用户名: 密码: 验证码:
螺旋Blumlein线型强流电子加速器特性及其相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强流电子束加速器是进行核爆模拟、惯性约束核聚变、高功率微波、电子束泵浦高功率激光、Z箍缩、X射线和离子源等研究的重要试验平台,在民用和军事领域具有重要的应用价值。目前,强流电子束加速器除向高功率、重复频率和长脉冲方向发展外,改善输出特性,提高电子束质量是一个重要的研究方向。本文对螺旋Blumlein线型强流电子加速器的特性及相关技术进行了研究。具体研究内容包括以下四个部分:
     1.螺旋Blumlein线型强流电子加速器的输出特性研究。
     通过求解螺旋Blumlein线放电过程的电报方程,得到螺旋Blumlein线型加速器的输出特性。同时分析了加速器开关处过渡段以及负载处过渡段对加速器输出电压波形平顶度的影响。研究结果表明:加速器输出电压波形的上升时间和下降时间随着开关处过渡段传输时间的上升而上升,波形平顶宽度随着过渡段时间的上升而减小;负载处过渡段会使加速器输出主脉冲平顶的前端形成台阶,主脉冲的后端形成过冲脉冲,且台阶和过冲脉冲的幅度主要由过渡段的阻抗所决定,当过渡段阻抗与内线的阻抗相等时,台阶和过冲脉冲都消失。因此,为了提高加速器输出波形的质量,应合理设计开关和负载处过渡段。
     2.负载异常时Blumlein线型强流电子加速器的工作特性研究。
     在负载短路、负载开路、负载表面闪络和阴极座放电四种负载异常情况下,从理论和实验两方面,分析了加速器输出电压和变压器输出端电压的特性。研究结果表明:当负载短路时,一个高压振荡脉冲反馈到给Blumlein线充电的脉冲变压器的高压输出端,其振荡周期为8倍脉冲形成线传输时间,该振荡是造成变压器绝缘击穿的主要原因之一;当负载开路时,加速器输出主脉冲幅度是脉冲形成线充电电压的两倍,变压器输出端产生一个振荡高压脉冲,其振荡频率主要由外线电容、接地电感及电阻分压器电阻决定;当负载发生表面闪络时,加速器输出脉冲宽度变窄,输出性能受到影响,同时变压器输出端产生一个高电压振荡脉冲;当加速器运行在较高的电压时,阴极座边沿产生电子发射,实验对比分析表明:阴极座边沿的电子发射是导致加速器输出电压波形平顶度变差的主要原因之一。
     3.长间隙、百纳秒脉冲真空表面闪络特性研究。
     绝缘子是加速器二极管区域必不可少的部件之一。通过对实验室现有强流电子加速器的真空室进行改进,建立了真空表面闪络实验平台。对高密度聚乙烯(HDPE)、聚甲基丙烯酸甲酯(PMMA)和聚酰胺(PA),在长绝缘间隙(>100mm)、180ns准方波脉冲作用下的真空表面闪络电压、电流波形进行了测量,并利用高速相机,对其过程进行了光学诊断。实验结果分析表明:同HDPE和PMMA相比,PA绝缘性能较好;三种绝缘样品在真空中的表面闪络时延随着场强的增大迅速减小,但是时延下降的梯度各不相同,PA的表面闪络时延大于PMMA和HDPE的闪络时延;如果闪络发生在主脉冲的平顶部分,闪络峰值电流较高。通过分析闪络通道阻抗的变化,可以发现表面闪络分为三个阶段,第一个阶段是电子发射和传输,此阶段通道阻抗较大;第二阶段是通道开始形成,阻抗从几百千欧姆下降至几十欧姆;最后是通道形成阶段,通道阻抗小于1欧姆。而在闪络通道形成之后,通道是电感性的,并且外加电压的波形由闪络通道的电感决定。此外,在不同放电电压和放电次数下,对高密度聚乙烯放电预处理后的表面闪络性能进行了实验研究。结果表明:当放电预处理过程的电压从低电压至高电压逐渐变化时,可以有效提高材料的表面绝缘能力。
     4.高速相机与加速器的同步技术及运用研究。
     高速相机与加速器的同步技术,是利用高速相机诊断加速器真空二极管纳秒量级物理过程的关键技术。本课题提出了一种实现高速相机与加速器同步的新方法。该方法采用光电雪崩管将加速器主开关闭合时产生的光信号转变为脉冲电压信号,再经信号处理,产生前沿为17ns、幅值为5V的触发信号。且触发信号高电平(3V)开始时刻与加速器负载电压平顶开始时刻的时延约为60ns(大于高速相机本身的固有延时时间48ns),实现了高速相机与加速器的同步。利用该方法和加速器实验平台,对绝缘样品在长绝缘间隙(170mm)、180ns准方波作用下的真空表面闪络发展过程以及真空二极管等离子体产生、发展至湮灭的全过程进行了光学诊断,并根据光学图像,对其物理机制进行了初步分析。
Intense electron beam accelerators (IEBA) have been widely used in the field ofnational denfense and industrial applications, such as nuclear explosion simulators,inertial confinement fusion, high power microwave generation, electron beam pumpedhigh power laser, Z-Pinch, X-ray generation, ion sources et al. At present, increasingpower, repetitive rate and the duration of the output pulse are the importantdevelopment trend for an accelerator. However, improving quality of the output voltagewaveform and the electron-beam is also very important for the requirement ofapplications. Therefore, to improve the quality of the output pulse of IEBA, theoperating characteristic of IEBA based on spiral Blumlein line (SBL) and correlativetechnologies are investigated. The main contributions of this dissertation are listed asfollows.
