用户名: 密码: 验证码:
高能重离子碰撞中强子产额关联的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对高能反应过程中强子化机制的研究一直是高能物理研究的一个重要且具有挑战性的课题。由于支配强子化的非微扰量子色动力学(Non-Perturbati ve Quantum ChromoDynamics)远未解决,至今人们仍然主要利用与实验相结合的唯象方法,通过研究一些对强子化机制敏感的可观测量来探索解禁闭的部分子物质的强子化机制。强子产额关联,主要指不同种类强子的产额比以及这些强子产额比之间的内在关系,是一类能够有效揭示强子化机制的可观测量。早在上个世纪70年代,人们就利用强子产额关联来研究e++e-湮灭、p+p、π+p等基本粒子反应中的强子化机制问题。近年来,对强子产额关联的研究被广泛地拓展到高能重离子碰撞中来探索高能核核反应中的强子化机制问题。众所周知,夸克组合机制是高能重离子碰撞早期产生的热密部分子物质强子化机制的有力候选者,它在重离子碰撞中的有效性是碰撞早期有解禁闭的夸克胶子等离子体(Quark Gluon Plasma)形成的一个信号。因此,检验夸克组合机制在重离子碰撞中是否适用不仅可以促进人们更好地理解高能反应中的强子化机制问题,还可以帮助人们寻找核核反应中解禁闭发生的临界碰撞能量点,完善QCD相图结构。研究强子产额关联恰恰提供了检验夸克组合机制适用性、探索高能反应强子化机制的有效途径。
     欧洲大型强子对撞机(Large Hadron Collider)实验和美国布鲁克海文国家实验室的相对论重离子对撞机(Relativistic Heavy Ion Collider)实验对质心系碰撞能量从几个GeV到几个TeV的重离子对撞中产生的各种强子产额关联量进行了精细的测量,积累了大量的实验数据。超级质子同步加速器(Super Proton Synchrotron)实验中的NA4、NA62、CBM等实验组测量了打靶能量20-158AGeV的Pb+Pb实验中的各种强子产额关联。交变梯度同步加速器(Alternating Gradient Synchrotron)实验提供了打靶能量从几个AGeV到十几AGeV的重离子打靶实验中产生的各种强子产额关联量数据。到目前为止,实验上已经积累了海量的有关不同碰撞能量、不同碰撞核反应、不同运动学区间上的强子产额关联的数据。这些实验数据为检验夸克组合机制在重离子碰撞中的适用性提供了必要的前提条件。
     通过比较组合类模型的理论计算结果与实验数据,人们可以判断各种组合模型是否有效。不同的组合模型,像ALCOR模型、夸克重组合模型、部分子融合模型等等都对强子产额关联做了大量的研究,定量地解释了实验上观测到的很多强子产额关联现象。但是,不同的组合模型采用了不同的假设和近似条件。研究清楚用不同的组合模型得出的结果是否依赖于具体的模型,在多大程度上依赖这些模型,以及得出的理论结果依赖哪些假设和近似条件对于判断夸克组合机制的有效性是非常重要的。针对这一目标,本论文对夸克组合机制下各种强子的产额关联做一系统研究。在夸克组合图像下,我们从一个一般的夸克反夸克系统出发,在尽可能不依赖于具体组合模型的情况下,解析地推导出各种强子的产额表达式,进而研究各种强子的产额关联。
     本论文的主要研究内容和结论总结如下:
     (一)从夸克组合机制的一般思想出发,在因子化假设条件下,即在夸克组合函数(也称为夸克组合的内核函数)的味道动量因子化假设和归一化的夸克联合分布函数的味道无关假设条件下,解析地推导出各种直生的轻强子和奇异强子的产额公式,并计入短寿命共振态粒子衰变,得到各种末态强子的产额表达式。这些强子产额除依赖总介子平均产额、总重子平均产额和总反重子平均产额外,只依赖于几个熟知的参数:具有相同夸克组分的矢量介子与赝标量介子比Rv/p、具有相同夸克组分的八重态重子与十重态重子比RO/D、反夸克的奇异性抑制因子λ和夸克的有效奇异性抑制因子λ。。将Rv/P和Ro/D分别取为RV/PP=3,RO/D=2时,各种强子产额除依赖(NM)、)外,只依赖于λ和λ。。当不考虑净夸克的影响时,λ=λ。,这些强子产额公式可进一步简化并存在一系列简单的关系。
     (二)从因子化假设条件下推导出的强子产额公式出发,系统分析各类强子产额关联。首先,讨论在极端高能区净夸克的影响可以忽略时,有λ=λq成立,得出许多不依赖任何参数、或仅依赖λ、或依赖λ和(NB>/的结果,并与LHC能区√s=2.76TeV的Pb+Pb碰撞中中间快度区的实验数据进行比较。然后,考虑净夸克的影响,得到仅依赖于λ和λq的不同重子或不同反重子之间的产额比,依赖λ、λq和/的重子或反重子与介子的产额比,并将这些结果与RHIC能区√s=200,130,62.4GeV的Au+Au对撞和SPS能区Ebeam=158,80,40,30AGeV的Pb+Pb打靶实验数据进行比较。最后,考虑到重子和反重子受共振态粒子衰变的污染较小,能够更为干净地揭示强子化机制,我们从三个方面对各种重子反重子的味道关联进行系统的研究。第一方面是各种反重子重子比与K介子比值之间的关系。在夸克组合图像下,采用上面提到的因子化假设条件,推导出各种反重子重子比,如(Np)/(Np)、(NA)/(NA)、(Ng+)/(Ng-)、(NΩ+)/(NΩ-)与(NK-)、(NK+)之间有解析的函数关系式。这些函数关系式只与奇异性抑制因子λ有关,而且对λ的取值并不敏感。第二方面是参数无关的强子产额比恒等式。我们定义了强子产额关联量发现在夸克组合图像下有A=B=1和dAΞ=dpΩ成立。另外,我们还研究了一些混合的强子产额比,发现有成立。组合机制下得到的这些理论结果都与LHC.RHIC.SPS和AGS能区现有的实验数据进行了系统的比较。第三方面在忽略夸克整体味道补偿与考虑夸克整体味道补偿两种情况下,计算了各种重子反重子的味道关联因子,给出一些清晰的预言,等待实验的进一步检验。
     这些系统研究表明:组合机制下得出的有关轻强子和奇异强子产额关联的理论结果与LHC能区(?)s=2.76TeV.RHIC能区√s=200,130,62.4,39,19.6,11.5GeV和SPS能区Ebeam=158,80,40,30AGeV的实验数据符合得很好,这为夸克组合的强子化机制在这些能区的有效性提供了重要的证据。组合机制下得到的理论结果与较低的RHIC(?)s=7.7GeV.SPS Ebeam=20AGeV和AGS Ebeam=14.6,11.7,8AGeV的实验数据有所偏离,特别是在AGS能区偏离比较明显,这说明夸克组合机制在这些低能区可能已经失效。
     (三)ALICE实验组最新发表了一些关于LHC能区重味粲强子的实验数据,我们将夸克组合机制下得到的SU(3)强子的产额公式进行拓展,将单粲强子包括进来,研究各种单粲强子的产额关联,得出不同种类的单粲强子产额之间存在一系列简单的关系,还发现不同的单粲介子产额比能够揭示粲夸克强子化的不同性质,单粲介子产额比的横动量依赖还可以有效地反映粲夸克强子化的动力学信息。
     本论文的研究结果表明:在夸克组合机制的一般思想下,采用因子化假设条件之后,各种轻强子、奇异强子、单粲强子的产额之间展示出一系列简单的关联。这些强子产额之间的关联不依赖于具体的组合模型,不依赖于夸克联合分布函数和夸克组合函数的具体形式,是夸克组合图像下的一般结果。只要夸克组合机制有效,采用的因子化假设条件成立,这些强子产额关联就是成立的。因此,它们为检验夸克组合机制的适用性提供了有效的途径。组合机制下得到的这些强子产额关联特征与较高能量,像LHC、高的RHIC和SPS能区的实验数据符合得很好,表明夸克组合的强子化机制在这些反应能量下是有效的,进一步支持解禁闭的QGP物质在这些能量下已经形成的结论。但是,组合机制下的强子产额关联特征与低能区实验数据特别是AGS能区实验数据有较大的偏差,表明夸克组合机制在这些低能区反应中已经失效,进而暗示我们QGP物质在这么低的重离子碰撞反应中可能没有形成。
