用户名: 密码: 验证码:
分布反馈光纤激光器的特性研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过几十年的努力和发展,光纤激光器及光纤放大器已经走出实验室,被广泛的应用在了通信、传感、医疗以及工农业等领域。近年来随着掺杂光纤制作技术及光纤光栅刻写技术的发展,在光纤上直接写入光栅而构成线型腔光纤激光器的技术也越来越成熟。而线型腔光纤激光器具有体积小、重量轻、噪声低、线宽窄以及易于大规模组阵复用等优点,而被广泛的应用在光纤激光传感领域。分布反馈光纤激光器(DFB)是在一段掺杂光纤上直接写入一个π相移光栅而构成的线型腔光纤激光器,这类激光器的谐振腔长度都在厘米量级,且输出激光都是窄线宽低噪声的高相干光。
     DFB光纤激光器由于具有灵敏度高、抗电磁干扰、动态监测范围大、易于大规模组阵复用等优势被广泛应用在光纤传感领域。由于DFB光纤激光器是国内研究起步较晚的一种新型结构激光器,对其特性进行详细的分析和研究,对它的实际应用推广是十分重要的。在本论文中,我们就对DFB光纤激光器的特性进行了详细的理论及实验研究。本文的主要研究成果如下:
     1.围绕着谐振腔的结构设计阐述了DFB光纤激光器的工作原理,并且介绍了相移位置型非对称DFB光纤激光器以及折射率调制深度型非对称DFB光纤激光器的结构设计,以及可以获得稳定单向激光输出的工作原理。
     2.介绍了课题组所搭建的基于氩离子紫外激光器和抖动掩模板技术的光纤光栅和光纤激光器的制作系统,该系统能够制作任意复杂的折射率结构,可以精确的控制相移量和相移位置,并定制光栅特性从而结合不同的有源掺杂光纤制作各种光纤激光器。最后还简要介绍了课题组所制作的DFB光纤激光器,以及进行不同封装设计后的DFB光纤激光器。
     3.利用传输矩阵理论,对DFB光纤激光器的光谱特性,即相移光栅的无源透射谱进行了仿真模拟,从理论上分析了相移光栅的各个参数,包括相移量的大小、相移位置、光纤光栅长度、折射率调制深度等参数对透射谱中间狭缝的半高宽度的影响。实验中提出了新的测试光谱的方法,即DFB-LD电流扫描法,此方法基本实现了连续扫描,具有更高的分辨率和信噪比,能够精确的测试得到相移光栅中间狭缝的半高宽度,分辨率可以达到23.5fm。
     4.结合理论模拟和具体实验对DFB光纤激光器输出激光的阈值和斜率效率展开了研究。将两种不同类型的DFB光纤激光器,即对称DFB光纤激光器和非对称DFB光纤激光器输出激光的阈值和斜率效率进行了对比。实验得出普通对称DFB光纤激光器两端输出激光功率基本相等,而非对称DFB光纤激光器可以获得稳定的单向输出。经过理论和实验验证得出,这种非对称结构的DFB光纤激光器两端输出激光功率比最大可达到100:1。
     5.对DFB光纤激光器输出激光的相对强度噪声(RIN)特性进行了理论和实验研究。利用速率方程理论为基础,建立了理论模型,从理论上分析了DFB光纤激光器的结构参数,包括铒离子掺杂浓度,泵浦功率以及耦合系数等参数对RIN特性的影响。在实验中对环境噪声的影响进行了测试,实验发现当引入的外界环境噪声幅度为7dB时,DFB光纤激光器输出激光的噪声水平增大3.6dB/(Hz)1/2。实验中对泵浦功率损耗的影响也进行了测试和分析,并且选取了几个具有不同折射率调制深度的DFB光纤激光器进行了测试研究,分析了耦合系数对RIN特性的影响。
     6.对DFB光纤激光器的强度响应特性进行了理论和实验研究。以速率方程理论为基础,建立了DFB光纤激光器对外界声压激励强度响应的理论模型,推导得出了外界声压激励扰动的调制函数,并对DFB光纤激光器的强度响应特性进行了仿真和分析。实验中,详细研究了外界自然环境以及泵浦功率对DFB光纤激光器强度响应的影响,并且加入声压信号对DFB光纤激光器输出激光的强度进行调制,在DFB光纤激光器的频率谱中可以明显得出所加入的频率为16.5kHz的声压信号,并将实验结果与理论仿真结果进行了比较,得出结论:DFB光纤激光器具有强度响应特性并且具有应用为调制型传感器的潜力。给出了该类型传感器的声压灵敏度的计算方法,首次通过实验测试和数值计算得出了基于DFB光纤激光器的强度调制型传感器的声压灵敏度,测试频率范围为800Hz到9kHz,声压灵敏度在-180dB re μW/μPa至-165dB re βW/gPa范围内。
     7.分析了DFB光纤激光器在传感组阵中最常遇到的问题,即阵列中泵浦功率预算,以及阵列中所引入的几种外部光反馈,如熔接点、端面反射和瑞利散射等对阵列输出光特性的影响。首次提出将非对称DFB光纤激光器应用在传感组阵中。实验中选取了四支非对称DFB光纤激光器,并且详细给出了四支DFB光纤激光器输出激光的特性,包括输出功率,相对强度噪声以及驰豫振荡频率对阵列输出激光器的特性进行了测试,实验发现应用非对称DFB光纤激光器组阵可以有效的改善阵列输出激光的平坦性,尤其是阵列中后三元阵元输出激光功率波动在0.5dB以内。
     8.对四元阵列中的相对强度噪声(RIN)特性进行了测试,分析了各阵元在组阵后,RIN特性受相邻阵元影响后的变化。DFB光纤激光器输出激光的驰豫振荡频率只受泵浦功率影响,而与其他外部因素无关,所以我们利用了这一特点,用驰豫振荡频率对阵列中各阵元的泵浦功率进行校准,由实际的泵浦功率可知DFB的实际RIN,最后将DFB光纤激光器的实际RIN和在阵列中受相邻阵元影响后的RIN进行了对比和分析。实验发现应用非对称DFB光纤激光器进行组阵可以有效的改善DFB光纤激光器后向输出对相邻阵元的影响。
After decades of development, fiber lasers and fiber amplifiers have been widely used in many areas, including communications, sensing, medical treatment, and industry and agriculture. In recent years, with the development of doped fiber production and fiber grating fabrication, the technology that fabricating gratings directly in doped fibers to constitute a linear cavity fiber laser has become increasingly more sophisticated. The linear cavity fiber laser is widely used in sensor field due to its small size, light weight, low noise, narrow line-width, and easily multiplexing capability, etc. Distributed feedback fiber laser (DFB) is formed by a π-phase shifted fiber Bragg grating written on a continuous length erbium doped fiber. The kind of laser which cavity length is usually of the order of centimeters is used to provide the coherent light output with narrow line-width and low noise.
