用户名: 密码: 验证码:
超声速前视共形光学系统图像复原方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导弹作为目前高科技战争的主要武器,正不断地向着高速和精确的方向发展。超声速前视共形光学系统能够有效地改善导弹的空气动力学性能,提高导弹的飞行速度,因而受到国内外研究机构的广泛关注。然而,一方面,由于共形整流罩采用非球面,表面不具备点对称性,使得系统随观察视场的变化产生动态像差;另一方面,超声速飞行器在大气层内高速飞行时,整流罩与来流之间形成复杂的流场,使目标图像产生偏移、模糊、抖动等现象。这两方面都严重影响着系统的探测、识别和跟踪能力,成为制约超声速前视共形光学系统应用的关键问题。针对上述问题,论文从以下四个方面逐层开展研究工作:
     论文首先分析了超声速前视共形光学系统的图像退化特性,说明了系统退化图像产生的根本原因,建立了共形光学系统以及超声速流场光学传输效应的图像退化模型,利用类高斯函数模型模拟了不同程度湍流流场的点扩散函数,为超声速前视共形光学系统退化图像的复原与校正提供了理论基础。
     然后,提出了基于邻近算子分裂的自适应正则化图像复原算法。利用邻近算子分裂法将全变分正则化模型分解成两个简单的问题求解,降低了模型求解难度。为了进一步提高算法的运算效率,重点研究了正则化参数的选取方法,提出的方法不仅可以自适应地选择合适的正则化参数,而且当正则化参数收敛时,峰值信噪比达到最大值,图像获得最佳复原效果。
     在以上研究的基础上,对超声速前视共形光学系统的退化图像进行了复原与校正。首先利用光线追迹法得到了0-20°目标视场中瞄视误差的仿真结果,通过二次拟合建立了瞄视误差与目标视场的对应关系,在图像跟踪器中对系统瞄视误差进行了校正,设计了瞄视误差测量实验,实验表明校正后系统瞄视误差小于30μm,可以满足导引头伺服控制系统的精度要求。然后针对湍流随机性的特点,建立了随机点扩散函数的图像退化模型,提出了利用连续多帧湍流退化图像复原图像的方法,实验表明所提出的算法对噪声有明显的抑制作用,复原效果优于单帧图像的全变分算法,综合考虑复原效果和运算效率,确定了退化图像帧数应不大于10帧。最后对由像散和彗差引起的图像模糊进行了复原,为共形光学系统动态像差的校正提供了一种新的思路。
     为了使复原后的图像对比度更加明显,提高系统对红外目标识别的能力,提出了基于参数化对数图像处理模型的平台直方图均衡增强算法,利用图像评价函数EMEE(Measurement of Enhancement by Entropy)分析了模型参数的选取方法,设计了硬件实验平台,对复原后的红外图像进行了增强实验。实验结果表明:算法能够在基本不丢失图像细节的情况下增强图像对比度。
As the main weapon of the high-tech war, missile is developing constantlytowards high speed and precision. Because supersonic forward-looking conformaloptical system can effectively improve the aerodynamic performance and increasethe flight speed of the missile, it has become the focus at home and abroad. But onthe one hand, the dynamic aberrations with the change of field of view areintroduced, due to the asymmetry in the respective sub-field of view of theconformal optical system. On the other hand, when the supersonic aircraft flies at ahigh speed within the atmosphere, it can produce complicated flow field between thedome and flow which may cause aero-optical effects such as displacement, jitter andblurring of the target image. Both of the above two aspects seriously affect theability of detection, identification and tracking of the system, and become a key thatrestrict the development of supersonic forward-looking conformal optical system. Tosolve above problems, this paper will be divided to four parts:
     First, the characteristics of degraded image of the supersonic forward-lookingconformal optical system are analyzed. The reason of image degradation isillustrated. The image degradation models of the conformal optical system andsupersonic turbulent flow field are given respectively. The point spread function ofturbulence is simulated by the similar Gaussian function model. This part of work provides a theoretical basis for image restoration and correction of the supersonicforward-looking conformal optical system.