The study of the hadronization mechanisms of high energy reactions is always an important but challenging issue in high energy physics. So far, researchers still in-vestigate indirectly the hadronization mechanisms of the deconfined partonic matter mainly by studying some hadronic observables sensitive to the hadronization mecha-nisms with phenomenological methods, since the Non-Perturbative Quantum Chromo-Dynamics (QCD) has difficulties in dealing with it directly. Hadron yield correlations, measured by the ratios of the average yields of different hadrons and the relationships of such yield ratios, are one kind of characteristic properties of hadronization mecha-nisms. They were therefore considered as good probes for the hadronization mechanism in e++e-annihilations and p+p, π+p reactions already in the1970s. Recently, many people extend the study of hadron yield correlations to high energy heavy ion collisions. As is well known, the quark combination mechanism is a powerful candidate for deal-ing with the hadronization of the partonic matter created at the early stage of heavy ion collisions. Testing the quark combination in heavy ion collisions is interesting be-cause whether the combination mechanism works might be considered as one of the signatures for the formation of the bulk color-deconfined quark matter system before the hadronization takes place. Besides, it can set lights to the search for the onset of deconfinement in nucleus-nucleus collisions and the further comprehension of the QCD phase diagram.
     Experimental data on hadron yield correlations are available from the BNL Rela-tivistic Heavy Ion Collider (RHIC), from relatively low energy collisions such as those obtained by NA49, NA61, and CBM Collaborations at the CERN Super Proton Syn-chrotron (SPS), and more recently from the very high energy reactions at the CERN Large Hadron Collider (LHC). So far, lots of experimental data at different collision en-ergies with different nuclei and in different kinematic regions have been accumulated. These data provide opportunities for different combination models to test the quark combination mechanism in heavy ion collisions.
     One can justify the quark combination mechanism by comparing the results calcu-lated by combination models with the experimental data. Different combination models, such as ALCOR model, quark (re-)combination or coalescence models have extensively studied hadron yield correlations and explained many observed interesting phenomena. However, different models use different assumptions and/or approximations. It is impor-tant to see whether, if so, to what extent, the theoretical results depend on the particular assumptions and/or approximations used in obtaining these results. For this purpose, we systematically investigate hadron yield correlations in the framework of the quark combination. We will start the study by considering the general case of the combination of quarks and antiquarks in a system from the basic ideas of the combination mecha-nism. We will make the study as independent of the particular models as possible but present the assumptions and/or approximations explicitly whenever necessary. We first deduce the general formalism of the yields of various hadrons and then systematically investigate different kinds of hadron yield correlations.