     DFB fiber laser is widely used in the sensor field because of its high sensitivity, anti-electromagnetic interference, dynamic monitoring range, easy multiplexing capability. As the research started later in domestic, the detailed analysis and investigation of its characteristics is very important for its practical application. In this dissertation, through the theoretical and experimental study on the characteristics of DFB fiber lasers, the main research results of this dissertation are carried out as follows:
     1. The working principle of DFB fiber laser is described around the cavity structural design, and also the design of asymmetrical DFB fiber laser:the phase shift position type and the refractive index modulation depth type. Both the two types can obtain stable single laser output, and its working principle is also introduced.
     2. The fabrication system based on the UV argon ion laser and dither mask method is introduced. The system is able to produce any structure of the complex refractive index fiber, can accurately control the phase shift size and position, and fabricate multiple fiber lasers based on grating characteristics and different doped fiber. Finally, a brief description of the DFB fiber laser fabricated by our research team is given, as well as different package designs.
     3. The spectral characteristics of DFB fiber laser is investigated by the transfer matrix theory. The effect of grating parameters, such as the phase shift size, phase shift position, grating length, refractive index modulation depth on the transmission spectrum is analyzed. A novel method based on a distributed feedback laser diode (DFB-LD) continuous wavelength-scanning spectrum for acquiring the precise spectra of phase-shift fiber gratings is presented by experiments. Its main advantage is that it can get nearly continuous transmission spectrum of the phase-shift fiber grating. We experimentally demonstrate measurements of phase-shift fiber grating spectra with a resolution of23.5femtometer. A Signal-to-Noise Ratio (SNR) advantage can also be provided owing to a much higher spectral density of DFB-LD than ASE source.
     4. The laser threshold and slope efficiency of DFB fiber laser is investigated by theoretical simulation and experimental analysis. The two different types of DFB fiber lasers, symmetric and asymmetric DFB fiber laser thresholds and slope efficiencies are compared. Experimental results show that the output powers at both ends of symmetric DFB fiber laser are substantially equal, and the symmetric DFB fiber laser can obtain a stable one-way output. Through the theoretical and experimental verification, we obtain that the maximum laser output ratio of this asymmetric DFB fiber laser structure can reach to100:1.
     5. The relative intensity noise (RIN) characteristics of DFB fiber laser is investigated in detail. The theoretical model is deduced using rate equation theory. The contributions of several parameters, such as Er3+doped concentration, pump power and coupling coefficient on the RIN characteristics are analyzed theoretically. In experiments, the influence of external environmental noise is measured; the RIN of DFB fiber laser increases3.6dB/(Hz)1/2when the environmental noise increases7dB. The pump power fluctuation influence is also investigated. Compared to the theoretical analysis, the results obtained from the experiments testify the important role of coupling coefficient in the RIN characteristics of DFB fiber laser.
     6. The intensity response of DFB fiber laser to external acoustic excitation is investigated theoretically and experimentally. The theoretical model is deduced using rate equation theory. The transfer function for external acoustic excitation modulation has been obtained, and the intensity response characteristics of DFB-FL to external acoustic excitation are described by simulation. In experiments, an intensity modulated sensing system based on DFB fiber laser is constructed. The intensity response property of DFB fiber laser to external acoustic excitation with different pump power has been analyzed. Through experiments we observe a signal of16.5kHz with25dB in the RIN spectrum as the external acoustic pressure is10.25Pa. Both the theoretical and experimental results confirm that DFB fiber laser has potential to be used as intensity-type acoustic sensor. Acoustic pressure sensitivity with an average value between-165dB re μW/μPa and-185dB re μW/μPa at frequencies ranging from800Hz to9kHz of the intensity-type sensor has been obtained by experiments for the first time to the authors' knowledge.
     7. Several important technical issues in a sensor array are analyzed, such as the pump absorption and external laser feedback, splice, fiber end reflection and Rayleigh scattering. A very desirable feature of asymmetric DFB fiber laser is undirectionality, and this obvious advantage has important applications to design sensor array. Larger output powers are obtained from shorter ends of all the four asymmetric DFB fiber lasers. The output flatness of the sensor array system presents a good performance with the applications of asymmetric DFB fiber lasers, especially, the back three have mostly the same amplitudes and the power equilibration among them is less than0.5dB.