     1. Investigation of output characteristics of IEBA based on SBL.
     The analytic expression of output voltage, describing exactly the transienttransmission process of the SBL with a purely resistive load, has been derived bysolving the telegraph equations with Laplace transform, and the output characteristics ofIEBA based on SBL are analyzed. Meanwhile, the effects of the switch transitionsection (STS) between main switch and middle cylinder of the SBL on the outputvoltage are discussed by wave propagation method, and the effects of the outputtransition section (OTS) between SBL and the load on the output voltage are analyzedby solving the telegraph equations. It is obtained that the wave traveling time of STSinfluences considerably the rise-time, plateau-time, and fall-time of the voltagewaveform at the matching load. The wave impedance and transmission time of OTSinfluence considerably the fluctuation of the main pulse voltage waveform at the load.So to improve the quality of the output pulse of IEBA, the transition sections should bedesigned properly.
     2. Investigation of operating characteristics of IEBA at Load anomaly
     The characteristics of output voltage of IEBA and voltage at the output terminal ofhigh voltage pulsed transformer (HVPT) are analyzed at four kinds of load anomaly.They are: load short, load open, surface flashover on the load surface and electronemission of cathode holder. It is found that load short, load open, and surface flashoveron the load surface will affect the voltage at the output terminal of HVPT, and anoscillation wave will be formed, which affect the electrical insulation of HVPT anddecrease the lifetime of HVPT. Meanwhile, the waveform of the load voltage is alsomodified, especially at the conditions of load open and surface flashover on the loadsurface. When the load is open, the amplitude of the output main pulse of IEBA is twicethe charging voltage of SBL. However, the amplitude of the output pulse of IEBA is modified by the voltage at the output terminal of HVPT, and the resistance of mainswitch channel has a great effect on the amplitude of the load voltage. When surfaceflashover occurs on the load surface, the pulse duration of the output voltage will bedecreased. So, during the operation of IEBA, load short, load open and surfaceflashover in vacuum chamber should be avoided. Also, the electron emission of cathodeholde is one of the main factors which affect the flatness of the output voltage of IEBA.
     3. Long gap surface flashover using180nanosecond quasi-square pulses
     Insulator is one of the absolutely necessary devices in the output terminal of IEBA.The surface flashover characteristics with long gap spacing length of Polymethylmethacrylate (PMMA), High density polyethylene plastics (HDPE) and Polyamide (PA)under180ns quasi-square wave with voltage of several hundred kilovolts areinvestigated by using an IEBA. It is found that PA had better capability to hold-offvoltage than HDPE and PMMA. If the flashover occurs at the flat part of the main pulse,the value of the peak flashover current is very high, this is disadvantageous to the pulsedpower device. Meanwhile, if the flashover occurr after the main pulse, there is littleeffect on the pulsed power device. So, it must be avoided that the flashover occurs at theflat part of the main pulse. According to the impedance of the flashover channel, thedevelopment of the flashover channel would be divided into three stages. Firstly,electron emits from CTJ and transmits to the anode, the impedance is very high.Secondly, flashover channel starts to form, and the impedance is changed from veryhigh to dozens of ohms. At last, the flashover channel is formed, and the impedance ofthe flashover channel is decreased to less than1. However, after formation of theflashover channel, the impedance of the flashover channel is inductive and thewaveform of the applied voltage is determined by the inductance of the flashoverchannel directly. Meanwhile, a pretreatment method with different shots is used topre-treat the HDPE sample, it is obtained that the best way to improve the hold-offvoltage of the insulator is to increase the voltage step by step during the pretreatmentprocess.
     4. Synchronization of high speed framing camera and IEBA
     High speed framing camera (HSFC) is one of the important devices to visualize theevolution of discharging and plasma generation. However, to image the physics processexactly, the problem of the synchronism between the IEBA and HSFC should be takeninto account. A novel trigger program is proposed to realize the synchronization ofHSFC and IEBA. The trigger program which includes light signal acquisition radiatedfrom main switch of IEBA and signal processing circuit could provide a trigger signalwith rise time of17ns and amplitude of about5V, the delay time between the highlevel voltage (3V) of trigger signal and the start of the flat top of load voltage is about60ns, which is bigger than the intrinsic delay time of HSFC. So the trigger programcould realize the synchronization of HSFC and IEBA. At the same time, using the trigger module, HSFC and IEBA, the images of the developmental process of surfaceflashover channel of insulating material with gap spacing of170mm in vacuum undernanosecond quasi-square pulses is obtained in detail, and the change of luminosity isanalyzed during the surface flashover process. The emission images of a stainless steelcathode at short anode–cathode gap (5mm) are also obtained.
引文
[1] Hazelton R C, Yadlowsky E J, Moschella J J, et al. Interferometric Measurementof Physical Phenomena During the Implosion Phase of a Puff-On-Puff Z-PinchLoad on Double-EAGLE [J]. IEEE Trans. Plasma Sci.,2003,31(6):1355-1362.
    [2] Lebedev S V, Beg F N, Bland S N, et al. Effect of discrete wires on theimplosion dynamics of wire array Z pinches [J]. Phys. Plasmas.,2001,8(8):3734-3747.