     Then, the adaptive regularization method for image restoration based onproximity operator splitting is proposed. To reduce the difficulty of solving theproblem, the problem is decomposed into two sub-problems using the theory ofproximity operator splitting method. In order to further improve the computationefficiency of the algorithm, the selection method of the regularization parameter isstudied. The proposed method can adaptively choose the appropriate regularizationparameter. When the regularization parameter is convergent, the peak signal-to-noiseratio of the restoration image reaches maximum and the restored image reaches bestrestoration effect.
     On the basis of above research, the degraded image of the supersonicforward-looking conformal optical system is restored and corrected. First of all,boresight error along with field of regard ranged from0°to20°are obtained usingray tracing simulation, and the relationship between the boresight error and thegimbal angle is established using quadratic fitting method, thus the boresight errorof the system is corrected; the measurement experiment of boresight error isdesigned and the experimental results show that the boresight error is less than30μmafter correction. Then, in view of the stochastic characteristics of the turbulence, theimage degradation model of the stochastic point spread function is established andthe restoration algorithm using multi-frame turbulence degraded image is proposed.The experimental results show that the proposed algorithm has obvious inhibitoryeffect to the noise and the restoration effect is better than the total variationalgorithm of single frame image. Considering restoration effect and operationefficiency, the frames of the degraded image are usually less than10. Finally, theblurred image induced by astigmatism and coma is restored, and it provides a newtrain of thought for the aberration correction of the conformal optical system.
     Finally, in order to make the contrast of the restored image more legible,improve the ability of the target identification of the infrared system, the plateau histogram equalization enhancement algorithm based on Parameterized LogarithmicFramework is proposed, and the selection of the model parameters is studied indetail using the image evaluation function EMEE. The hardware platform of imageenhancement experiment is designed, and the restored image has been enhanced.Experimental results show that the algorithm can enhance the image contrastwithout loss of image details.
引文
[1]樊会涛,刘代军.红外近距格斗空空导弹发展展望[J].红外与激光工程,2005,34(5):564-568
    [2] R. S. Robert, P. M. James, M. P. Harvey, A. T. Patrick and L.N. Durvasula.Conformal optics technology enables window shapes that conform to anapplication, not to conventional optical limitations [J]. Photonics Spectra,2001
    [3]姜洋.共形光学系统像差校正研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2013
    [4]殷兴良.气动光学原理[M].北京:中国宇航出版社,2003.1-2
    [5]费锦东.高速红外成像末制导对气动光学效应技术研究的需求[J].红外与激光工程,1998,27(1):42-51
    [6] J J Dolne, D Gerwe, M Johnson. Performance of three reconstruction methods onblurred and noisy images of extended scenes[C]. SPIE,1999,3815:164-175
    [7]费锦东.气动光学效应校正技术初步分析[J].红外与激光工程,1999,28(5):10-12
    [8] Salmon I T.Real-time wavefront correction system using a zonal deformablemirror and a Hartman senor[C].SPIE,1991,1542:459-467
    [9] Clark R,KarpinskyJ,Borek G,et al..High speed interformetric device for real timecorrection of aero-optic effects[C].AIAA95-1984
    [10] M L Hart,S M Jefferies,J P Angel.Wavefront sensing with time-of–flight phasediversity[J].Optics Letter,2001,26(7):402-404
    [11]洪汉玉.成像探测系统图像复原算法研究[D]:[博士学位论文].武汉:华中科技大学,2004
    [12]贾静,陈星明.共形光学头罩及其像差校正方法研究——综述[J].红外,2012,33(10):1-6
    [13]常军.含特殊整流罩的红外光学系统设计[J].红外与毫米波学报,2009,28(3):204-207.
    [14] Song Da-Lin, Chang Jun, Wang Qing-feng. Conformal optical system designwith a single fixed conic corrector[J]. Chinese Physicas B,2011,20(7):1-5.
    [15] Scott W. Sparrold. Arch Corrector for Conformal Optical Systems[J]. SPIE,1999,3705:189-203.
    [16] Sparrold S W. Arch corrector for conformal optical systems[J]. SPIE,1999,7133:189-200.
    [17] Scott W Sparrold, James P Mills, Kenneth S Ellis, et al.. Conformal domecorrection with counterrotating phase plates[J]. Optical Engineering,2000,39(7):1822-1829.
    [18] Zhao Nan. Summarize of Conformal Optics[J]. SPIE,2008,6624.