     8. The RIN characteristics of the four element sensor array are investigated in detail. Relaxation oscillation frequency plays an important role in the investigation of sensor array. Because the relationship between the relaxation oscillation frequency and the actual absorbed pump power is not affected by external laser injection. By calibrating the relaxation oscillation frequencies, the corresponding pump powers are obtained, and the actural RIN can be obtained. The actual RIN and the measured RIN with different external laser injections of DFB-FL1and DFB-FL4are obtained and compared. The eaperimental results confirm that the RIN induced by the front external laser injections can be effectively reduced by using asymmetric DFB fiber lasers.
引文
[1]E. Snitzer, "Optical maser action of Nd3+ in a barium crown glass," Physical Review Letters, vol.7, pp.444-446,1961.
    [2]E. Desurvire, J. R. Simpson, and P. C. Becker, "High-gain Erbium-doped traveling-wave fiber amplifier," Optics Letters, vol.12, pp.888-890,1987.
    [3]C. R. Giles, and E. Desurvire, "Modeling Erbium-Doped Fiber Amplifiers, "Journal of Lightwave Technology, vol.9, pp.271-283,1991.
    [4]J. Gabzdyl, "Materials processing:Fibre lasers make their mark," Nature Photonics, vol.2, pp.21-23,2008.
    [5]D. J. Hill, P. J. Nash, D. A. Jack, et al.., "A fiber laser hydrophone array," In Proc. of SPIE, vol.3860,2005.
    [6]Geoffrey A. Cranch, Scott Foster, Clay K. Kirkendall, "Fiber laser strain sensor: enableing a new generation of miniaturized high performance sensors," Proc. of SPIE, vol.7503,2009.
    [7]K. H. Wanse, "Fundamental Phase Noise Limit in Optical Fibres Due To Temperature Fluctuations," Elec. Lett., vol.28, pp.53-54,1992.
    [8]D. J. Hill, P. J. Nash, S. D.Hawker, et al, "Progress toward an ultra thin optical hydrophone array," In Proc. of SPIE, vol.3483, pp.301-304,1998.
    [9]J. H. Bucaro, H. D. Dardy and E. F. Carom, "Fiber Optic hydrophone," J.Acoust.Soc.Am., vol.62, pp.1136-1140,1977.
    [10]P. Nash. "Review of inteferometric optical fiber hydrophone technology," IEEE Proc. Rador Sonar Navig., vol.143, pp.204-209,1996.
    [11]Nobuaki Takahashia, Kanta Tetsumuraa, Kazuo Imamurab,et al, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," SPIE, vol.3541, pp. 18-26,1999.
    [12]Nobuaki Talahashi, Akihiro Hirose and Sumio Takahas, "Underwater Acoustic Sensor with Fiber Bragg Grating," OPTICAL REVIEW, vol.4, pp.691-694,1997.
    [13]郑承栋,郑黎,何俊华等,“光纤Bragg光栅水听器特性及实验研究,”光子学报vo1.35,pp.1934-1938,2006.
    [14]王燕花,任文华,刘艳等,“基于光纤Bragg光栅的光纤水听器,”光通信技术,vo1.2,pp.31-32,2007.
    [15]安勇龙,叶敦范.“光纤光栅传感器的工作原理和应用实例,”仪器仪表与分析监测,vo1.1,pp.5-11,2005.
    [16]G. A. Ball and W. H. Glenn. "Design of single-mode linear-cavity Erbium fiber laser utilizing Bragg reflectors," Journal of Light wave Technology, vol.10, pp. 1338-1343,1992.
    [17]G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and Multipoint Fiber-Laser Sensors," IEEE Photonics Technology Letters, vol.5, pp.267-270,1993.
    [18]G. A. Ball, W. W. Morey and W. H. Glenn. "Standing-wave monomode Erbium fiber laser," IEEE Photonic Technology Letters, vol.3, pp.613-615,1991.
    [19]G. A. Ball, W. W. Morey, W. H. Glenn, et al.., "Modeling of short, single-frequency, and fiber lasers in high-gain fiber," IEEE Photonic Technology Letters, vol.6, pp. 649-651,1993.
    [20]M. Sejka, P. Varming, J. Hubner and M. Kristensen. "Distributed feedback Er3+-doped fibre laser," Electron. Lett. vol.31, pp.1445-1446,1995.
    [21]A. Asseh, H. Storoy, J. T. Kringlebotn et al., "10cm Yb3+ DFB fibre laser with permanent phase shifted grating," Electronics Letters. vol.31, pp.969-970,1995.
    [22]姜典杰,刘海涛,陈向飞等,“DFB光纤激光器,”光电子激光,vo1.15,pp.126-129,2004.
    [23]G A. Cranch, P. J. Nash, and C. K. Kirkendall, "Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," leee Sensors Journal, vol.3, pp.19-30,2003.
    [24]D. J. Hill, B. Hodder, J. De Freitas et al., "DFB fibre-laser sensor developments." SPIE, vol.5855, pp.904-907,2005.
    [25]刘育梁,何俊,徐团伟等,“光纤激光传感器及其组网技术研究,”2008.
    [26]J. T. Kringlebotn, W. H. Loh, and R. I. Laming, "Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements," Optics Letters, vol.21, pp.1869-1871,1996.
    [27]O. Hadeler, M. Ibsen, and M. N. Zervas, "Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain," Applied Optics, vol.40, pp.3169-3175,2001.
    [28]A. Frank, K. Bohnert, K. Haroud et al., "Distributed feedback fiber laser sensor for hydrostatic pressure," IEEE Photonics Technology Letters, vol.15, pp.1758-1760, 2003.