    [3] Shelkovenko T A, Chalenski D A, Chandler K M, et al. Diagnostics on theCOBRA pulsed power generator [J]. Rev. Sci. Instrum.,2006,77:10F521.
    [4] Stygar W A, Cuneo M E, Headley D I, et al. Architecture of petawatt-classz-pinch accelerators [J]. Phys.Rev.ST Accel.Beams.,2007,10:030401.
    [5] Stygar W A, Corcoran P A, Ives H C, et al.55-TW magnetically insulatedtransmission-line system: Design, simulations, and performance [J]. Phys. Rev.ST Accel. Beams,2009,12:120401.
    [6] Weinbrecht E A, Bloomquist D D, McDaniel D H, et al. Update of the ZRefurbishment project (ZR) at Sandia National Laboratories [C].16th IEEEInternational Pulsed power conference,2007:975-978.
    [7] Greenly J B, Douglas J D, Hammer D A, et al. A1MA, variable risetime pulsegenerator for high energy density plasma research [J]. Rev. Sci. Instrum.,2008,79:073501.
    [8] Mitchell I H, Bayley J M, Chittenden J P, et al. A high impedance mega-amperegenerator for fiber z-pinch experiments [J]. Rev. Sci. Instrum.,1996,67(4):1533-1451.
    [9] V.Smirnov, Y.Bakshaev, A.Bartov, et al. Study of imploding plasmas on"S-300" and "Angara-5" high curretn machines. Digest of the28th IEEEInternational Conference on Plasma Science and the13th IEEE internationalpulsed power conference,673-677,2001.
    [10]宋盛义,仇旭,卫兵等.阳加速器水传输线及磁绝缘传输线的电路模拟[J].强激光与粒子束,2005,17:1060-1064.
    [11]丰树平,李洪涛,谢卫平等. Z箍缩初级实验平台模块样机[J].强激光与粒子束,2009,21(3):463-467.
    [12]孙凤举,邱爱慈,呼义翔等.20MA/300ns Marx型直接驱动Z箍缩脉冲源的概念设计[C].第二届全国脉冲功率会议,西安,2011:153-158.
    [13]段耀勇,郭永辉,王文生等.钨丝阵等离子体Z箍缩的数值模拟[J].物理学报,2004,53:2654-2660.
    [14]段耀勇,郭永辉,蒯斌等. Z箍缩等离子体X射线辐射能谱的一种估算[J].核聚变与等离子体物理,2007,27:188-193.
    [15]邱爱慈,蒯斌,王亮平等.强光一号Z箍缩实验研究[J].强激光与粒子束,2008,20:1911-1922.
    [16]黄涛,丛培天,张国伟等.“强光一号”加速器电路模拟与分析[J].强激光与粒子束,2010,22(4):897-900.
    [17] Sethian J D, Myers M C, Smith I D, et al. Pulsed Power for a Rep-Rate, ElectronBeam Pumped KrF Laser [J]. IEEE Trans.Plasma Sci.,2000,28(5):1333-1337.
    [18] Sethian J D, Myers M C, Giuliani J L, et al. Electron beam pumped kryptonfluoride lasers for fusion energy [J]. Proceedings of the IEEE,2004,(92)7:1043-1056.
    [19] Apruzese J P, Giuliani J L, Wolford M F, et al. Experimental evidence for therole of Xe2+in pumping the Ar–Xe infrared laser [J]. Appl. Phys. Lett.,2006,88:121120.
    [20] Hegeler F, Giuliani J L, Sethian J D, et al. Forced Convective Cooling of Foils ina Repetitively Pulsed Electron-Beam Diode [J]. IEEE Trans.Plasma Sci.,2008,36(3):778-793.
    [21] Okuda I, Takahashi E, Matsushima I, et al. Rep-rated E-beams pumped KrFlaser technology for inertial fusion energy drivers [C]. Proceedings of13thInternational conference on high power particle beams, Nagaoka, Japan,2000:25-30.
    [22] Gold S H, Nusinovich G S. Review of high-power microwave source research[J]. Rev. Sci. Instrum.,1997,68(11):3945-3974.
    [23] Zhang J, Zhong H H, Luo L. A Novel Overmoded Slow-Wave High-PowerMicrowave (HPM) Generator [J]. IEEE Trans. Plasma Sci.,2004,32(6):2236-2242.
    [24] Chen Y J, Neuber A A, Mankowski J, et al. Design and optimization of acompact, repetitive, high-power microwave system [J]. Rev. Sci. Instrum.,2005,76:104703.
    [25] Fan Y W, Zhong H H, Yang H W, et al. Analysis and improvement of anX-band magnetically insulated transmission line oscillator [J]. J. Appl. Phys.,2008,103:123301.
    [26] Menon R, Roy A, Singh S K, et al. High power microwave generation fromcoaxial virtual cathode oscillator using graphite and velvet cathodes [J]. J. Appl.Phys.,2010,107:093301.
    [27] Fan Y W, Zhong H H, Li Z Q, et al. Repetition rate operation of and improvedmagnetically insulated transmission line oscillator [J]. Phys. Plasmas.,2008,15:083102.
    [28]袁成卫.新型高功率微波共轴模式转换器及模式转换天线研究[D].长沙:国防科学技术大学,2006.
    [29]樊玉伟.磁绝缘线振荡器及其相关技术研究[D].长沙:国防科学技术大学,2007.