     The outline of the contents and conclusions of this thesis is as follows:
     (1) We deduce the general formalism of the yields of different hadrons in the frame-work of the quark combination. Adopting the factorization assumption, i.e., the assump-tion of the factorization of flavor and momentum dependences of quark combination functions (kernel functions) and the assumption of the flavor independence of the nor-malized quark joint momentum distributions, we analytically deduce the formulae of different directly produced light and strange hadron yields in the quark combination mechanism. Adding the decay contributions from resonances, the formulae of different final state hadron yields are obtained. Besides the total average yield of mesons (NM), the total average yield of baryons (NB) and that of antibaryons{NB), these hadron yields only depend on several familiar parameters:the ratio of the Jp=1-vector mesons to the Jp=0-pseudoscalar mesons of the same flavor composition RV/p, the ratio of the Jp=(1/2)+octet to the Jp=(3/2)+decuplet baryons of the same flavor composition Ro/d, the strangeness suppression factor for antiquarks A, and the effective strangeness suppression factor for quarks λq. Especially, when RV/P=3and Ro/D=2are taken, these hadron yields only depend on λ and λq, besides (NM),(NB) and (NR). If the influence of the net quarks can be ignored, we have λ=λq and the further simpler hadron yield formulae can be obtained.
     (II) With the above deduced hadron yield formulae, we further study different kinds of hadron yield correlations. Firstly, we consider ultra high energy collisions where the net quark influence can be ignored. In this case, λ=λq and many yield corre-lation results independent of any parameters or only depending on A or depending on λ and (NB)/(NM) are obtained and compared with the experimental data from LHC (?)s=2.76TeV Pb+Pb collisions. Then, including net quarks, we get the yield ratios between different baryons or antibaryons depending only on λ and λq, the yield ratios between baryons or antibaryons and mesons related with λ, λq and (NB)/(NM) and compare these results with the data from RHIC (?)s=200,130,62.4GeV Au+Au collisions and SPS Ebeam=158,80,40,30AGeV Pb+Pb collisions. Finally, we systematically study the baryon-antibaryon flavor correlations from three aspects since baryons and antibaryons suffer less decay contaminations from resonances and can probe the hadronization mechanism more clearly. One is the relationships between different species of antibaryon-to-baryon ratios and (NK-)/(NK+). In the quark com-bination, we get that different antibaryon-to-baryon ratios, e.g.,(Np)/(NP),(NA)/(NA),(N(?)+)/(N(?)-) and (NΩ+)/(NΩ-) relate with (NK-)/(NK+) by λ, but not sensitive to the values of λ. Two is several interesting regularities independent of any parame-ters. We define the following hadron yield correlation quantities In the quark combination, A=B=1and d∧≡=dpΩ. In addition, we discuss the mixed ratios and find that All these results in the QCM are compared with the available data from different experimental collabo-rations at LHC, RHIC, SPS and AGS. Three is the baryon-antibaryon flavor correlation factors. We provide predictions in cases of ignoring and considering the global flavor compensation of quarks and antiquarks, respectively, for comparison with the future measurements.
     The study shows that the results of the yield correlations of different light and strange hadrons in the QCM are consistent with the data from LHC (?)s=2.76TeV, RHIC (?)s=200,130,62.4,39;19.6,11.5GeV and SPS Ebeam=158,80,40,30AGeV, which justifies the quark combination in heavy ion collisions at these energies; but they disagree with the data from RHIC (?)s=7.7GeV, SPS Ebeam=20AGeV and AGS Ebeam=14.6,11.7,8AGeV, and even deviate seriously from the AGS data, which indicates the invalidity of the quark combination at these low reaction energies.
     (Ⅲ) With a few data of charm hadrons in Pb+Pb collisions at LHC published by the ALICE Collaboration, we extend the quark combination to the charm sector and point out that the measurement of the yields of hadrons with single charm valence quark can provide important insights into charm quark hadronization mechanism and properties of the hot and dense matter produced in high energy reactions. We propose several types of yield ratios of hadrons with single charm valence quark to measure various properties of low PT charm quark hadronization. We argue that ratios of open charm mesons as the function of PT can serve as good probes for the dynamics of charm quark hadronization.
     All the results we obtained in this thesis show that with the assumption of the fac-torization, the yields of different light, strange and charm hadrons exhibit a series of simple and interesting relations. These relations are independent of particular combina-tion models, independent of precise forms of quark joint momentum distributions and quark combination functions and they are the general results of the quark combination. They are valid as long as the quark combination is at work and the factorization as-sumption is valid, so they can be used to test the validity of the quark combination. The experimental data at LHC, high RHIC and SPS energies agree well with these results obtained in the general quark combination mechanism, which shows the validity of the quark combination and further indicates the deconfined QGP has been produced in these collision energies. The data at low energies, i.e., at AGS energies, deviate from these results in the QCM. This suggests the invalidity of the quark combination and further indicates QGP has not been created in such low energy collisions.
引文
[1]N. Herrmann (FOPI Collaboration), Particle production and flow at SIS energies , Nucl.Phys. A610,49C (1996), arXiv:nucl-ex/9610007 [nucl-exl.
    [2]M. Ploskon (KaoS Collaboration), Azimuthal emission pattern of K+ and K-at SIS energies, Nucl.Phys. A749,170 (2005).
    [3]R. Holzmann et al. (HADES Collaboration), Dilepton Production at SIS Energies Studied with HADES, Nucl.Phys. A834,298c (2010).
    [4]E. Bratkovskaya, W. Cassing, R. Rapp, and J. Wambach, Dilepton production and M(T) scaling at BEVALAC/SIS energies, Nucl.Phys. A634,168 (1998), arXiv:nucl-th/9710043 [nucl-th].
