. Here they were discovered atthe sampling site in Lake Yuehu. The MMP,looked like a pinecone via lightmicroscope, was spherical aggregates with a diameter of13.4±1.3μm and composedwith33±5cells arranged radiationally around its center. They also displayedautofluorescence when exposed to light with differernt wavelengths. The cellssynthesized lipid granules and bullet-shaped magnetite magnetosomes. With thecooperation of peritrichous flagella and cells, the MMPs carried out free motion,rotation, and walking, but no apparent ping-pong motion. Same to mulberry-like andpineapple-like MMPs, this type of MMPs also did negative phototaxis. Duringreproduction, they divided along their short-body axes as a heart-shaped torsion.Analysis of16S rRNA gene sequences determined for the first time that thepinecone-like MMPs were affiliated to Deltaproteobacteria but diverge from otherknown MMPs by12.6%, representing thus a novel genus.
     Taken together, phylogenetic analysis and the cellular characterization have classifiedmulberry-like, pineapple-like and pinecone-like MMPs into three novel cladesbelonging to family Desulfobacterales in order of Deltaproteobacteria. The novelDesulfobacterales family consist species of multicellular magnetotactic organisms.This work contribute to a comprehensive understanding of the evolution of MTB andMMPs.
引文
1. Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, et al.(2012) Single-cellanalysis reveals a novel uncultivated magnetotactic bacterium within thecandidate division OP3. Environmental microbiology14:1709-1721.
    2. Lins U, Farina M (1999) Organization of cells in magnetotactic multicellularaggregates. Microbiological Research154:9-13.
    3. Bellini S (2009) On a unique behavior of freshwater bacteria. Chinese Journal ofOceanology and Limnology27:3-5.
    4. Bellini S (2009) Further studies on “magnetosensitive bacteria”. Chinese Journal ofOceanology and Limnology27:6-12.
    5. Blakemore RP (1975) Magnetotactic bacteria. Science190:377-379.
    6. Freitas F, Keim CN, Kachar B, Farina M, Lins U (2003) Envelope ultrastructure ofuncultured naturally occurring magnetotactic cocci. FEMS MicrobiologyLetters219:33-38.
    7. Keim CN, Martins JL, Abreu F, Rosado AS, de Barros HL, et al.(2004)Multicellular life cycle of magnetotactic prokaryotes. FEMS MicrobiologyLetters240:203-208.
    8. Wenter R, Wanner G, Schüler D, Overmann J (2009) Ultrastructure, tacticbehaviour and potential for sulfate reduction of a novel multicellularmagnetotactic prokaryote from North Sea sediments. Environmentalmicrobiology11:1493-1505.
    9. Lefèvre C, Bernadac A, Pradel N, Wu L, Yu-Zhang K, et al.(2007)Characterization of Mediterranean magnetotactic bacteria. Journal of OceanUniversity of China6:355-359.
    10. Lins U, Keim CN, Evans FF, Farina M, Buseck PR (2007) Magnetite (Fe3O4) andgreigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes.Geomicrobiology Journal24:43-50.
    11. Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, et al.(1990) Intercellular structure in a many-celled magnetotactic prokaryote.Archives of Microbiology154:18-22.
    12. Delong EF, Frankel RB, Bazylinski DA (1993) Multiple Evolutionary Origins ofMagnetotaxis in Bacteria. Science259:803-806.
    13. Posfai M, Buseck P, Bazylinski D, Frankel R (1998) Iron sulfides frommagnetotactic bacteria: Structure, composition, and phase transitions.American Mineralogist83:1469-1481.
    14. Simmons SL, Edwards KJ (2007) Unexpected diversity in populations of themany-celled magnetotactic prokaryote. Environmental Microbiology9:206-215.
    15. Bazylinski DA, Garratt-Reed AJ, Abedi A, Frankel RB (1993) Copper associationwith iron sulfide magnetosomes in a magnetotactic bacterium. Archives ofMicrobiology160:35-42.