    [30] Robert J B, Edl S. High power Microwave Sources and Technologies [M].Beijing: Tsinghua University Press,2001.
    [31] Benford J, Swegle J, Schamiloglu E. High Power Microwaves [M],2nd Edition,Taylor&Francis,2007.
    [32] Spielman R B, Deeney C, Chandler G A, et al. Tungsten wire-array Z-pinchexperiments at200TW and2MJ [J]. Phys. Plasmas.,1998,5(5):2105-2111.
    [33] Neuber A, Hemmert D, Dickens J, et al. Imaging of high-power microwave-induced surface flashover [J]. IEEE Trans. Plasma Sci.,1999,27(1):138-139.
    [34] Beeson S R, Ford P J, Foster J, et al. Imaging of pressure-dependent high-powermicrowave surface flashover [J]. IEEE Trans. Plasma Sci.,2011,39(11):2600-2601.
    [35] Kasperczuk A, Miklaszewski R, Paduch M, et al. Final Stages of the plasmacolumn evolution in plasma-focus PF1000device [J]. IEEE Trans. Plasma Sci.,2002,30(1):56-57.
    [36] Walter J, Mankowski J, Dickens J. Imaging of the explosive emission cathodeplasma in a vircator high-power microwave source [J]. IEEE Trans. Plasma Sci.,2008,36(4):1388-1389.
    [37] Tiwari N, Sahasrabudhe S N, Tak, A K, et al. Investigations of some aspects ofthe spray process in a single wire arc plasma spray system using high speedcamera [J]. Rev. Sci. Instrum.,2012,83:025110.
    [38] Martin T H, Guenther A H, Kristiansen M. J.C.Martin on pulsed power [M],Plenum press, New York,1996.
    [39] Blumlein A D. Apparatus for generating electrical impulses [P]. U.S. Patent, No.2,496,979,1950.
    [40] Pai S T, Zhang Q. Introduction to high power pulse technology [M]. WorldScientific Publishing Co.Pte.Ltd.Printed in Singapore by Uto-Print.1995.
    [41] Sakugawa T, Wang D, Shinozaki K, et al. Repetitive short-pulsed generatorusing MPC and blumlein line.Pulsed Power Conference [C]. Digest of TechnicalPapers. PPC-2003.14th IEEE International,2003:657-660.
    [42] Friedman S, Limpaecher R, Sirchis M. Compact energy storage using amodified-spiral PFL [C]. IEEE Conference Record of the Eighteenth PowerModulator Symposium (IEEE, Hilton Head, SC,1988),1988:360–366.
    [43] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-currentaccelerators with transformer charging of forming lines [J], Laser Part. Beams.,2003,21:197–209.
    [44] Gubanov V P, Korovin S D, Pegel I V, et al. Compact1000PPS high voltagenanosecond pulse generator [J]. IEEE Trans. Plasma Sci.,1997,25:258-265.
    [45] Hoffmann D H H, Blazevic A, Ni P, et al. Present and future perspectives forhigh energy density physics with intense heavy ion and laser beams [J]. LaserPart. Beams.,2005,23:47–53.
    [46] Kumar D S, Thomas M J. Design and development of a pulsed power system fora Vircator based HPM source [C]. Proceedings of the9th InternationalConference on ElectroMagnetic Interference and Compatibility (Bangalore,Karnataka, India),2006:33-437.
    [47] Su J C, Zhang X B, Liu G Z, et al. A long-pulse generator based on Teslatransformer and Pulse-Forming Network [J]. IEEE Trans. Plasma Sci,2009,37:1954-1958.
    [48] Mesyats G A, Korovin S D, Rostov V V, et al. The RADAN series of compactpulsed power generators and their applications [C]. Porceedings of the IEEE,2007,92(7):1166-1179.
    [49] Zhang Y, Liu J L, Cheng X B, et al. A compact high-voltage pulse generatorbased on pulse transformer with closed magnetic core [J]. Rev. Sci. Instrum.,2010,81:033302.
    [50] Koroein S D, Gubanov V P, Gunin A V, et al. Repetitive nanosecond highvoltage generator based on spiral forming line [C]. The28th IEEE InternationalConference on Plasma Science, Las Vegas,2001:1249–1251.
    [51] Teranishi T, Nojima K, Motegi S, et al. A600kV Blumlein Modulator for anX-band Klystron [C].8th IEEE Pulsed power conference, San Diego, California,USA,1991:315-318.
    [52] Liu J L, Yin Y, Ge B, et al. A compact high power pulsed modulator based onspiral Blumlein line [J]. Revs. Sci. Instrum.,2007,78:103302.
    [53]刘振祥,张建德.螺旋线型水介质长脉冲形成线的设计与改进[J].强激光与粒子束,2006,18(12):2078-2081.
    [54]杨建华,钟辉煌,舒挺等.水介质Blumlein型螺旋脉冲形成线的研究[J].强激光与粒子束,2005,17(8):1191-1194.
    [55]杨建华,钟辉煌,舒挺等.一种长脉冲强流脉冲重频加速器的研究[C].第二届全国脉冲功率会议,西安,2011:499-503.
    [56]梁川,夏连胜,章林文.螺旋型水介质Blumlein线的初步研究[J].高电压技术,2004,30(1):43-44.
    [57]曹绍云,谭杰,范植开等.600kV螺旋PFL的设计与实验研究[C].四川省电子学会高能电子专业委员会第四届学术交流会议,武汉,2006:258-262.