    [5]E. Bratkovskaya and W. Cassing, Dilepton production and off-shell transport dy-namics at SIS energies, Nucl.Phys. A807,214 (2008), arXiv:0712.0635 [nucl-th]
    [6]K. Filimonov et al. (E877 Collaboration), Recent results from E877 for Au+Au collisions at AGS energy, Nucl.Phys. A661,198 (1999), arXiv:nucl-ex/9907006 [nucl-ex].
    [7]L. Ahle et al. (E-802 Collaboration, E-866 Collaboration), Centrality dependence of kaon yields in Si+A and Au+Au collisions at the AGS, Phys.Rev. C60, 044904 (1999), arXiv:nucl-ex/9903009 [nucl-ex].
    [8]M. Lisa et al. (E895 Collaboration), Bombarding energy dependence of pi-minus interferometry at the Brookhaven AGS, Phys.Rev.Lett.84,2798 (2000).
    [9]C. Ogilvie, Review of nuclear reactions at the AGS, Nucl.Phys. A698,3 (2002), arXiv:nucl-ex/0104010 [nucl-ex].
    [10]T. Anticic et al. (NA49 Collaboration), Energy dependence of transverse mo-mentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV, Phys.Rev. C79,044904 (2009), arXiv:0810.5580 [nucl-ex].
    [11]D. Jouan (NA50 Collaboration), Phi and omega-rho production in d-C, d-U, S-U and Pb-Pb at SPS energies, J.Phys. G35,104163 (2008).
    [12]N. Abgrall et al. (NA61 Collaboration), NA61/SHINE low energy program at SPS , PoS CPOD2009,049 (2009), arXiv:0908.1697 [nucl-ex].
    [13]C. Hohne, SPS energy scan results and physics prospects at FAIR, Nucl.Phys. A830,369C (2009), arXiv:0907.4692 [nucl-ex].
    [14]Y. Mehtar-Tani and G. Wolschin, Stopping in central Pb+Pb collisions at SPS energies and beyond, Europhys.Lett.94,62003 (2011), arXiv:1102.3134 [hep-ph]-
    [15]R. Stock, Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram, (2008),10.1007/978-3-540-74203-6-7, arXiv.0807.1610 [nucl-ex].
    [16]E. Sangaline (STAR Collaboration), RCp and RAA measurements of identified and unidentified charged particles at high pr in Au+ Au Collisions at(?)sNN = 7.7,11.5,19.6,27,39,and 62.4 GeV in STAR, Nucl.Phys. A904-905,771c (2013).
    [17]S. Adler et al. (PHENIX Collaboration), Scaling properties of proton and anti-proton production in s(NN)**(1/2) 200-GeV Au+Au collisions, Phys.Rev.Lett. 91,172301 (2003), arXiv:nucl-ex/0305036 [nucl-ex].
    [18]B. Abelev et al. (STAR Collaboration), Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at s(NN)**(1/2)-200-GeV , Phys.Rev.Lett.97,152301 (2006), arXiv:nucl-ex/0606003 [nucl-ex].
    [19]S. Adler et al. (PHENIX Collaboration), Elliptic flow of identified hadrons in Au+Au collisions at s(NN)**(1/2)= 200-GeV, Phys.Rev.Lett.91,182301 (2003), arXiv:nucl-ex/0305013 [nucl-ex].
    [20]J. Adams et al. (STAR Collaboration), Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+ Au colli-sions at s(NN)**(1/2)= 200-GeV, Phys.Rev.Lett.92,052302 (2004), arXiv:nucl-ex/0306007 [nucl-ex].
    [21]S. Shi (STAR collaboration), Probe the QCD phase boundary with elliptic flow in relativistic heavy ion collisions at STAR, Central Eur.J.Phys.10,1338 (2012), arXiv:1201.3959 [nucl-ex].
    [22]M. Rybczynski et al. (NA49 Collaboration), Onset of deconfinement and search for the critical point of strongly interacting matter at CERN SPS energies, PoS ICHEP2012,422 (2013), arXiv:1211.6541 [nucl-ex].
    [23]M. Nasim (STAR Collaboration), Probing the QCD phase diagram with the mea-surements of of φ-meson production and elliptic flow in the heavy-ion collision at STAR, (2013), arXiv:1309.7784 [nucl-ex].
    [24]L. Adamczyk et al. (STAR Collaboration), Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions, Phys.Rev.Lett.110,142301 (2013), arXiv:1301.2347 [nucl-ex].
    [25]周代梅,蔡勖,超相对论性重离子碰撞的国际大科学实验综述,华中师范大学学报第37卷,第3期(2003).
    [26]Z. Conesa del Valle (ALICE Collaboration), Open Heavy Flavor Production in p-p and Pb-Pb collisions as seen by ALICE at the LHC, AIP Conf.Proc.1441, 886 (2012), arXiv:1110.1883 [hep-ex].
    [27]R. Grajcarek (ALICE Collaboration), Measurement of heavy-flavor production in Pb-Pb collisions at the LHC with ALICE, J.Phys.Conf.Ser.420,012032 (2013), arXiv:1209.1925 [nucl-ex].
    [28]L. Landau, On the multiparticle production in high-energy collisions Izv.Akad.Nauk Ser.Fiz.17,51 (1953).
    [29]F. Becattini and G. Passaleva, Statistical hadronization model and transverse momentum spectra of hadrons in high-energy collisions, Eur.Phys.J. C23,551 (2002), arXiv:hep-ph/0110312 [hep-ph].
    [30]F. Becattini, What is the meaning of the statistical hadronization model? J.Phys.Conf.Ser.5,175 (2005), arXiv:hep-ph/0410403 [hep-ph].