    16. Zhou K, Pan H, Zhang S, Yue H, Xiao T, et al.(2011) Occurrence andmicroscopic analyses of multicellular magnetotactic prokaryotes from coastalsediments in the Yellow Sea. Chinese Journal of Oceanology and Limnology29:246-251.
    17. Farina M, Esquivel DMS, Barros H (1990) Magnetic iron-sulphur crystals from amagnetotactic microorganism. Nature343:256-258.
    18. Winklhofer M, Abra ado LG, Davila AF, Keim CN, Lins de Barros HG (2007)Magnetic optimization in a multicellular magnetotactic organism. Biophysicaljournal92:661-670.
    19. Abreu F, Silva KT, Martins JL, Lins U (2010) Cell viability in magnetotacticmulticellular prokaryotes. International microbiology9:267-272.
    20. Keim CN, Abreu F, Lins U, Lins de Barros H, Farina M (2004) Cell organizationand ultrastructure of a magnetotactic multicellular organism. Journal ofstructural biology145:254-262.
    21. Keim C, Lopes Martins J, Lins de Barros H, Lins U, Farina M (2007) Structure,Behavior, Ecology and Diversity of Multicellular Magnetotactic Prokaryotes.Magnetoreception and Magnetosomes in Bacteria12:103-132.
    22. Abreu F, Martins J, Silveira T, Keim C, de Barros H, et al.(2007)'CandidatusMagnetoglobus multicellularis', a multicellular, magnetotactic prokaryote froma hypersaline environment. International Journal of Systematic andEvolutionary Microbiology57:1318.
    23. Keim CN, Abreu F, Lins U, Lins de Barros H, Farina M (2004) Cell organizationand ultrastructure of a magnetotactic multicellular organism. Journal ofStructural Biology145:254-262.
    24. Zhou K, Zhang WY, Yu-Zhang K, Pan HM, Zhang SD, et al.(2012) A novel genusof multicellular magnetotactic prokaryotes from the Yellow Sea.Environmental microbiology14:405-413.
    25. Zhou K, Zhang WY, Pan HM, Li JH, Yue HD, et al.(2013) Adaptation ofspherical multicellular magnetotactic prokaryotes to the geochemicallyvariable habitat of an intertidal zone. Environmental microbiology15:1595-1605.
    26. Silva KT, Abreu F, Almeida FP, Keim CN, Farina M, et al.(2007) Flagellarapparatus of south-seeking many-celled magnetotactic prokaryotes.Microscopy research and technique70:10-17.
    27. Dunlop WF, Robards A (1973) Ultrastructural study of poly-β-hydroxybutyrategranules from Bacillus cereus. Journal of bacteriology114:1271-1280.
    28. Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990)Biomineralization of ferrimagnetic greigite (Fe sub(3)S sub(4)) and iron pyrite(FeS sub(2)) in a magnetotactic bacterium. Nature343:258-261.
    29. Keim CN, Lins U, Farina M (2003) Iron oxide and iron sulphide crystals inmagnetotactic multicellular aggregates. Acta Microscopica12:3-4.
    30. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis inmarine coccoid bacteria. Biophysical Journal73:994-1000.
    31. Farina M, Esquivel DMS, de Barros HGL (1990) Magnetic iron-sulphur crystalsfrom a magnetotactic microorganism. Nature343:256-258.
    32.张蕊,陈一然,肖天,吴龙飞(2013)青岛潮间带趋磁细菌的垂直分布特征及与环境因子的关系.海洋科学37:24-3133.
    33. Greenberg M, Canter K, Mahler I, Tornheim A (2005) Observation ofmagnetoreceptive behavior in a multicellular magnetotactic prokaryote inhigher than geomagnetic fields. Biophysical Journal88:1496-1499.
    34. Lefèvre CT, Abreu F, Lins U, Bazylinski DA (2010) Nonmagnetotacticmulticellular prokaryotes from low-saline, nonmarine aquatic environmentsand their unusual negative phototactic behavior. Applied and environmentalmicrobiology76:3220-3227.