    [58]曹绍云,谭杰,范植开等.螺旋脉冲形成线实验研究[J].强激光与粒子束,2006,18(6):1046-1048.
    [59]潘亚峰,宋晓欣,彭建昌等.一种Tesla型的螺旋脉冲形成线设计[J].高电压技术,2005,31(9):47-49.
    [60]潘亚峰,彭建昌,宋晓欣等.螺旋型Blumlein线的理论研究[J].强激光与粒子束,2006,18(7):1124-1128.
    [61] Yang H W, Xu J, Zhang J D, et al. Experiments of a30GW,100ns CompactE-beam Accelerator [C].2009IET European pulsed power conference,2009:1-4.
    [62]刘振祥.水介质螺旋线型长脉冲加速器的研究[D].长沙:国防科学技术大学,2007.
    [63] Liu J L, Yin Y, Ge B, et al. An electron-beam accelerator based on spiral waterPFL [J]. Laser Part. Beams.,2007,25:593–599.
    [64] Mondal J, Kumar D D P, Roy A, et al. Intense gigawatt relativistic electronbeam generation in the presence of prepulse [J]. J. Appl. Phys.,2007,101:034905.
    [65] Durga D, Kumar P, Mitra S, et al. Characterization and analysis of a pulse powersystem based on Marx generator and Blumlein [J]. Revs. Sci. Instrum.,2007,78:115107.
    [66] Liu J L, Cheng X B, Qian B L, et al. Study on strip spiral Blumlein line for thepulsed forming line of intense electron-beam accelerators [J]. Laser Part. Beams.,2009,27(1):95-102.
    [67]梁曦东,陈昌渔,周远翔.高电压工程[M].清华大学出版社,2004.
    [68] Lewis J, Sudarshan T S, Thompson J E, et al. Pre-breakdown and BreakdownPhenomena Along PMMA Surface in Vacuum and Nitrogen Gas Stressed by60Hz Voltages [J]. IEEE Trans. Elect. Insul.,1984,19:512-518.
    [69] Miller H C. Surface flashover of insulators [J]. IEEE Trans.Elect.Insul.,1989,24(5):765-786.
    [70] Ding L J, Li R, Wang W, et al. Surface Flashover of Alumina Insulators inVacuum Under Impulse Voltage [C]. IEEE Annual Report--2000IEEEConferenceon Electrical Insulation and Dielectric Phenomena,2000:812-815.
    [71] Miller R B, Prestwich K R, Pouker J W, et al. Multistage linear electronacceleration using pulsed transmission lines [J]. J. Appl. Phys.,1981,52(3):1184-1186.
    [72] Vlieks A E, Allen M A, Callin R S, et al. Breakdown phenomena in high powerKlystrons [J]. IEEE Trans. Elect. Insul.,1989,24(6):1023-1028.
    [73] Weingarten W. On electrical breakdown in superconducting accelerating cavities[J]. IEEE Trans. Elect. Insul.,1989,24(6):1005-1012.
    [74] Kalbreier W, Goddard B. Radiation-triggered breakdown phenomena inhigh-energy e+e-colliders [J]. IEEE Trans. Elect.Insul.,1993,28(4):444-453.
    [75] Saito Y. Surface breakdown phenomena in alumina RF windows [J]. IEEE Trans.Dielectr. Electr. Insul.,1995,2(2):243-250.
    [76] Wilson P B. Frequency and pulse length scaling of RF breakdown in acceleratorstructures [C]. Proceedings of the2001Particle Accelerator Conference,2001:509-511.
    [77] Pillai A S, Hackam R. Surface flashover of solid insulators in atmospheric airand in vacuum [J]. J. Appl. Phys.,1985,58(1):146-153.
    [78] Yan P, Shao T, Wang J, et al. Experimental investigation of surface flashover invacuum using nanosecond pulses [J]. IEEE Trans. Dielectr. Electr. Insul.,2007,14(3):634-642.
    [79] Jaitly N C, Sudarshan T S. DC surface flashover mechanism along solids invacuum based on a collision-ionization model [J]. J. Appl. Phys.,1988,64(7):3411-3417.
    [80] Neuber A, Butcher M, Hatfield L L, et al. Electric current in dc surface flashoverin vacuum [J]. J. Appl. Phys.,1999,85(6):3084-3091.
    [81] Pillai A S, Hackam R. Surface flashover of conical insulators in vacuum [J]. J.Appl. Phys.,1984,56(5):1374-1381.
    [82] Anderson R A, Brainard J P. Mechanism of pulsed surface flashover involvingelectron-stimulated desorption [J]. J. Appl. Phys.,1980,51(3):1414-1421.
    [83] Anderson R A, Tucker W K. Vacuum surface flashover from bipolar stress [J]. J.Appl. Phys.,1985,58(9):3346-3349.
    [84] Tang J P, Qiu A C, Yang L, et al. Process of surface flashover in vacuum undernanosend pulse [J]. I IEEE Trans. Plasma Sci.,2010,38(1):53-58.
    [85] Watson A. Pulsed flashover in vacuum [J]. J. Appl. Phys.,1967,38(8):2019-2023.
    [86] Milton O. Pulsed flashover of insulators in vacuum [J]. IEEE Trans. Elect. Insul.,1972, l7:9-15.
    [87] Gleichauf P H. Electrical Breakdown over insulators in high vacuum [J]. J. Appl.Phys.,1951,22(6):766-771.