    [29]马丽娜,“光纤激光水听器技术,”博士毕业论文,国防科技大学,2010.
    [30]徐团伟,“分布反馈光纤激光器的研究,”博士毕业论文,中科院北京半导体所,2010.
    [31]S. Foster, A. Tikhomirov, M. Milnes et al., "A fibre laser hydrophone," Spie-Int Society Optical Engineering, Bellingham,2005.
    [32]S. Foster, A. Tikhomirov, M. Englund et al., "A 16 channel fibre laser sensor Array," ACOFT/AOS, pp.40-42,2006.
    [33]S. Goodman, S. Foster, J. Van Velzen et al., "Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia," SPIE, vol.7503, PP. 75034L-4,2009.
    [34]D. J. Hill, P. J. Nash, D. A. Jackson et al., "A fiber laser hydrophone array," Spie-Int Soc Optical Engineering, Bellingham,1999.
    [35]K. Fredrik, "Fiber laser teknik for under vattens sensorer," 2002.
    [36]W. T. Zhang, Y. L. Liu, F. Li et al., "Fiber laser hydrophone based on double diaphragms:Theory and experiment," Journal of Lightwave Technology, vol.26, pp.1349-1352,2008.
    [37]W. Zhang, F. Zhang, F. Li et al., "Pressure-gradient fiber laser hydrophone," SPIE, vol.7503, pp.75033S-4,2009.
    [38]L. Ma, Y. M. Hu, H. Luo et al., "DFB Fiber Laser Hydrophone With Flat Frequency Response and Enhanced Acoustic Pressure Sensitivity," IEEE Photonics Technology Letters, vol.21, pp.1280-1282,2009.
    [39]Haifeng Qi, Zhiqiang Song, Jian Guo, Jun Chang, Chang Wang, and Gangding Peng, "Dual-wavelength distributed feedback fiber laser with dual symmetrical π phase shifts," Proc. of SPIE. vol.89241, pp.89241G,2013.
    [40]Haifeng Qi, Zhiqiang Song, JIan Guo, Chang Wang, and Gangding Peng, "Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sening applications," Optics Express, vol.21, pp.11309-11314,2013.
    [41]Haifeng Qi, Zhiqiang Song, Shujuan Li, Chang Wang, and Gangding Peng, "Short distributed feedback fiber laser with unidirectional output for sensing applications," Chinese Optics Letters, vol.11, pp.041407,2013.
    [42]Haifeng Qi, Zhiqiang Song, Chang Wang, Jun Chang, and Gangding Peng, "Onliine fabrication of compact and asymmetrical cavity DFB fiber laser," Proc. of SPIE, vol.8351, pp.83511E,2012.
    [43]Jiasheng Ni, Yanjie Zhao, Chang Wang, Gangding Peng, Tongyu Liu, Jun Chang, Zhihui Sun, "Research on linewidth characteristics and broadening mechanism of distributed feedback fiber laser," Acta Phys. Sin. vol.61, pp.0842051-6,2012.
    [44]Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, G D. Peng. "Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking," Laser Physics Letters, vol.9, pp.739-743,2012.
    [45]Yanjie Zhao, Jun Chang, Qingpu Wang, Jiasheng Ni, Zhiqiang Song, Haifeng Qi, Pengpeng Wang, "Research on a novel composite structure Er3+ -doped DBR fiber laser with a π-phase shifted FBG," Optics Express. vol.21, pp.22515-22522, 2013.
    [46]P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G D. Peng. "Investigation intensity response of Distributed-Feedback Fiber Laser to external acoustic excitation," Laser Physics Letters. vol.9, pp.595-601,2012.
    [47]Pengpeng Wang, Jun Chang, Cunguang Zhu, Yanjie Zhao, Zhihui Sun, Xiaolei Zhang, Gangding Peng, "Theoretical and experimental investigation of the intensity response of DFB-FL to external acoustic excitation," Optical & Laser Technology. vol.49, pp.227-230,2013.
    [48]P. P. Wang, J. Chang, C. G Zhu, Y. J. Zhao, X. L. Zhang, C. Wang, Z. Q. Song and G. D. Peng, "The relative intensity noise and relaxation oscillation characteristics of a distributed-feedback fiber laser," Laser Physics, vol.23,2013.
    [49]王金玉,“DFB-FL水听器,”硕士学位论文,山东大学,2007.
    [50]H. Kogelnik, and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys., vol.43, pp.2327-2335,1972.
    [51]M. Yamada, and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Applied Optics, vol.26, pp. 3474-3478,1987.
    [52]C. R. Giles, and E. Desurvire, "Modeling Erbium-Doped Fiber Amplifiers," Journal of Lightwave Technology, vol.9, pp.271-283,1991.
    [53]V. C. Lauridsen, T. Sondergaard, P. Varming et al., "Design of distributed feedback fibre lasers," Integrated Optics and Optical Fibre Communications, vol.3, pp.39-42,1997.
    [54]S. Foster, and A. Tikhomirov, "Experimental and theoretical characterization of the mode profile of single-mode DFB fiber lasers," IEEE Journal of Quantum Electronics, vol.41, pp.762-766,2005.
    [55]V. C. Lauridsen, J. H. Povlsen, and P. Varming, "Design of DFB fibre lasers," Electronics Letters, vol.34, pp.2028-2030,1998.
    [56]V. C. Lauridsen, J. H. Povlsen, and P. Varming, "Optimising erbium-doped DFB fibre laser length with respect to maximum output power," Electronics Letters, vol.35,pp.300-302,1999.