    35. Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ (2011)Multicellular photo‐magnetotactic bacteria. Environmental microbiologyreports3:233-238.
    36. de Azevedo LV, de Barros HL, Keim CN, Acosta-Avalos D (2013) Effect of lightwavelength on motility and magnetic sensibility of the magnetotacticmulticellular prokaryote ‘Candidatus Magnetoglobus multicellularis’. Antonievan Leeuwenhoek104:405-412.
    37. Abreu F, Morillo V, Nascimento FF, Werneck C, Cantao ME, et al.(2013)Deciphering unusual uncultured magnetotactic multicellular prokaryotesthrough genomics. ISME Journal.8:1055-1068
    38.张圣妲,潘红苗,周克,肖天,吴龙飞(2009)多细胞趋磁原核生物研究进展.生态学报30:3311-3318.
    39. Simmons SL, Bazylinski DA, Edwards KJ (2007) Population dynamics of marinemagnetotactic bacteria in a meromictic salt pond described with qPCR.Environmental Microbiology9:2162-2174.
    40. Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotacticbacteria. Magnetoreception and magnetosomes in bacteria: Springer. pp.25-36.
    41. Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998) Reaction sequence ofiron sulfide minerals in bacteria and their use as biomarkers. Science280:880-883.
    42. Mann S, Sparks NCH, Frankel RB, Bazylinski DA, Jannasch HW (1990)Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in amagnetotactic bacterium. Nature343:258.
    43. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004)Spatiotemporal distribution of marine magnetotactic bacteria in a seasonallystratified coastal salt pond. Applied and Environmental Microbiology70:6230-6239.
    44. Sobrinho RL, Lins U, Bernardes MC (2011) Geochemical characteristics relatedto the gregite-producing multicellular magnetotactic prokaryote CandidatusMagnetoglobus multicellularis in a hypersaline lagoon. GeomicrobiologyJournal28:705-713.
    45. Martins JL, Silveira TS, Silva KT, Lins U (2009) Salinity dependence of thedistribution of multicellular magnetotactic prokaryotes in a hypersaline lagoon.International Microbiology12:193-201.
    46. Connerney JEP, Acuna MH, Wasilewski PJ, Ness NF, Reme H, et al.(1999)Magnetic lineations in the ancient crust of Mars. Science284:794-798.
    47. Connerney JEP, Acuna MH, Wasilewski PJ, Kletetschka G, Ness NF, et al.(2001)The global magnetic field of Mars and implications for crustal evolution.Geophysical Research Letters28:4015-4018.
    48. Acuna MH, Connerney JEP, Lin RP, Mitchell D, Carlson CW, et al.(1999) Globaldistribution of crustal magnetization discovered by the Mars Global SurveyorMAG/ER experiment. Science284:790-793.
    49. Squyres SW, Knoll AH, Arvidson RE, Clark BC, Grotzinger JP, et al.(2006) Twoyears at Meridiani Planum: results from the Opportunity Rover. Science313:1403-1407.
    50. Chillier XDF, Maechling CR, Zare R (1996) Search for Past Life on Mars:Possible Relic Biogenic Activity. Science273:924.
    51. Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, et al.(2002) Magnetofossils from ancient Mars: a robust biosignature in the Martianmeteorite ALH84001. Applied and Environmental Microbiology68:3663-3672.
    52. Davila AF, Winklhofer M, McKay C (2007) Multicellular magnetotacticprokaryote as a target for life search on Mars. Lunar and Planetary Science8:12-16.
    53. Gilbert SF (2003) The morphogenesis of evolutionary developmental biology.International Journal of Developmental Biology47:467-478.
    54. Carlile MJ (1980) From prokaryote to eukaryote: gains and losses. Symp GenMicrobiol30:1-40.
    55. Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms.Annual Reviews in Microbiology52:81-104.