    [31]M. Gyulassy and X.-N. Wang, HIJING 1.0:A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Com-put.Phys.Commun.83,307 (1994), arXiv:nucl-th/9502021 [nucl-th].
    [32]H. Petersen, M. Bleicher, S. A. Bass, and H. Stocker, UrQMD v2.3:Changes and Comparisons, (2008), arXiv:0805.0567 [hep-ph].
    [33]Z.-W. Lin, S. Pal, C.-M. Ko, B.-A. Li, and B. Zhang, Multiphase transport model for heavy ion collisions at RHIC, Nucl.Phys. A698,375 (2002), arXiv:nucl-th/0105044 [nucl-th].
    [34]M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl.Phys. A750,30 (2005), arXiv:nucl-th/0405013 [nucl-th].
    [35]K. Ackermann et al. (STAR Collaboration), Elliptic flow in Au+Au colli-sions at (S(NN))**(1/2)= 130 GeV, Phys.Rev.Lett.86,402 (2001), arXiv:nucl-ex/0009011 [nucl-ex].
    [36]K. Adcox et al. (PHENIX Collaboration), Flow measurements via two parti-cle azimuthal correlations in Au+Au collisions at s(NN)**(1/2)= 130-GeV, Phys.Rev.Lett.89,212301 (2002), arXiv:nucl-ex/0204005 [nucl-ex].
    [37]K. Aamodt et al. (ALICE Collaboration), Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys.Rev.Lett.105,252302 (2010), arXiv:1011.3914 [nucl-ex].
    [38]T. Matsui and H. Satz, J/ψ Suppression by Quark-Gluon Plasma Formation Phys.Lett.8178,416(1986).
    [39]S. Soff, S. A. Bass, M.Bleicher, L. Bravina, M. Gorenstein, et al., Strangeness en-hancement in heavy ion collisions:Evidence for quark gluon matter?, Phys.Lett. B471,89 (1999), arXiv:nucl-th/9907026 [nucl-th].
    [40]R. C. Hwa and C. Yang, Recombination of shower partons at high p(T) in heavy ion collisions, Phys.Rev. C70,024905 (2004), arXiv:nucl-th/0401001 [nucl-th].
    [41]V. Greco, C. Ko, and I. Vitev, Hadron production from quark coalescence and jet fragmentation in intermediate energy collisions at RHIC, Phys.Rev. C71, 041901 (2005), arXiv:nucl-th/0412043 [nucl-th].
    [42]P. Seyboth, Study of the Onset of Deconfinement and Search for the Critical Point of Strongly Interacting Matter, Acta Phys.Polon.Supp.6,409 (2013), arXiv:1301.5823 [nucl-ex].
    [43]V. Friese (NA49 Collaboration), NA49 evidence for the onset of deconfinement, PoS CPOD2009,005 (2009), arXiv:0908.2720 [nucl-ex].
    [44]B.-H. Sa, A. Tai, and Z.-D. Lu, Ratios of strange anti-baryon to baryon in rela-tivistic nucleus-nucleus collisions, Phys.Rev. C52,2069 (1995).
    [45]P. Braun-Munzinger, I. Heppe, and J. Stachel, Chemical equilibration in Pb+ Pb collisions at the SPS, Phys.Lett. B465,15 (1999), arXiv:nucl-th/9903010 [nucl-th].
    [46]J. Zimanyi, T. Biro, T. Csorgo, and P. Levai, Quark liberation and coalescence at CERNSPS, Phys.Lett. B472,243 (2000), arXiv:hep-ph/9904501 [hep-ph].
    [47]V. Greco, C. Ko, and P. Levai, Parton coalescence and anti-proton/pion anomaly at RHIC, Phys.Rev.Lett.90,202302 (2003), arXiv:nucl-th/0301093 [nucl-th].
    [48]R. Fries, B. Muller, C. Nonaka, and S. Bass, Hadronization in heavy ion colli-sions:Recombination and fragmentation of partons, Phys.Rev.Lett.90,202303 (2003), arXiv:nucl-th/0301087 [nucl-th].
    [49]R. C. Hwa and C. Yang, Scaling behavior at high p(T) and the p/pi ratio, Phys.Rev. C67,034902 (2003), arXiv:nucl-th/0211010 [nucl-th].
    [50]F.-1. Shao, Q.-b. Xie, and Q. Wang, Production rates for hadrons, pentaquarks Theta+and Theta*++, and di-baryon (Omega Omega)(0+) in relativistic heavy ion collisions by a quark combination model, Phys.Rev. C71,044903 (2005), arXiv:nucl-th/0409018 [nucl-th].
    [51]T. Yao, W. Zhou, and Q.-B. Xie, Charm hadron production at RHIC in combi-nation model, Phys.Rev. C78,064911 (2008), arXiv:0809.0049 [nucl-th].
    [52]C.-e. Shao, J. Song, F.-1. Shao, and Q.-b. Xie, Hadron production by quark com-bination in central Pb+Pb collisions at s(NN)**(1/2)=17.3-GeV, Phys.Rev. C80,014909 (2009), arXiv:0902.2435 [hep-ph].
    [53]X. Artru and G. Mennessier, String model and multiproduction, Nucl.Phys. B70, 93(1974).
    [54]B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Parton Fragmenta-tion and String Dynamics, Phys.Rept.97,31 (1983).
    [55]G. Marchesini and B. Webber, Simulation of QCD Jets Including Soft Gluon In-terference, Nucl.Phys. B238,1 (1984).