    [19] Patrick A Trotta. Precision Conformal Optics Technology Program. Window andDome Technologies and Materials VII[J]. Proceedings of SPIE,2001,4375:96-107.
    [20]姜湖海,魏群,贾宏光等.共形导引头角增量误差分析及其前馈补偿[J].光学精密工程(已录用).
    [21] Liepmann H W. Deflection and diffusion of a light ray passing through aboundary layer[R]. Report No.SM-14397, Douglas Aircraft Company,1952
    [22]姜文汉,凌宁.自适应光学技术与激光光束质量[J].激光与光电子学进展,2001:9(46)
    [23]谢文科,姜宗福.基于本征正交分解基的实时波前重构方法[J].中国激光,2007:34(3)
    [24] G. W. Sutton. Effect of Turbulent Fluctuations in an Optically Active FluidMedium[J]. AIAA J,1969,7(9)
    [25] G. W. Sutton. On Optical Imaging Through Aircraft Turbulent BoundaryLayers[J]. AIAA,1980,1413
    [26] K. Gilbert, L. J. Otten. Aero-optical phenomena[M]. Astronautics andAeronautics Press,1982.
    [27] G. W. Sutton. Aero-Optical Foundations and Applications[J]. AIAA Journal,1985,23(10):1525-1537
    [28]李波.速飞行器气动光学流场机理研究与光学窗口设计[D]:[博士学位论文].上海:上海交通大学,2011
    [29] L. CHEW, W. CHRISTIANSEN. Coherent structure effects on the opticalperformance of plane shearlayers. AIAA J,1991,29:76-80
    [30] M. MALLEY, G. W. SUTTON, N. KINCHELOE. Beam-jitter measurements ofturbulent aero-optical path differences[J]. Applied Optics1992,31:4440-4443.
    [31] E. J. JUMPER, R. J. HUGO. Quantification of aero-optical phase distortion usingthe small-aperture beam technique[J]. AIAA J,1995,33(11):2151-2157
    [32] R. J. HUGO, E. J. JUMPER, G. HAVENER. Time-resolved wave frontmeasurements through a compressible free shear layer[J]. AIAA J,1997,35:671-677
    [33] E. J. JUMPER, E. J. FITZGERALD. Recent advances in aero-optics[J]. Progressin Aerospace Sciences,2001,37:299-339
    [34] B. THUROW, M. SAMIMY, W. LEMPERT, S. HARRIS. Simultaneous MHzrate flow visualization and wavefront sensing for aero-optics[J]. AIAA,2003,0684
    [35]郭隆德.高速拦截弹气动光学效应地面模拟测试研究[D]:[博士学位论文].成都:四川大学,2003
    [36] A D Kathman,L C Brooks,D A Lalin,et al..A time-integrated image model foraero-optic analysis[C].AIAA92-2795.
    [37] G W Sutton,J E Pond,R Snow,et al..Hypersonic interceptor performanceevalution center:Aero-optics performance predictions[C].AIAA93-2675.
    [38] John E Pond,Charles T Welch,George W Sutton.Side mounted IR windowaero-optical and aerothermal analysis[C].SPIE,1999,3705:266-275
    [39] R Clark, M Banish. Fundamentals of aero-optics phenomena(invited)[C]. AIAA94-2545.
    [40] J Trolier, D Hudson, D Carlson, et al..Shock later radiance effects onendoatmospheric interceptor seeker performance[C].AIAA92-2816
    [41] H. A. Korejwo, M. S. Holden. Ground Test Facilities for Aerothermal andAero-Optics Evaluation of Hypersonic Interceptors. AIAA1992,1074
    [42] Calspan-UB Research Center. Large energy national shock tunnel (LENS)[R].New York: Calspan-UB Research Center,1990.
    [43] J. Kelso. Boresight Error Slope Predictions Versus Flight Test Results in AHypersonic Flow Field. AIAA1993,2688
    [44] S. Doerr, L. McMackin, J. Wisser. Aero-optics research at the PhillipsLaboratory[J]. SPIE,1993:129-138
    [45]陈澄,费锦东.侧窗头罩高速层流流场光学传输效应数值模拟[J].红外与激光工程,2005,34(5):548-552.