    56. Kaiser D (2001) Building a multicellular organism. Annual review of genetics35:103-123.
    57. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes.Nature Reviews Microbiology2:217-230.
    58. Martins J, Silveira T, Abreu F, Silva K, da Silva-Neto I, et al.(2007) Grazingprotozoa and magnetosome dissolution in magnetotactic bacteria.Environmental Microbiology9:2775-2781.
    59.牟晓燕,薛允传(1999)山东半岛荣成湾月湖环境特征研究.青岛大学学报14:56-59.
    60.李春雁,贾建军(2000)山东荣成湾月湖细菌生态学研究.青岛大学学报13:67-71.
    61.薛允传,贾建军,高抒(2002)山东月湖的沉积物分布特征及搬运趋势.地理研究21:707-714.
    62.曾昭璇,丘世钧(1985)西沙群岛环礁沙岛发育规律初探——以晋卿岛,琛航岛为例.海洋学报(中文版)4:007.
    63.钟晋樑,黄金森(1979)我国西沙群岛松散堆积物的粒度和组成的初步分析.海洋与湖沼2:004.
    64.刘晓东,孙立广,赵三平,尹雪斌,谢周清,等.(2005)南海东岛湖泊沉积物中的生态环境记录.第四纪研究25:574-584.
    65.程思海,陈道华,雷知生(2011)使用元素分析仪测定海洋沉积物中的硫化物.岩矿测试30:63-66.
    66. Wolfe R, Thauer R, Pfennig N (1987)A‘capillary racetrack’method for isolationof magnetotactic bacteria. FEMS microbiology letters45:31-35.
    67. Lins U, Freitas F, Keim C N (2003) Simple homemade apparatus for harvestinguncultured magnetotactic microorganisms. Brazilian Journal of Microbiology34:111-116.
    68.周克(2010)黄海沉积物多细胞趋磁原核生物的特性研究.
    69. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stainfor intracellular lipid droplets. The Journal of cell biology100:965-973.
    70. Dann O, Bergen G, Demant E, Volz G (1971) Trypanocide Diamidine des2‐Phenyl‐benzofurans,2‐Phenyl‐indens und2‐Phenyl‐indols. JustusLiebigs Annalen der Chemie749:68-89.
    71. Hamada S, Fujita S (1983) DAPI staining improved for quantitativecytofluorometry. Histochemistry79:219-226.
    72.赫云兰,刘波,秦善(2010)白云石化机理与白云岩成因问题研究.北京大学学报46:53-63.
    73. Hall TA. BioEdit: a user-friendly biological sequence alignment editor andanalysis program for Windows95/98/NT1999. Nucleic acids symposium41:95-98.
    74. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionarygenetics analysis (MEGA) software version4.0. Molecular biology andevolution24:1596-1599.
    75. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric softwarefor evolutionary analysis of DNA and protein sequences. Briefings inbioinformatics9:299-306.
    76. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing ofwhole cells for determinative, phylogenetic, and environmental studies inmicrobiology. Journal of bacteriology172:762-770.
    77. Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) TheDomain-specific Probe EUB338is Insufficient for the Detection of allBacteria: Development and Evaluation of a more Comprehensive ProbeSet. Systematic and Applied Microbiology22:434-444.
    78. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization andcatalyzed reporter deposition for the identification of marine bacteria. Appliedand Environmental Microbiology68:3094-3101.
    79.潘红苗(2008)海洋趋磁细菌多样性和特性研究及其分离纯化培养.
    80.温程璐,李姮,王蓬勃,李伟,赵井泉(2007)藻类细胞趋光性机理研究及其显微操作技术进展.自然科学进展17:141-147.
    81.朱灵峰,张召跃,王海燕,张乐,雷书凤,等.(2010)真菌传统分离方法及应用研究进展.安徽农业科学:16717-16719.
    82.张健(2006)多胚柑桔合子胚的显微分离及培养.