    [88] Kufffl E, Grzybowski S, Ugarte R B. Flashover across polyethylene andtetrafluoroethylene surfaces in vacuum under direct, alternating and surgevoltages of various waveshapes [J]. J. Phys. D: Appl. Phys.,1972,5:75-579.
    [89] Akahane M, Kanda K, Yahagi K. Effect of dielectric constant on surfacedischarge of polymer insulators in vacuum [J]. J. Appl. Phys.,1973,44(6):2927-2927.
    [90] Takahashi H. Shioiri T, Matsumoto K. Effect of dielectric materials on surfacebreakdown in vacuum and analysis by electron trajectory simulation [J]. IEEETrans. Elect. Insul.,1985, EI-20(4):769-774.
    [91] Miller H C. Flashover of Insulators in Vacuum Review of the phenomena andtechniques to improve holdoff voltage [J]. IEEE Trans. Elect. Insul.,1993,28(4):512-527.
    [92] Smith J D. The effects of the insulator surface roughness on the surfaceflashover voltge of Lucite, Lexan, and Celcon [D], Texas Tech University,1989.
    [93] Yamamoto O, Takuma T. Fukuda M, et al. Improving withstand voltage byroughening the surface of an insulating spacer used in vacuum [J]. IEEE Trans.Dielectr. Electr. Insul.,2003,10(4):550-556.
    [94] Bommakanti R G, Sudarsan T S. Influence of mechanical grinding and polishingoperations of brittle polycrystalline alumina on the pulsed surface flashoverperformance [J]. J. Appl. Phys.,1990,67:6991-6997.
    [95] Yuan W Q, Wang D S, Yan P, et al. PMMA DC Surface flashover in vacuumafter thermal treatment [C].2007annual report conference on electricalinsulation and dielectric phenomena,2007:567-571.
    [96] Pillai A S and Hackam R. Effects of glow discharge conditioning and addition ofgases on surface flashover [J]. IEEE Trans. Elect. Insul.,1985, EI-20(4):763-767.
    [97] Hatfield L L, Leiker G R, Kristiansen M, et al. A treatment which improvessurface withstand voltage in vacuum [J]. IEEE Trans. Elect. Insul.,1988,23(1):57-61.
    [98] Townsend P, Olivares J. Laser Processing of Insulator Surfaces [J]. Appl. Surf.Sci.,1997,109/110:275-282.
    [99] Cappelli E, Orlando S, Sciti D, et al. Ceramic Surface Modifications Induced byPulsed Laser Treatment [J]. Applied Surface Science, Appl. Surf. Sci.,2000,154/155:682-688.
    [100] Zirnheld J, Olabisi S, Strzempka P, et al. Laser annealing effects on dc surfaceflashover of PMMA and polystyrene [C].2008IEEE International PowerModulators and High Voltage Conference,2008:276-279.
    [101] Berkow J A. Pulsed laser surface processing of alumina for high voltage powerapplications [D]. The State University of New York.2008.
    [102] Cross J D, Sudarshan T S. The effect of cuprous oxide coatings on surfaceflashover of dielectric spacers in vacuum [J]. IEEE Trans. Elect. Insul.,1974,EI-9(4):146-150.
    [103] Sudarshan T S, Cross J D. The effect of chromium oxide coatings on surfaceflashover of alumina spacers in vacuum [J]. IEEE Trans. Elect. Insul.,1976,11:32-35.
    [104] Miller H C, Furno E J. The effect of Mn/Ti surface treatment on voltage-holdoffperformance of alumina insulators in vacuum [J]. J. Appl. Phys.,1978,49(5):5416-5420.
    [105] Jaitly N C, Sudarshan T S. X-Ray emission and prebreakdown currents in plainand dielectric bridged vacuum gaps under dc excitation [J]. IEEE Trans. Electr.Insul.,1988,23(2):231-241.
    [106] Suwarno. Suppression of leakage current and improving insulator voltagewithstand using silicone compound coating [C]. The7th International PowerEngineering Conference, Singapore,2005:1-6.
    [107] Halverson W, Patel R, Horenstein M, et al. Vacuum flashover on diamode-likecarbon coated insulators [J]. IEEE Trans. Dielectr. Electr. Insul.,3(1),pp108-112,1996.
    [108] Gorur R S, Mishra J, Tay R, et al. Electrical performance of RTV silicone rubbercoatings [J]. IEEE Trans. Dielectr. Electr. Insul.,1996,3(2):299-306.
    [109] Kirkici H. Surface flashover characteristics of diamond-like carbon thin films invacuum [J]. IEEE Trans. Dielectr. Electr. Insul.,1997,4(1):71-78.
    [110] Latham R V. High voltage vacuum insulation [M]. Academic press,1995.
    [111] Anderson R A. Study of surface flashover of conical insulators using3nsrisetime pulses [C]. Proceedings of the VIIth International Symposium onDischarge and Electrical Insulation in Vacuum,1976:252-256.
    [112] Arnold P A.45degree insulator surface flashover: a review and new results [J].IEEE Trans. Elect. Insul.,1988,23(1):17-20.
    [113] Yamamoto O, Hara T. Effects of spark conditioning, insulator angle and lengthon surface flashover in vacuum [J]. IEEE Trans. Elect. Insul.,1989,24(6):993-999.
    [114] Pillai A S, Hackam R. Influence of metal-insulator junction on surface flashoverin vacuum [J]. J.Appl.Phys,1987,61(11):4992-4999.