    [46]韩志平,殷兴良.高超音速导弹气动光学效应研究方法综述[J].现代防御技术,2003,31(3):13-18.
    [47]刘纯胜.高速平均流场光学传输效应研究[J].系统工程与电子技术,2003,25(8):941-945.
    [48]刘纯胜,张天序,殷兴良.高速湍流流场气动光学传输效应研究[J].红外与激光工程,2005,34(6):681-686.
    [49]韩志平,殷兴良.湍流对超音速导弹光学图像的影响数值仿真[J].系统工程与电子技术,2002,24(11):78-83.
    [50]刘纯胜,李培田,费锦东.高速导弹光学头罩侧窗口制冷效果分析[J].红外与激光工程,2000,29(3):68-72
    [51]张丽琴,费锦东.气动光学效应光电校正方法研究[J].红外与激光工程,2004,33(6):580-583.
    [52]费锦东.气动光学效应校正技术初步分析[J].红外与激光工程,1999,28(5):10-16.
    [53]陈连忠,张嘉祥,费锦东.气动加热对红外成像的影响试验研究[J].激光与红外,2009,39(1):36-38.
    [54] Hong Hanyu,Zhang Tianxu. Fast restoration approach for rotational motionblurred image based on deconvolution along the blurring paths[J]. OpticalEngineering,2003,42(12):3471-3486
    [55] Zhang Tianxu, Hong Hanyu, Shen Jun. Restoration algorithms forturbulence-degraded images based on optimized estimation of discrete values ofoverall point spread functions[J]. Optical Engineering,2005,44(1).
    [56]洪汉玉,张天序.基于小波分解的湍流退化图像的快速复原算法[J].红外与毫米波学报,2003,22(6):451-456
    [57]洪汉玉,张天序.基于多分辨率盲目去卷积的气动光学效应退化图像校正算法研究[J].计算机学报,2004,27(7):952-963
    [58]史可天,马汉东.基于涡球模型的湍流气动光学效应预测方法[J].红外与激光工程,2012,41(6):1401-1404.
    [59]潘宏禄,程晓丽.气动光学效应研究中非定常流场模拟与分析[J].飞航导弹,2012(7):83-86.
    [60]史可天,马汉东.可压缩混合层气动光学效应研究[J].计算物理,2010,27(1):65-72.
    [61]潘宏禄,马汉东,王强.超声速边界层转捩拟序结构大涡模拟[J].宇航学报,2006,27(3):498-502.
    [62]史可天,程晓丽,马汉东.光学头罩绕流流场气动光学效应数值模拟[J].红外与激光工程,2010,39(1):6-11.
    [63] K. E. Clark. Missile seeker optical system [P]. United States Patent,4291848.1974-09-13
    [64] D. J. knapp. Fundamentals of conformal dome design[C]. Proc. SPIE,2002,4832:394-409
    [65] P. A. Trotta. Precision Conformal Optics Technology Program[C]. SPIE,2001,4375:96-107
    [66]李东熙,卢振武、孙强等.基于Wassermann-Wolf方程的共形光学系统设计研究[J].物理学报,2007,56(10):5766-5771
    [67]王超,张新,王灵杰等.大扫描视场红外椭球形整流罩光学系统设计方法[J].红外与毫米波学报,2013,32(2):259-264
    [68]孙金霞,刘建卓,孙强等.折/衍混合消热差共形光学系统的设计[J].光学精密工程,2010,18(4):792-797
    [69]姜洋,孙强,孙金霞等.大视场凝视型红外共形光学系统设计[J].红外与激光工程,2012,41(6):1575-1580
    [70]曲贺盟,张新,王灵杰.基于固定校正元件的椭球形窗口光学系统设计[J].光学学报,2011,31(10):1022003
    [71]孙金霞,刘建卓,孙强等.消像差条件在共形光学系统中的应用[J].光子学报,2010,39(2):223-226
    [72]孙金霞,孙强.共形光学系统瞬时视场外杂散光的分析及处理[J].应用光学,2010,31(2):225-228
    [73] H. C. Andrews. B. R. Hunt. Digital Image Restoration[M]. Englewood Cliffs:Prentice-Hall,1977.