    83.江培洲,沈新明(2002)显微操作仪快速分离癌细胞并提取微量RNA的方法.第一军医大学学报22:551-553.
    84.韦红英,龙桂芳,林伟雄,李树全(2006)联苯胺染色联合显微操作法获取孕妇外周血中有核红细胞.广西医科大学学报23:244-245.
    85.谭景和,秦鹏春(1992)胚胎显微操作技术进展及存在问题.东北农学院学报23:300-305.
    86.毕树生,宗光华(2001)微操作技术的最新研究进展.中国科学基金15:153-157.
    87.王会香,孙立宁,荣伟彬,陈立国,刘亚欣(2006)面向生命科学领域的微操作技术的研究综述.仪器仪表学报27:106-110.
    88.田桂中(2008)自动化细胞注射中微操作与微注射技术及实验研究.
    89.张天宇(1983)介绍一项用于单孢子分离和制片以备显微摄影的显微操作技术.菌物学报3:008.
    90.李雅芹(1992)用Skerman显微操作技术分离硫酸盐还原菌.微生物学通报5:017.
    91. Kolinko S, Wanner G, Katzmann E, Kiemer F, Fuchs BM, et al.(2013) Clonelibraries and single cell genome amplification reveal extended diversity ofuncultivated magnetotactic bacteria from marine and freshwater environments.Environmental microbiology15:1290-1301.
    92. Jogler C, Kube M, Schubbe S, Ullrich S, Teeling H, et al.(2009) Comparativeanalysis of magnetosome gene clusters in magnetotactic bacteria providesfurther evidence for horizontal gene transfer. Environmental microbiology11:1267-1277.
    93. Schüler D (2008) Genetics and cell biology of magnetosome formation inmagnetotactic bacteria. FEMS microbiology reviews32:654-672.
    94. Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, et al.(2011) A culturedgreigite-producing magnetotactic bacterium in a novel group ofsulfate-reducing bacteria. Science334:1720-1723.
    95. Chen Yi-ran, Zhang Rui, Du Hai-jian, Xiao Tian and Wu Long-Fei et al.(2014) Anovel species of ellipsoidal multicellular magnetotactic prokaryotes from theSwan Lake at Rongcheng City. Enviromental Microbiology.(Accepted)
    96. Rui Zhang, Yiran Chen, Tian Xiao and Long-Fei Wu et al.(2014) Characterizationand phylogenetic identification of a species of spherical multicellularmagnetotactic prokaryotes that produces both magnetite and greigite crystals.Research in Microbiology (Submitted)
    97. Abreu F, Cant o ME, Nicolás MF, Barcellos FG, Morillo V, et al.(2011) Commonancestry of iron oxide-and iron-sulfide-based biomineralization inmagnetotactic bacteria. The ISME journal5:1634-1640.
    98. Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Almeida LGP, et al.(2013)Monophyletic origin of magnetotaxis and the first magnetosomes.Environmental microbiology15:2267-2274.
    99.宋红瑛(2012)南海西部新近系生物礁碳酸盐岩孔渗层变化与成因特征研究.
    100. Lin W, Bazylinski DA, Xiao T, Wu LF, Pan Y (2013) Life with compass:diversity and biogeography of magnetotactic bacteria. Environmentalmicrobiology10:1462-2920.
    101. Barbeau K, Moffett JW, Caron DA, Croot PL, Erdner DL (1996) Role ofprotozoan grazing in relieving iron limitation of phytoplankton. Nature380:61–64.
    102. Bullen JJ, Rogers HJ, Griffiths E (1974) Bacterial iron metabolism in infectionand immunity. Microbial iron metabolism: a comprehensive treatise AcademicPress, Inc, New York:518-551.
    103. Martins JL, Silveira TS, Abreu F, Silva KT, Silva‐Neto D, et al.(2007) Grazingprotozoa and magnetosome dissolution in magnetotactic bacteria.Environmental microbiology9:2775-2781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700