    [115] Kawada N, Tsurusaki K, Harada T, et al. Surface flashover voltage and itsimprovement of dielectric specimens in vacuum [C]. Conference on ElectricalInsulation and Dielectric Phenomena, Annual Report,1995:167-170.
    [116] Sudarshan T S, Li C R. Dielectric surface flashover in vacuum experimentaldesin issues [J]. IEEE Trans. Dielectr. Electr. Insul.,1997,4(5):657-662.
    [117] Wetzer J M, Wouters P A A F. HV design of vacuum components [J]. IEEETrans. Dielectr. Electr. Insul.,1995,2(2):202-209.
    [118] Wetzer J M. Vacuum insulator flashover-mechanisms, diagnostics and designimplications [J]. IEEE Trans. Dielectr. Electr. Insul.,1997,4(4):349-357.
    [119] Benwell, Kovaleski S D, Gahl J. Dielectric flashover with triple point shieldingin a coaxial geometry [J]. Revs. Sci. Instrum.,2007,78:115106.
    [120] Xun T, Yan H W, Zhang J D, et al. A ceramic radial insulation structure for arelativistic electron beam vacuum diode [J]. Revs. Sci. Instrum.,2008,79:063303.
    [121] Ohki Y, Yahagi K. Temperature dependence of surface flashover voltage ofpolyethylene in vacuum [J]. J. Appl. Phys.,1975,46(8):3695-3696.
    [122] Grishutin G S, Zhurtov V M, Pokrovskaja-Soboleva A S, et al. Influence ofhydrocarbon compounds on the electric strength of an insulator [C]. Proceedingof the XIth international symposium on discharge and electrical insulation invacuum,1984:339-341.
    [123] Mizuno Y, Tone Y, Naito K. Surface flashover characteristics of polymeric rodswith temperature gradient [C].2000conference on electrical insulation anddielectric phenomena,2000:808-811.
    [124] Farzaneh M, Li S Y, Srivastava K D. Flashover on ice surface [J] Atmosphericreasearch,1998,46:37-47.
    [125] Anderson R A. Mechanism of fast surface flashover in vacuum [J]. Appl. Phys.Lett.,1974,24(2):54-56.
    [126] Bergeron K D, McDaniel D H. Magnetic inhibition of surface flashover ofinsulators in vacuum [J]. Appl. Phys. Lett.,1976,29(9):534-536.
    [127] VanDevender J P, McDaniel D H, Neau E L, et al. Magnetic inhibition ofinsulator flashover [J]. J. Appl. Phys.,1982,53(6):4441-4447.
    [128] Ohki M, Saito S. Effect of a magnetic field on low-pressure gaseous breakdownalong the surface of solid insulator [J]. IEE Proceedings A,1991,138(6):300-312.
    [129] Lehr M, Korzekwa R, Krompholz H, et al. Magnetic field effects on vacuuminsulator flashover [J]. J. Appl. Phys.,1992,71(1):389-394.
    [130] Garanin S F. Surface discharges in strong magnetic fields [J]. IEEE Trans.Plasma Sci.,2010,38(8):1850-1855.
    [131] Krile J, Neuber A, Dickens J, et al. Imaging of dielectric surface flashover inatmospheric conditions [J]. EEE Trans. Plasma Sci.,2005,33(2):270-271.
    [132] Edmiston G F, Kirle J T, Neuber A A. Imaging of high-powermicrowave-induced surface flashover on a corrugated dielectric window [J].EEE Trans. Plasma Sci.,2008,36(4):946-947.
    [133]夏连胜,王勐,黄子平等.强流电子二极管中阴极等离子体的膨胀[J].物理学报,2004,53(10):3435-3439.
    [134]江孝国,李成刚,王远等.神龙一号电子束束参数测量系统猝发工的精确触发方式研究[J].高能物理与核物理,2006,30(8):784-787.
    [135]杨杰.高速相机用于强流电子束阴极光学诊断的同步技术初步研究[D].长沙:国防科学技术大学,2009.
    [136]杨杰,舒挺,张军等.强流电子束二极管等离子体光学诊断[J].强激光与粒子束,2012,24(4):963-967.
    [137]程新兵,张瑜,张洪波等.螺旋Blumlein脉冲形成线的放电分析[J].强激光与粒子束,2010,22(8):1964-1968.
    [138]刘锡三.高脉冲功率技术[M].北京:国防工业出版社,2005:144-150.
    [139]刘金亮.基于水介质螺旋Blumlein线的紧凑型长脉冲加速器研究[D].北京,清华大学,2008.
    [140] Cheng X B, Liu J L, Zhang Y, et al. Effect of transition section betweenBlumlein line and load on the output voltage of gigawatt intense electron-beamaccelerators [J]. Phys. Rev. ST Accel. Beams.,2009,12(11):110401.
    [141] Cheng X B, Liu J L, Zhang H B, et al. Improving the output voltage waveformof an intense electron-beam accelerator based on helical type Blumlein pulseforming line [J]. Phys. Rev. ST Accel. Beams.,2010,13(7):070402.
    [142] Katsuki S, Takano D, Namihira T, et al. Repetitive operation of water filledBlumlein generator [J]. Revs. Sci. Instrum.,2001,72(6):2759-2763.
    [143] Hoffmann C R J. A Tesla transformer high-voltage generator [J]. Rev. Sci.Instrum.,1975,46(1):1-4.