    [74]阮秋琦,阮宇智.数字图像处理(第二版)[M].北京:电子工业出版社,2007.
    [75] G. M. Robbins, T. S. Huang. Inverse filtering for linear shift-variant imagingsystems[J]. Proceedings of IEEE,1972,60(7):862-872.
    [76] E. O. Brigham, H. W. Smith, F. X. Bostick, et al. An iterative technique fordetermining inverse filters[J]. IEEE Transactions on Geoscience Electronics,1968,6(2):86-96.
    [77] T. Springer, J. Torres. Restoration of thermographic images using iterativeinverse filtering[J]. Engineering in Medicine and Biology Society,1989,2(2):365-366.
    [78] Chottera, G. Jullien. Recursive digital filters in image processing[C]. IEEEInternational Conference on Acoustics Speech and Signal Processing,1978:757-760.
    [79] D. Kunder, D. Hatzinalos. A novel blind deconvolutions scheme for imagerestoration using recursive filtering [J]. IEEE Transactions on Signal Processing,1998,48(2):375-390.
    [80] T. W. Chow, X. D. Li, S. Y. Cho. Improved blind image restoration scheme usingrecurrent filtering [J]. IEEE Proceedings Vision Image and Signal Processing,2000,147(1):23-28.
    [81] C. C. Hsiao, C. Y. Chi. Image modeling and restoration by higher-order statisticsbased inverse filters [C]. Proceedings of IEEE Seventh SP Workshop onStatistical Signal and Array Processing,1994,203-206.
    [82] B. R. Hunt. The Application of Constrained Least Squares Estimation to ImageRestoration by Digital Computer[J]. IEEE Transactions on computers,1973,20(9):805-812.
    [83] N. P. Galatsanos, A. K. Katsaggelos. Methods for choosing the regularizationparameter and estimating the noise variance in image restoration and theirrelation[J]. IEEE Transactions on Image Processing,1992,1(3):322-336.
    [84] S. J. Reeves. Optimal space-varying regularization in iterative imagerestoration[J]. IEEE Transactions on Image Processing,1994,3(3):319-324.
    [85] R. Molina, A. K. Katsaggelos, J. Mateos. Bayesian and regularization methodsfor hyper parameter estimation in image restoration[J]. IEEE Transactions onImage Processing,1999,8(2):231-246.
    [86] N. Tikhonov, V. Y. Arsenin. Solutions of ill-posed problems[M]. New York:Winston,1997.
    [87] M. Leung, W. S. Lu. Optimal determination of regularization parameters and thestabilizing operator[J]. Signal Processing,1995,1(7):403-406.
    [88] V. Barakat. Model-based Tikhonov-miller image restoration[C]. IEEEInternational Conference on Image Processing, Barbara,1997:310-313.
    [89] Murli. The Wiener filter and regularization methods for image restorationproblems[J]. Image Analysis and Processing,1999,11(2):394-399.
    [90] L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removalalgorithms [J]. Physica D,1992,60(1.4):259-268.
    [91] Scherzer. Handbook of Mathematical Methods in Imaging[M]. Berlin:Springer-Verlag,2010.
    [92] Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear EvolutionEquations[J]. American Mathematical Society,2001.
    [93] T. F. Chan, C. W. Ho, M. Nikolova. Salt-and-pepper noise removal by mediantype noise detectors and detail preserving regularization[J]. IEEE Transactionson Image Processing,2005,67(1):111-136.
    [94] T. F. Chan, S. Esedoglu. Aspects of Total Variation regularized functionapproximation[J]. SIAM J. Appl. Math.,2005,65(5):1817-1837.
    [95] D. Gabor. Information theory in electron microscopy[J]. Laboratory Investigation,1965,14(6):801-807.
    [96] K. Jain. Partial differential equations and finite-difference methods in imageprocessing, part I: image representation. J. Optimization Theory andApplications[M].1977,23:65-91.
    [97] J. Koenderink. The structure of images[J]. Biological Cybernetics,1984:363-370.
    [98] P. Witkin. Scale-space filtering[C].8th International Joint Conference onArtificial Intelligence,1983,2:1019-1021.
    [99] R. A. Hummel. Representations based on zero-crossing in scale-space[C].Proceedings of the IEEE Conference on Computer Vision and PatternRecognition,1986:204-209.