    [57]K. Yelen, M. N. Zervas, and L. M. B. Hickey, "Fiber DFB laser with ultimate efficiency," Journal of Lightwave Technology, vol.23, pp.32-43,2005.
    [58]范薇,李学春,陈柏等,“Yb3+相移分布反馈光纤激光器的理论分析,”光学学报,vol.22,pp.709-712,2002.
    [59]范薇,李学春,陈柏等,“影响相移光纤分布反馈激光器的增益阈值的因素,’光子学报vol.31,pp.220-222,2002.
    [60]E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, "Modeling of polarization-mode competition in fiber DFB lasers," IEEE Journal of Quantum Electronics, vol.34, pp.1559-1569,1998.
    [61]E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, "Corrections to "modeling of polarization mode competition in fiber DFB lasers","IEEE Journal of Quantum Electronics, vol.35, pp.1097-1100,1999.
    [62]徐团伟,李芳,刘育梁,刘丽辉,“分布反馈光纤激光器的模式特性分析,”中国激光,vol.34,pp.1358-1362,2007.
    [63]J. T. Kringlebotn, J. L. Archambault, L. Reekie et al., "Er3+Yb3+ codoped fiber distributed-feedback laser," Optics Letters, vol.19, pp.2101-2103,1994.
    [64]A. Asseh, H. Storoy, J. T. Kringlebotn et al., "10cm Yb3+ DFB fibre laser with permanent phase shifted grating," Electronics Letters, vol.31, pp.969-970,1995.
    [65]P. Varming, J. Hubner, and M. Sejka, "Erbium doped fibre DFB laser with permanent pi/2-phase-shift induced by UV post processing," IOOC, vol.5, pp. PD1-PD3,1995.
    [66]J. Canning, and M. G Sceats, "Pi-phase-shifted periodic distributed structures in optical fibers by UV post-processing," Electronics Letters, vol.30, pp.1344-1345, 1994.
    [67]朱清,陈小宝,陈建平等,“相位掩模板移动法制作DFB光纤激光器,”光纤与电缆及其应用技术,vo1.1,pp.17-21,2006.
    [68]M. J. Cole, W. H. Loh, R. I. Laming et al., "Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber grating with uniform phase mask," Electronics Letters, vol.31, pp.1488-1490,1995.
    [69]刘海涛,陈建平,陈向飞等,“低掺杂铒纤上分布反馈布拉格光纤激光器的制作,”中国激光,vo1.22,pp.873-876,2006.
    [70]Y. Qian, P. Varming, J. H. Povlsen et al., "Dynamic noise responses of DFB fibre lasers in presence of pump power fluctuations," Electronics Letters, vol.35, pp. 299-300,1999.
    [71]E. Ronnekleiv, "Frequency and intensity noise of single frequency fiber Bragg grating lasers," Optical Fiber Technology, vol.7, pp.206-235,2001.
    [72]G A. Cranch, M. A. Englund, and C. K. Kirkendall, "Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers," IEEE Journal of Quantum Electronics, vol.39, pp.1579-1587,2003.
    [73]P. P. Wang, J. Chang, C. G. Zhu, Y. J. Zhao, X. L. Zhang, C. Wang, Z. Q. Song and G. D. Peng, "The relative intensity noise and relaxation oscillation characteristics of a distributed-feedback fiber laser," Laser Physics, vol.23,2013.
    [74]Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, G. D. Peng. "Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking," Laser Physics Letters, vol.9, pp.739-743,2012.
    [75]Jianzhong Zhang, Xingliang Li, Quan Chai, Qianqian Hao, Qi Li, Weimin Sun, Libo Yuan, "Hydrophone based on intensity modulated DFB fiber laser," IEEE. Sensors, pp.315-317,2010.
    [76]Xingliang Li, Quan Chai, Jianzhong Zhang, Qianqian Hao, Qi Li, Ping Lu, Weimin Sun, Libo Yuan, Gangding Peng. "DFB fiber laser Hydrophone based on a intensity demodulation," Proc. of SPIE. vol.7847, pp.78471F1-78471F4,2010.
    [77]Asrul Izam Azmi, Ian Leung, Xiaobao Chen, Shaoling Zhou, Qing Zhu, Kan Gao, Paul Childs, and Gangding Peng. "Fiber Laser Based Hydrophone Systems," Photonic Sensors. vol.1, pp.210-221,2011.
    [78]P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng. "Investigation intensity response of Distributed-Feedback Fiber Laser to external acoustic excitation," Laser Physics Letters. vol.9, pp.595-601,2012.
    [79]Pengpeng Wang, Jun Chang, Cunguang Zhu, Yanjie Zhao, Zhihui Sun, Xiaolei Zhang, Gangding Peng, "Theoretical and experimental investigation of the intensity response of DFB-FL to external acoustic excitation," Optical & Laser Technology. vol.49, pp.227-230,2013.
    [80]P. Horak, N. Y. Voo, M. Ibsen, W. H. Loh, "Dominant Causes of Linewidth in DFB Fiber Lasers," Lasers and Electro-Optics, vol.3,2005.
    [81]Akihito Suzuki, Youhei Takahashi, Masato Yoshida, Masataka Nakazawa, "An Ultralow Noise and Narrow Linewidth λ/4-Shifted DFB Er-Doped Fiber Laser With a Ring Cavity Configuration," IEEE PHTECHNOLOGY LETTERS, vol.19, pp.1463,2007.
    [82]王劲文、董小鹏、周金龙,“基于延时零拍法的DFB光纤激光器线宽测量,”厦门大学学报,vo1.46,2007.