    [56]B. Webber, A QCD Model for Jet Fragmentation Including Soft Gluon Interfer-ence, Nucl.Phys. B238,492 (1984).
    [57]B. Andersson, G. Gustafson, and T. Sjostrand, A Model for Baryon Production in Quark and Gluon Jets, Nucl.Phys. B197,45 (1982).
    [58]H. Aihara et al. (TPC/Two Gamma Collaboration), Baryon production in e+e-annihilation at (?)s 29 GeV:clusters, diquarks, popcorn?, Phys.Rev.Lett.55, 1047(1985).
    [59]H. Albrecht et al. (ARGUS Collaboration), Results on Baryon anti-Baryon Cor-relations in e+e-Annihilation, Z.Phys. C43,45 (1989).
    [60]X. Artru and M. Bowler, Improved fragmentation functions for baryon, anti-baryon and popcorn meson production, Phys.Lett. B256,557 (1991).
    [61]A. Majumder, E. Wang, and X.-N. Wang, Modified dihadron fragmentation func-tions in hot and nuclear matter, Phys.Rev.Lett.99,152301 (2007), arXiv:nucl-th/0412061 [nucl-th].
    [62]E. Fermi, High-energy nuclear events, Prog.Theor.Phys.5,570 (1950).
    [63]F. Becattini, An Introduction to the Statistical Hadronization Model, (2009), arXiv:0901.3643 [hep-ph].
    [64]A. Andronic, P. Braun-Munzinger, and J. Stachel, Hadron production in central nucleus-nucleus collisions at chemical freeze-out, Nucl.Phys. A772,167 (2006), arXiv:nucl-th/0511071 [nucl-th].
    [65]M. Petran and J. Rafelski, Multistrange Particle Production and the Statistical Hadronization Model, Phys.Rev. C82,011901 (2010), arXiv:0912.1689 [hep-ph].
    [66]A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, The thermal model on the verge of the ultimate test:particle production in Pb-Pb collisions at the LHC, J.Phys. G38,124081 (2011), arXiv:1106.6321 [nucl-th].
    [67]V. Begun, W. Florkowski, and M. Rybczynski, Explanation of hadron transverse-momentum spectra in heavy-ion collisions at sqrt(sNN)= 2.76 TeV within chem-ical non-equilibrium statistical hadronization model, (2013), arXiv:1312.1487 [nucl-th].
    [68]V. Anisovich and V. Shekhter, QUARK MODEL FOR MULTIPARTICLE AND INCLUSIVE REACTIONS, Nucl.Phys. B55,455 (1973).
    [69]J. Bjorken and G. R. Farrar, Particle Ratios in Energetic Hadron Collisions Phys.Rev. D9,1449(1974).
    [70]K. Das and R. C. Hwa, Quark-anti-Quark Recombination in the Fragmentation Region, Phys.Lett. B68,459 (1977).
    [71]A. Bialas, Quark model and strange baryon production in heavy ion collisions, Phys.Lett. B442,449 (1998), arXiv:hep-ph/9808434 [hep-ph].
    [72]R. Fries, B. Muller, C. Nonaka, and S. Bass, Hadron production in heavy ion col-lisions:Fragmentation and recombination from a dense parton phase, Phys.Rev. C68,044902 (2003), arXiv:nucl-th/0306027 [nucl-th].
    [73]Q.-B. Xie and X.-M. Liu, Quark Production Rule in e+e-→ Two Jets, Phys.Rev. D38,2169(1988).
    [74]Q. Wang and Q.-B. Xie, Production percentages of excited baryons in e+e- an-nihilation, J.Phys. G21,897 (1995).
    [75]Z.-T. Liang and Q.-B. Xie, Baryon anti-baryon flavor correlations in e+e-anni-hilation, Phys.Rev. D43,751 (1991).
    [76]J. Beringer et al. (Particle Data Group), Review of Particle Physics (RPP), Phys.Rev. D86,010001 (2012).
    [77]A. Andronic, P. Braun-Munzinger, and J. Stachel, Thermal hadron production in relativistic nuclear collisions:The Hadron mass spectrum, the horn, and the QCD phase transition, Phys.Lett. B673,142 (2009), arXiv:0812.1186 [nucl-th]
    [78]J. Song and F.-1. Shao, Baryon-antibaryon production asymmetry in relativistic heavy ion collisions, Phys.Rev. C88,027901 (2013), arXiv:1303.1231 [nucl-th]
    [79]Z.-W. Lin, Quark Coalescence with Quark Number Conservation and the Effect on Quark-Hadron Scaling, J.Phys. G38,075002 (2011), arXiv:0901.3737 [nucl-th].
    [80]R. Preghenella (ALICE Collaboration), Transverse momentum spectra of identi-fied charged hadrons with the ALICE detector in Pb-Pb collisions at (?)sNN 2.76 TeV, PoS EPS-HEP2011,118 (2011), arXiv:1111.0763 [nucl-ex].
    [81]S. Singha (ALICE Collaboration), Strange hadron and resonance production in Pb-Pb collisions at (?)SNN 2.76 TeV with ALICE experiment at LHC Nucl.Phys. A904-905,539c (2013), arXiv:1211.0187 [hep-ex].
    [82]B. Muller, J. Schukraft, and B. Wyslouch, First Results from Pb+Pb collisions at the LHC, Ann.Rev.Nucl.Part.Sci.62,361 (2012), arXiv:1202.3233 [hep-ex].
    [83]B. Abelev et al. (STAR Collaboration), Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR, Phys.Rev. C79, 034909 (2009), arXiv:0808.2041 [nucl-ex].