    [100] S. Osher, A. Sethian. Fronts propagation with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. Journal ofComputational Physics,1988,79:12-49.
    [101] P. Perona, J. Malik. Scale-Space and Edge Detection Using AnisotropicDiffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
    [102]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008.
    [103] J. Weickert. Multi-scale texture enhancement. Computer analysis of images andpatterns,1995,970:230-237.
    [104] R. A. Carmona, S. F. Zhong. Adaptive smoothing respecting feature directions.IEEE Transactions on Image Processing,1998,7(3):353-358.
    [105] Y. Chen, B. Vemuri, L. Wang. Image denoising and segmentation via nonlineardiffusion. Computers and Mathematics with Applications,2000,39(5/6):131-149.
    [106]曾维里,谭湘花,路小波.基于区域的四阶偏微分方程去噪方法[J].东南大学学报,2011,27(2):154-158.
    [107]李亮,郭树旭,陈国法.基于偏微分方程的图像修复算法[J].吉林大学学报,2012,30(1):72-78.
    [108] N. Rajpoot, Z. Yao, R. Wilson. Adaptive wavelet restoration of noisy videosequences[C]. Proceedings of the Conference on IC IP, Singapore,2004:957-960.
    [109] S. Fukuma, S. Ikuta, M. Ito. An ROI image coding based on switching wavelettransform[C] Proceedings of the Symposium on ISCAS, London,2003,2:420-423.
    [110] M. A. Figueiredo, R. D. Nowak. An EM algorithm for wavelet-based imagerestoration[J]. IEEE Transactions on Image Processing,2003,12(8):906-916.
    [111] Y. P. Zhu, T. Z. Shen, Y. Cui. Wavelet domain image restoration algorithm usingclassified hidden markov tree model[C]. Proceedings of the Sixth WorldCongress on WCICA, China,2006:9570-9573.
    [112] M. Beige, M.E. Kilmer. Wavelet Domain Image Restoration with AdaptiveEdge-Preserving Regularization[J]. IEEE Trans Imaging Processing,2000,9(4):597-608.
    [113] M. Figueiredo, R.D. Nowak. An EM algorithm for wavelet-based imagerestoration. IEEE Transactions on image Processing,2003,12(8):906-916.
    [114] K. W. Charles, J. Z. Wang. Wavelet-based minima-energy approach to imagerestoration [J]. Applied and Computational Harmonic Analysis,2007,23(1):114-130.
    [115] R. Neelamani, H. Choi, and R.G. Baraniuk. Forward: Fourier-waveletregularized deconvo-lution for ill-conditioned systems [J]. IEEE Trans. SignalProcessing,2004,52(2):418-433.
    [116] J. L. Starck, E. J. Candes, D. L. Donoho. The Curvelet transform for imagedenoising [J]. IEEE Trans on Image Processing,2002,11(6):670-684.
    [117] G. Easley, D. Labate, W. Q.Lim. Sparse directional image representations usingthe discrete shearlet transform [J]. Applied Computational Harmonic Analysis,2008,25(1):25-46.
    [118] L. Demanet and L. Ying. Wave atoms and sparsity of oscillatory patterns [J].Applied and Computational Harmonic Analysis,2007,23(3):368387.
    [119] A. Buades, B. Coll, J. M. Morel. A review of image denoising algorithms, witha new one[J]. Multiscal Model. Simul.2005,4(2):490-530.
    [120] A. Danielyan, V. Katkovnik, and K. Egiazarian. BM3D Frames and VariationalImage Deblurring [J]. IEEE Trans on Image Processing,2012,21(4):1715-1728.
    [121]孙金霞.椭球整流罩导引头光学系统像差校正设计[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011.
    [122]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [123]宋治.湍流退化成像分析、仿真及图像恢复算法研究[D]:[硕士学位论文].武汉:华中科技大学,2003.
    [124] T. F. Chan, S. Osher, J. Shen. The digital TV filter and nonlinear denoising[J].IEEE Transactions on Image Processing,2001,10(2):231-241
    [125]孙玉宝,费选,韦志辉,等.基于前向后向算子分裂的稀疏性正则化图像超分辨率算法[J].自动化学报,2010,36(9):1232-1238.