    [83]Jiasheng Ni, Yanjie Zhao, Chang Wang, Gangding Peng, Tongyu Liu, Jun Chang, Zhihui Sun, "Research on linewidth characteristics and broadening mechanism of distributed feedback fiber laser," Acta Phys. Sin. vol.61, pp.0842051-6,2012.
    [84]Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G D. Peng, G. P. Lv, X. Y. Zhang, "Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking," Laser Physics, vol.21, pp.2108-2111,2011.
    [85]E. Ronnekleiv, O. Hadeler, and G Vienne, "Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections," Optics Letters, vol.24, pp. 617-619,1999.
    [86]G A. Cranch, "Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback," Optics Letters, vol.27, pp.1114-1116, 2002.
    [87]A. Tikhomirov, and S. Foster, "DFB FL sensor cross-coupling reduction," Journal of Lightwave Technology, vol.25, pp.533-538,2007.
    [88]S. Foster, A. Tikhomirov, and M. Milnes, "Fundamental thermal noise in distributed feedback fiber lasers," IEEE Journal of Quantum Electronics, vol.43, pp.378-384,2007.
    [89]S. Foster, G A. Cranch, and A. Tikhomirov, "How sensitive is the fibre laser strain sensor?," SPIE, vol.7004,2008.
    [90]D. J. Hill, P. J. Nash, D. A. Jackson et al., "A fiber laser hydrophone array," Spie-Int Soc Optical Engineering, Bellingham,1999.
    [91]K. Fredrik, V. Claes, and A. Marie, "Fiber laser baserad slapsonar," 2006.
    [92]S. Foster, A. Tikhomirov, M. Englund et al., "A 16 channel fibre laser sensor array," ACOFT/AOS, PP.40-42,2006.
    [93]S. Goodman, S. Foster, J. Van Velzen et al., "Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia," vol.7503, pp.75034L-4, 2009.
    [94]黄俊斌,顾宏灿,谭波等,“光纤光栅水听器拖曳线列阵湖上动态拖曳试验研究,”鱼雷技术,vo1.2,pp.45-47,2007.
    [95]Tuanwei Xu, Fang Li, Yuliang Liu, "Characteristics of frequency noise in a fiber laser sensor array," SPIE, vol.7157,2009.
    [96]Jun He, Fang Li, Tuanwei Xu, Yan Wang, and Yuliang Liu, "High performance distributed feedback fiber laser sensor array system," SPIE, vol.7634,2009.
    [97]P.P. Wang, J. Chang, C.G. Zhu, G. P. Lv, YJ. Zhao, X.L. Zhang, Z.H.Sun, G.D. Peng, S.S. Zhang, Z. Liu, "Applications of asymmetric Distributed-feedback fiber laser in sensor array system," SPIE, vol.8924,2013.
    [98]Pengpeng WANG, Jun CHANG, Cunguang ZHU, Boning SUN, Guangping LV, Sasa ZHANG, Yanjie ZHAO, Zhihui SUN, Xiaolei ZHANG, and Gangding PENG, "A Four Element Sensor Array Consisted of AsymmetricDistributed-Feedback Fiber Lasers," Photonic Sensors,2014.
    [99]Zhihui Sun, Li Min, Xiaolei Zhang, "High performance four-element DFB fiber laser hydrophone array system," SPIE, vol.8561, pp.1-8,2012.
    [1]马丽娜,“光纤激光水听器技术,”博士毕业论文,国防科技大学,2010.
    [2]张劲松,裴丽,魏道平等,“单频DBR和DFB光纤激光器综述,”光电子·激光,vo1.04,pp.84-87,1998.
    [3]J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al., "Short single frequency erbium-doped fibre laser," Electronics Letters, vol.28, pp.1385-1387,1992.
    [4]H. Kogelnik, and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys., vol.43, pp.2327-2335,1972.
    [5]V. C. Lauridsen, J. H. Povlsen, and P. Varming, "Design of DFB fibre lasers," Electronics Letters, vol.34, pp.2028-2030,1998.
    [6]M. Yamada, and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Applied Optics, vol.26, pp. 3474-3478,1987.
    [7]C. Ferreira Fernandes, "Transfer Matrix Modelling of DFB Fiber Laser," Miacroelectronic Engineering, vol.43, pp.553-560,1998.
    [8]Kuthan Yelen, Louise M. B. Hickey, and Mikhail N. Zervas, "A New Design Approach for Fiber DFB Lasers With Improved Efficiency," IEEE J. Quantum Electron., vol.40, pp.711-720,2004.
    [9]Kuthan Yelen, Mikhail N. Zervas, and Louise M. B. Hickey, "Fiber DFB Lasers With Ultimate Efficiency," J. Lightwave Technology., vol.23, pp.32-43,2005.
    [10]Haifeng Qi, Zhiqiang Song, JIan Guo, Chang Wang, and Gangding Peng, "Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sening applications," Optics Express, vol.21, pp.11309-11314,2013.
    [11]Haifeng Qi, Zhiqiang Song, Shujuan Li, Chang Wang, and Gangding Peng, "Short distributed feedback fiber laser with unidirectional output for sensing applications," Chinese Optics Letters, vol.11, pp.041407,2013.
    [12]朱清,陈小宝,陈建平等,“相位掩模板移动法制作DFB光纤激光器,”光纤与电缆及其应用技术,vol.1, pp17-21,2006.
    [13]M. J. Cole, W. H. Loh, R. I. Laming et al., "Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber grating with uniform phase mask," Electronics Letters, vol.31,pp.1488-1490,1995.
    [14]刘海涛,陈建平,陈向飞等,“低掺杂铒纤上分布反馈布拉格光纤激光器的制作,”中国激光,vol.22, pp873-876,2006.