    [84]S. Adler et al. (PHENIX Collaboration), Identified charged particle spectra and yields in Au+Au collisions at S(NN)**1/2= 200-GeV, Phys.Rev. C69,034909 (2004), arXiv:nucl-ex/0307022 [nucl-ex].
    [85]M. Aggarwal et al. (STAR Collaboration), Strange and Multi-strange Particle Production in Au+Au Collisions at (?)SNN 62.4 GeV, Phys.Rev. C83,024901 (2011), arXiv:1010.0142 [nucl-ex].
    [86]K. Adcox et al. (PHENIX Collaboration), Measurement of the Lambda and anti-Lambda particles in Au+Au collisions at s(NN)**(1/2)= 130-GeV Phys.Rev.Lett.89,092302 (2002), arXiv:nucl-ex/0204007 [nucl-ex].
    [87]J. Adams et al. (STAR Collaboration), Scaling Properties of Hyperon Production in Au+Au Collisions at s**(1/2)= 200-GeV, Phys.Rev.Lett.98,062301 (2007), arXiv:nucl-ex/0606014 [nucl-ex].
    [88]J. Adams et al. (STAR Collaboration), Multistrange baryon production in Au-Au collisions at S(NN)**1/2= 130 GeV, Phys.Rev.Lett.92,182301 (2004), arXiv:nucl-ex/0307024 [nucl-ex].
    [89]I. Arsene et al. (BRAHMS Collaboration), Nuclear stopping and rapidity loss in Au+Au collisions at s(NN)**(1/2)= 62.4-GeV, Phys.Lett. B677,267 (2009), arXiv:0901.0872 [nucl-ex].
    [90]C. Alt et al. (NA49 Collaboration), Pion and kaon production in central Pb+ Pb collisions at 20-A and 30-A-GeV:Evidence for the onset of deconfinement, Phys.Rev. C77,024903 (2008), arXiv:0710.0118 [nucl-ex].
    [91]S. Afanasiev et al. (NA49 Collaboration), Energy dependence of pion and kaon production in central Pb+Pb collisions, Phys.Rev. C66,054902 (2002), arXiv:nucl-ex/0205002 [nucl-ex].
    [92]C. Alt et al. (NA49 Collaboration), Energy dependence of Lambda and Xi produc-tion in central Pb+Pb collisions at A-20, A-30, A-40, A-80, and A-158 GeV mea-sured at the CERN Super Proton Synchrotron, Phys.Rev. C78,034918 (2008), arXiv:0804.3770 [nucl-ex].
    [93]C. Alt et al. (NA49 Collaboration), Energy and centrality dependence of anti-p and p production and the anti-Lambda/anti-p ratio in Pb+Pb collisions between 20/A-GeVand 158/A-Gev, Phys.Rev. C73,044910 (2006).
    [94]T. Anticic et al. (NA49 Collaboration), Lambda and anti-Lambda produc-tion in central Pb-Pb collisions at 40-A-GeV,80-A-GeV and 158-A-GeV Phys.Rev.Lett.93,022302 (2004), arXiv:nucl-ex/0311024 [nucl-ex].
    [95]C. Alt et al. (NA49 Collaboration), Omega-and anti-Omega+production in cen-tral Pb+Pb collisions at 40-AGeV and 158-AGeV, Phys.Rev.Lett.94,192301 (2005), arXiv:nucl-ex/0409004 [nucl-ex].
    [96]J. Adams et al. (STAR Collaboration), Strange anti-particle to particle ratios at mid-rapidity in s(NN)**(1/2)-130-GeV Au+Au collisions, Phys.Lett. B567, 167 (2003), arXiv:nucl-ex/0211024 [nucl-ex].
    [97]I. Bearden et al. (BRAHMS Collaboration), Rapidity dependence of charged an-tihadron to hadron ratios in Au+Au collisions at S(NN)**(1/2)= 200-GeV Phys.Rev.Lett.90,102301 (2003).
    [98]I. Arsene et al. (BRAHMS Collaboration), Kaon and Pion Production in Central Au+Au Collisions at S(NN)**(1/2)= 62.4 GeV, Phys.Lett. B687,36 (2010), arXiv:0911.2586 [nucl-ex].
    [991 L. Kumar (STAR Collaboration), Identified Hadron Production from the RHIC Beam Energy Scan, J.Phys. G38,124145 (2011), arXiv:1106.6071 [nucl-ex].
    [100]I. Bearden et al. (NA44 Collaboration), Particle production in central Pb+ Pb collisions at 158-A-GeV/c, Phys.Rev. C66,044907 (2002), arXiv:nucl-ex/0202019 [nucl-ex].
    [101]D. Cebra (STAR Collaboration), Charged hadron results from Au+Au at 19.6-GeV, (2009), arXiv.0903.4702 [nucl-ex].
    [102]F. Zhao (STAR), Beam Energy Dependence of Strange Hadron Production at RHIC, PoS CPOD2013,036 (2013).
    [103]G. Van Buren (STAR Collaboration), STAR results on mixed hadron ratios Heavy Ion Phys.17,197 (2003).
    [104]B. Abelev et al. (ALICE Collaboration), Pion, Kaon, and Proton Production in Central Pb-Pb Collisions at (?)SNN 2.76 TeV, Phys.Rev.Lett.109,252301 (2012), arXiv:1208.1974 [hep-ex].
    [105]B. B. Abelev et al. (ALICE Collaboration), Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at (?)SNN 2.76 TeV, Phys.Lett. B728,216 (2014), arXiv:1307.5543 [nucl-ex].
    [106]M. Broz (ALICE Collaboration), Mid-rapidity antibaryon-to-baryon ratios in pp and Pb-Pb collisions measured by the ALICE experiment, Nucl.Phys. A904-905, 429c (2013).