    [126] T. F. Chan, J. H. Shen. Image Processing and Analysis: Variational, PDE,Wavelet, and Stochastic Methods[M]. USA: Society for Industrial and AppliedMathematics,2005,216-217.
    [127] Y. Wang, J. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithmfor total variation image reconstruction[J]. SIAM Journal on Imaging Sciences,2008,1(3):248-272.
    [128] E. Zeidler. Nonlinear Functional Analysis and Its Applications[M]. New York:Springer,1985.
    [129] J. J. Moreau. Proximité et dualité dans un espace hilbertien[J]. Bull. Soc. Math.France,1965,93:273-299.
    [130] P. L. Combettes, V. R. Wajs. Signal recovery by proximal forward-backwardsplitting[J]. Multiscale Model. Simul.,2005,4:1168–1200
    [131] J. Douglas, H. H. Rachford. On the numerical solution of heat conductionproblems in two or three space variables[J]. Trans. Amer. Math. Soc.,1956,82:421-439
    [132] J. Lieutaud. Operator Approximation by Decomposition Methods[C].University of Paris,1969.
    [133] P. L. Lions, B. Mercier. Splitting algorithms for the sum of two nonlinearoperators[J]. SIAM J. Numer. Anal.,1979,16:964-979
    [134] J. Eckstein, D. P. Bertsekas. On the Douglas-Rachford splitting method and theproximal point algorithm for maximal monotone operators[J]. Math.Programming,1992,55:293-318.
    [135] P. L. Combettes, J. C. Pesquet. A Douglas-Rachford splitting approach tononsmooth convex variational signal recovery[J]. IEEE J. Select. Topics in Sig.Proc.,2007,1(4):564-574.
    [136] G. Steidl, T. Teuber. Removing multiplicative noise by Douglas-Rachfordsplitting methods [J]. Journal of Mathematical Imaging and Vision,2010,36:168-184.
    [137] H. Engl, M. Hanke, A. Neubauer. Regularization of inverse problems [M].Kluwer Academic Pub,1996.
    [138]孙玉宝.图像稀疏表示模型及其在图像处理反问题中的应用[D].[博士学位论文].南京:南京理工大学,2010
    [139] M. G. Kang and A. K. Katsaggelos. General Choice of the RegularizationFunctional in Regularization Image Restoration[C]. IEEE Transaction on ImageProcessing,1995:594-602.
    [140]张天序,洪汉玉,孙向华,等.基于估计点扩展函数值的湍流退化图像复原[J].自动化学报,2003,29(4):573-581.
    [141] R.K. Ward, B.E.A. Saleh. Restoration of images distorted by systems of randomimpulse response [J]. J. Opt. Soc. Amer. A,1985,2(8):1254-1259.
    [142] L. Guan, R.K. Ward. Restoration of stochastically blurred images by thegeometrical mean filter [J]. Opt. Eng.,1990,29(4):289-295.
    [143] M. Bilgen, H.S. Hung. Constrained least-squares filtering for noisy imagesblurred by random point spread function [J]. Opt. Eng.,1994,33(6):2020-2023.
    [144] V.Z. Mesarovic, N.P. Galatsanos, A.K. Katsaggelos. Regularized constrainedtotal least-squares image restoration [J]. IEEE Trans. Image Process.,1995,4(8):1096-1108.
    [145] Jourlin M, Phinoli J C. A model for logarithmic image processing[J]. Microsc,1989,156:33-40.
    [146] K. Panetta, E. Wharton, and S. Agaian. Parameterization of logarithmic imageprocessing models[J]. IEEE Trans. Syst., Man, Cybern. A, Syst.,Humans, Jan.2007, submitted for publication.
    [147] E. Whartona, S. Agaianb, K. Panettaa. A Logarithmic Measure of ImageEnhancement[J]. in Proc. SPIE2006Defense and Security Symp., Orlando, FL,2006,6250:62500P.
    [148] Y. T. Kim. Contrast enhancement using brightness preserving bi-histogramequalization[J]. IEEE Trans. Consum. Electron.,1997,43(1):1-8.
    [149]蒋刚毅,黄大江,王旭等.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):220-224.
    [150]姜振海.超音速共形导引头整流罩热流固耦合[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700