    [15]A. Asseh, H. Storoy, J. T. Kringlebotn et al., "10cm Yb3+ DFB fibre laser with permanent phase shifted grating," Electronics Letters, vol.31, pp.969-970,1995.
    [16]P. Varming, J. Hubner, and M. Sejka, "Erbium doped fibre DFB laser with permanent pi/2-phase-shift induced by UV post processing," IOOC, vol.5,1995.
    [17]J. Canning, and M. G. Sceats, "Pi-phase-shifted periodic distributed structures in optical fibers by UV post-processing," Electronics Letters, vol.30, pp.1344-1345, 1994.
    [18]Haifeng Qi, Zhiqiang Song, Jian Guo, Jun Chang, Chang Wang, and Gangding Peng, "Dual-wavelength distributed feedback fiber laser with dual symmetrical π phase shifts," Proc. of SPIE, vol.89241, pp.89241G,2013.
    [19]Haifeng Qi, Zhiqiang Song, JIan Guo, Chang Wang, and Gangding Peng, "Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sening applications," Optics Express, vol.21, pp.11309-11314,2013.
    [20]Haifeng Qi, Zhiqiang Song, Shujuan Li, Chang Wang, and Gangding Peng, "Short distributed feedback fiber laser with unidirectional output for sensing applications," Chinese Optics Letters, vol.11, pp.041407,2013.
    [21]Haifeng Qi, Zhiqiang Song, Chang Wang, Jun Chang, and Gangding Peng, "Onliine fabrication of compact and asymmetrical cavity DFB fiber laser," Proc. of SPIE, vol.8351, pp.83511E,2012.
    [1]V. C. Lauridsen, J. H. Povlsen, and P. Varming, "Design of DFB fibre lasers," Electronics Letters, vol.34, pp.2028-2030,1998.
    [2]D. Marcuse, "Theory of dielectric optical waveguides," Academic Press, Inc., New York,1991.
    [3]T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, vol.15, pp. 1277-1294,1997.
    [4]H. Kogelnik, "Theory of dielectric waveguides," Springer Berlin/Heidelberg,1975.
    [5]M. Yamada, and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Applied Optics, vol.26, pp. 3474-3478,1987.
    [6]蔡晓锋,赵岩,“DFB光纤激光器中相移光栅优化分析,”中国电子科学研究院学报,vo1.5,pp.53-56,2010.
    [7]K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technology, vol.13, pp.1243-1249,1995.
    [8]Geoffrey A. Cranch, Gordon M. H. Flochhart, and Clay K. Kirkendall, "Distributed Feedback Fiber Laser Strain Sensors," IEEE Sensor Journal., vol.8, pp.1161-1172, 2008.
    [9]Pengpeng Wang, Jun Chang, Cunguang Zhu, Yanjie Zhao, Zhihui Sun, Xiaolei Zhang, Gangding Peng, " Theoretical and experimental investigation of the intensity response of DFB-FL to external acoustic excitation," Optical & Laser Technology., vol.49, pp.227-230,2013.
    [10]Haifeng Qi, Zhiqiang Song, Shujuan Li, Jian Guo, Chang Wang, Gangding Peng, " Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications," Optics Express., vol.21, pp.11309-11314, 2013.
    [11]iasheng Ni, Yanjie Zhao, Chang Wang, Gangding Peng, Tongyu Liu, Jun Chang, Zhihui Sun, "Research on linewidth characteristics and broadening mechanism of distributed feedback fiber laser," Acta Phys. Sin.,vol.61, pp.0842051-6,2012.
    [12]Yanjie Zhao, Jun Chang, Qingpu Wang, Jiasheng Ni, Zhiqiang Song, Haifeng Qi, Pengpeng Wang, "Research on a novel composite structure Er3+ -doped DBR fiber laser with a π-phase shifted FBG," Optics Express., vol.21, pp.22515-22522, 2013.
    [13]Cunguang Zhu, Jun Chang, Pengpeng Wang, Wei Wei, Sasa Zhang, Haifeng Qi, "Acquisition of phase-shift fiber grating spectra with 23.5 femtometer spectral resol ution using DFB-LD," Optics Express. vol.21,2013.
    [14]徐团伟,“分布反馈光纤激光器的研究,”博士毕业论文,中科院北京半导体所, 2010.
    [15]Vibeke C. Lauridsen, Thomas Sondergaard, Poul Varming and Jorn H. Povlsen. "Design of Distributed Feedback Fibre Lasers." ECOC., vol.448, pp.39-42,1997.
    [16]Vibeke C. Lauridsen, Jorn H. Povlsen and Poul Varming. "Design of DFB fibre lasers." Electronics Letters., vol.34, pp.2028-2030,1998.
    [17]蔡晓峰,施伟华,赵岩,“DFB光纤激光器最佳输出特性研究,”量子电子学报,vo1.27,pp.411-415,2010.
    [18]Geoffrey A. Cranch, Mark A. Englund, and Clay K. Kirkendall. "Intensity Noise Characteristics of Erbium-Doped Distributed-Feedback Fiber Lasers," IEEE. J. Quantum Electronics., vol.39, pp.1579-1586,2003.
    [19]H. L. An, E. Y. B. Pun, H. D. Liu, and X. Z. Lin. "Effects of ion clusters on the performance of a heavily doped erbium-dioped fiber laser," Opt. Lett., vol.23, pp. 1197-1199,1998.
    [20]G A. Cranch. "Frequency noise reduction in a distributed feedback fiber laser by electronic feedback," Opt. Lett., vol.27, pp.1114-1117,2002.