    [144] Scott M C, O'Loughlin J P, Copeland R P. A350kV dual resonant transformerfor charging a40pF PFL at kilo-Hertz rep-rates [C].10th IEEE InternationalPulsed Power Conference,1995:1466-1471.
    [145] Schneider L, Reed K, Harjes H, et al. Status of repetitive pulsed power at SandiaNational Laboratories [C]. In Proc.12th IEEE Int. Pulsed Power Conf. Dig.Tech. Papers,1999,1:523–527.
    [146] Rohwein G J. A three Megavolt Transformer for PFL pulse charging [J]. IEEETrans. Nucl. Sci.,1979,26(3):4211-4213.
    [147] Masugata K. A pulsed power system for generating multiple high voltage pulseswith a short pulse repetition interval [J]. Revs. Sci. Instrum.,1998,69(2):591-594.
    [148] Kumar R, Novac B M, Sarkar P. et al.300kV Tesla Transformer Based PulseForming Line Generator [C].2008IEEE International Power Modulators andHigh Voltage Conference, Las Vegas, NE,2008:246-249.
    [149] Liu J L, Li C L, Zhang J D, et al. A spiral strip transformer type electron-beamaccelerator [J]. Laser Part. Beams.,2006,24(3):355-358.
    [150] Sarjeant W G, Rohwein G J. A review of repetitive pulse power componenttechnology [C].4thIEEE International Pulsed Power Conf. New Mexico, USA,1983:303–308.
    [151] Lindblom A, Bernhoff H, Elfsberg M, et al. High-Voltage Pulsed-Power CableGenerator [J]. IEEE Trans. Plasma Sci.,2009,31(1):236-242.
    [152] Brussaard S, Vyuga D. A2.5-MV sub nanosecond pulser with laser-triggeredspark gap for the generation of high-brightness electron bunches [J]. IEEE Trans.Plasma Sci.,2004,32(5):1993-1997.
    [153] Ko S T, Nam S H. Numerical field analysis for an air cored spiral strip typepulse transformer [C].2004Power Modulator Conference, San Francisco, CA,USA,2004:23-26.
    [154] Kim S C, Park S S, Kim S H, et al. Development of Air Core Type500kV HVPulse Transformer [C]. IEEE Pulsed Power Conference,2005:696-696.
    [155] Suthar J L, Laghari J R. Simulation of air core pulse transformer [C].18th IEEEInternational Pulsed Power Conference,1991:237-240.
    [156] Adler R J, Miller R B, Prestwich K R, et al. Radial isolated Blumlein electronbeam generator [J]. Revs. Sci. Instrum.,1983,54(8):940-945.
    [157] Cheng X B, Liu J L, Qian B L, et al. Research of a high current repetitivetriggered spark gap switch and its application [J]. IEEE Trans. Plasma Sci.,2010,38(3):16-522.
    [158] Cheng X B, Liu J L, Qian B L, et al. Effect of the change of the load on the highvoltage pulse transformer of the intense electron-beam accelerators [J]. Revs. Sci.Instrum.,2009,80(11):115110.
    [159] Han J, Kim J H, Park S D, et al. Coaxial-type water load for measuring highvoltage, high current and short pulse of a compact Marx system for a high powermicrowave source [J]. Phys. Rev. ST Accel. Beams.,2009,12:113501.
    [160] Yin Y, Zhong H H, Liu J L, et al. Radial current high power dummy load forcharacterizing the high power laser triggered transformer-type accelerator [J].Rev. Sci. Instrum.,2010,81:092201.
    [161] Fowler R H, Nordheim L W. Electron Emission in Intense Electric Fields [J].Proc. Roy. Soc. London, Ser. A1928,119:173.
    [162] Cox B M, Williams W T. Field-emission sites on unpolished stainless steel [J]. J.Phys. D: Appl. Phys.,1977,10: L5-L9.
    [163]韩旻,邹晓兵,张贵新.脉冲功率技术基础[M].北京:清华大学出版社,2010.
    [164]殷毅.折叠型双脉冲-长脉冲调制器及其激光触发技术研究[D].长沙:国防科学技术大学,2010.
    [165] Rogowski W, Steinhaus W. Die Messung der magnetischen Spannun [J]. Archivf.Elektrotechnik,1912,1(4):141-150.
    [166]张仁豫,陈昌渔,王昌长.高电压试验技术[M].北京:清华大学出版社,2003.
    [167]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003.
    [168]刘金亮,徐启福,李士忠等.测量ns级脉冲大电流的折带式分流器[J].高电压技术,2006,32(5):57-59.
    [169]刘金亮,谭启美,刘存华等.测量电子束流的法拉第筒[J].强激光与粒子束,1993,15(4):626-632.
    [170]李维波.基于Rogowski线圈的大电流测量传感理论研究与实践[D].武汉:华中科技大学,2005.
    [171] Smith J D. The Effects of the Insulator Surface Roughness on the SurfaceFlashover Voltage of Lucite, Lexan and Celcon [D]. USA: Texas TechUniversity,1989.
    [172] Roy A, Menon R, Mitra S, et al. Intense relativistic electron beam generation andprepulse effect in power cylindrical diode [J]. J. Appl. Phys.,2008,103:014905.
    [173] Li L M, Liu L, Wen J C, et al. An intense-current electron beam source withlow-level plasma formation [J]. J. Phys. D: Appl. Phys.2008,41:125201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700