    [107]G. Stephans and Y. Wu, Strange, anti-, and anti-strange baryons at AGS energies ,J.Phys. G23,1895(1997).
    [108]G. Stephans et al. (E802 Collaboration.), Recent results from E859 using Si beams at 14.6-A/GeV/c, Nucl.Phys. A566,269C (1994).
    [109]T. Abbott et al. (E-802 Collaboration), Charged hadron distributions in central and peripheral Si+A collisions at 14.6-A/GeV/c, Phys.Rev. C50,1024 (1994).
    [110]L. Ahle et al. (E802 Collaboration), Anti-proton production in Au+Au collisions at 11.7-A-GeV/c, Phys.Rev.Lett.81,2650 (1998).
    [111]B. Back et al. (E917 Collaboration), Anti-lambda production in Au+Au colli-sions at 11.7-AGeV/c, Phys.Rev.Lett.87,242301 (2001), arXiv:nucl-ex/0101008 [nucl-ex].
    [112]S. Ahmad, B. Bonner, S. Efremov, G. Mutchler, E. Platner, et al., Nuclear mat-ter expansion parameters from the measurement of differential multiplicities for lambda production in central au+au collisions at ags, Nucl.Phys. A636,507 (1998), arXiv:nucl-ex/9803006 [nucl-ex].
    [113]S. S. G. Stephans and W. K. eds., Heavy-Ion Physics at the AGS:HIPAGS 93, p.184 (MIT Laboratory for Nuclear Science, Cambridge,1993) p.184.
    [114]B. Back et al. (E917 Collaboration), Strangeness production in An+Au collisions at AGS energies, J.Phys. G27,301 (2001).
    [115]D. Best et al. (E895 Collaboration), Strangeness in Au+Au collisions between 1-A-GeV and 10-A-GeV, (1999).
    [116]L. Ahle et al. (E866 Collaboration, E917 Collaborations), An Excitation function of K-and K+production in Au+Au reactions at the AGS, Phys.Lett. B490,53 (2000), arXiv:nucl-ex/0008010 [nucl-ex].
    [117]L.-X. Sun, R.-Q. Wang, J. Song, and F.-L. Shao, Hadronic Rapidity Spectra in Heavy Ion Collisions at SPS and AGS energies in a Quark Combination Model, Chin.Phys. C36,55 (2012), arXiv:1105.0577 [hep-ph].
    [118]H. van Hees, V. Greco, and R. Rapp, Heavy-quark probes of the quark-gluon plasma at RHIC, Phys.Rev. C73,034913 (2006), arXiv:nucl-th/0508055 [nucl-th].
    [119]A. Mocsy and P. Petreczky, Color screening melts quarkonium, Phys.Rev.Lett. 99,211602 (2007), arXiv:0706.2183 [hep-ph].
    [120]M. He, R. J. Fries, and R. Rapp, Ds-Meson as Quantitative Probe of Diffusion and Hadronization in Nuclear Collisions, Phys.Rev.Lett.110,112301 (2013), arXiv:1204.4442[nucl-th].
    [121]R.-q. Wang, F.-1. Shao, J. Song, Q.-b. Xie, and Z.-t. Liang, Hadron Yield Cor-relation in Combination Models in High Energy AA Collisions, Phys.Rev. C86, 054906 (2012), arXiv:1206.4373 [hep-ph].
    [122]B. Abelev et al. (ALICE Collaboration),Ds+meson production at central rapid-ity in proton-proton collisions at (?)s= 7 TeV, Phys.Lett. B718,279 (2012), arXiv:1208.1948 [hep-ex].
    [123]B. B. Abelev et al. (ALICE Collaboration), KS0 and A production in Pb-Pb colli-sions at(?)SNN 2.76 TeV, Phys.Rev.Lett. 111,222301 (2013), arXiv:1307.5530 [nucl-ex].
    [124]K. Aamodt et al. (ALICE Collaboration), Suppression of Charged Particle Pro-duction at Large Transverse Momentum in Central Pb-Pb Collisions at 2.76 TeV, Phys.Lett. B696,30 (2011), arXiv:1012.1004 [nucl-ex].
    [125]P. Christiansen (ALICE Collaboration), High pt identified particle production in ALICE, (2012), arXiv:1208.5368 [nucl-ex].
    [126]A. Knospe (ALICE Collaboration), Hadronic resonance production in Pb-Pb collisions at the ALICE experiment, J.Phys.Conf.Ser.420,012018 (2013), arXiv:1301.1644 [nucl-ex].
    [127]B. Abelev et al. (ALICE Collaboration), Suppression of high transverse momen-tum D mesons in central Pb-Pb collisions at(?)sNN 2.76 TeV, JHEP 1209,112 (2012), arXiv:1203.2160 [nucl-ex].
    [128]G. M. Innocenti (ALICE Collaboration), D+s production at central rapidity in Pb Pb collisions at(?)sNN 2.76 TeV with the ALICE detector, Nucl.Phys. A904-905,433c (2013), arXiv:1210.6388 [nucl-ex].
    [129]M. Aggarwal et al. (STAR Collaboration), Higher Moments of Net-proton Multiplicity Distributions at RHIC, Phys.Rev.Lett.105,022302 (2010), arXiv:1004.4959 [nucl-ex].
    [130]X. Luo (STAR Collaboration), Search for the QCD Critical Point by Higher Mo-ments of Net-proton Multiplicity Distributions at STAR, Nucl.Phys. A904-905, 911c (2013), arXiv:1210.5573 [nucl-ex].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700