    [21]Erlend Ronnekleiv, "Frequency and intensity noise of single frequency fiber bragg grating lasers," Optical Fiber Technology., vol.7, pp.206-235,2001.
    [22]P. P. Wang, J. Chang, C. G Zhu, Y. J. Zhao, X. L. Zhang, C. Wang, Z. Q. Song and G D. Peng, "The relative intensity noise and relaxation oscillation characteristics of a distributed-feedback fiber laser," Laser Physics, vol.23,2013.
    [1]S. W. L(?)vseth, J. T. Kringlebotn, E. R(?)nnekleiv, and K. Blotekjaer. "Fiber distributed-feedback lasers used as acoustic sensors in air," Applied Optics., vol.38, pp.4821-4830,1999.
    [2]T. Sakoda and Y. Sonoda. "Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor," IEEE Ultrason., Ferr. vol.53, pp.761-766,2006.
    [3]C. K. Kirkendall and A. Dandridge. "Overview of high performance fiber-optic sensing," J. Phys. D:Appl. Phys., vol.37, pp.197-216,2004.
    [4]G. A. Cranch, M. A. Englund, and C. K. Kirkendall. "Intensity noise characteristics of Erbium-Doped distributed-feedback fiber lasers," IEEE J. Quant. Electron., vol. 39, pp.1579-1586,2003.
    [5]L. N. Ma, Y. M. Hu, S. D. Xiong, Z. Meng, and Zh. L. Hu. "Intensity noise and relaxation oscillation of a fiber laser sensor array integrated in a single fiber," Opt. Lett., vol.35, pp.1795-1797,2010.
    [6]J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan. "Hydrophone based on intensity modulated DFB fiber laser," IEEE Sensors Conference, vol.2010, pp.315-317,2010.
    [7]Y. Qian, P. Varming, J.H. Povlsen and V.C. Lauridsen. "Dynamic noise responses of DFB fibre lasers in presence of pump power fluctuations," Electron Lett., vol.35, pp.299-300,1999.
    [8]P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh. "Pump-noise-induced linewidth contributions in distributed feedback fiber lasers," IEEE Photon. Technol. Lett., vol. 18, pp.998-1000,2006.
    [9]Scott B. Foster and Alexei E. Tikhomirov. "Pump-Noise Contribution to Frequency Noise and Linewidth of Distributed-Feedback Fiber Lasers," IEEE. J. Quant. Electron., vol.46, pp.734-741,2010.
    [10]Geoffrey A. Cranch, Mark A. Englund, and Clay K. Kirkendall. "Intensity Noise Characteristics of Erbium-Doped Distributed-Feedback Fiber Lasers," IEEE. J. Quant. Electron., vol.39, pp.1579-1586,2003.
    [11]Lina Ma, Yongming Hu, Sshuidong Xiong, Zhou Meng, and Zhengliang Hu. "Intensity noise and relaxation oscillation of a fiber-laser sensor array integrated in a single fiber," Opt. Lett., vol.35, pp.1795-1797,2010.
    [12]G. A. Cranch, G. M. H. Flockhart, C. K. Kirkendall. "Distributed feedback fiber laser strain sensors," IEEE. Sensors Journal., vol.8, pp.1161-1172,2008.
    [1]马丽娜,“光纤激光水听器技术,”博士毕业论文,国防科技大学,2010.
    [2]徐团伟,“分布反馈光纤激光器的研究,”博士毕业论文,中科院北京半导体所,2010.
    [3]E. Ronnekleiv, O. Hadeler, and G. Vienne, "Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections," Optics Letters, vol.24, pp. 617-619,1999.
    [4]Xiong Shuidong, Liu Wen, Yang huayong and Ma Lina. "Investigation on the Coherence Collapse Characteristics of Single-Longitudinal-Mode DFB Fiber Laser," Laser & Optoelectronics Progress,2013.
    [5]E. Ronnekleiv, O. Hadeler, and G. Vienne, "Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections," Optics Letters, vol.24, pp. 617-619,1999.
    [6]E. Ronnekleiv, "Frequency and intensity noise of single frequency fiber Bragg grating lasers," Optical Fiber Technology, vol.7, pp.206-235,2001.
    [7]P. Gysel, and R. K. Staubli, "Statistical properties of Rayleigh backscattering in single-mode fibers," Journal of Lightwave Technology, vol.8, pp.561-567,1990.
    [8]D. Derichson, C. Hentschel, D. M. Baney et al., "Fiber optic test and measurement," Prentice Hall PTR, vol.395,1998.
    [9]Kuthan Yelen, Louise M. B. Hickey, and Mikhail N. Zervas, "A New Design Approach for Fiber DFB Lasers With Improved Efficiency," IEEE J. Quantum Electron., vol.40, pp.711-720,2004.
    [10]Kuthan Yelen, Mikhail N. Zervas, and Louise M. B. Hickey, "Fiber DFB Lasers With Ultimate Efficiency," J. Lightwave Technology., vol.23, pp.32-43,2005.
    [11]Lina Ma, Yongming Hu, Sshuidong Xiong, Zhou Meng, and Zhengliang Hu. "Intensity noise and relaxation oscillation of a fiber-laser sensor array integrated in a single fiber," Opt. Lett., vol.35, pp.1795-1797,2010.
    [12]Geoffrey A. Cranch, Mark A. Englund, and Clay K. Kirkendall. "Intensity Noise Characteristics of Erbium-Doped Distributed-Feedback Fiber Lasers," IEEE. J. Quant. Electron., vol.39, pp.1579-1586,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700