用户名: 密码: 验证码:
基于粒子滤波的目标跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标跟踪技术一直以来都是计算机视觉、图像处理领域的研究热点,其在智能监控、视觉导航、智能交通、人机交互、国防侦察等领域具有重要应用价值,是武器系统的核心技术之一。虽然近二十年来众多学者对目标跟踪技术进行深入研究,但由于跟踪初始阶段目标模板获取不准确、目标在像面内运动规律的复杂性、目标观测特征的实时变化、目标所处背景的复杂干扰、遮挡等因素,导致当前的目标跟踪技术仍不能满足军、民领域的需求,因此仍需对其进行深入研究。
     目标跟踪问题可以定义为已知目标先验信息,在获取目标新的观测信息后,迭代求取目标状态矢量后验概率密度分布的过程,因此可将目标跟踪过程建模为贝叶斯估计。本论文主要以粒子滤波为跟踪框架,重点对其动态模型及观测模型进行研究;同时针对目标检测、目标分割算法进行研究,试图将目标检测与分割算法与基于粒子滤波的跟踪算法相融合,进而达到减小跟踪误差、提高跟踪精度的目的。本论文主要创新工作及研究成果如下:
     1.粒子滤波的动态模型是对目标运动方式的描述,若模型描述与目标实际运动方式差异较大,必然导致预测过程后粒子无法准确覆盖目标真实位置,跟踪误差逐渐累积甚至跟踪失败。本文针对机载环境对地面目标跟踪的特点,提出加速度双步动态模型(TSA),其中包含自由模型与保守模型两部分,自由模型将目标速度建模为非零均值的高斯马尔科夫过程,该模型通过参数调整可以较好描述RW模型与NCV模型之间的运动形式;保守模型对目标当前时刻速度进行估计,替代自由模型中高斯马尔科夫过程的目标速度平均值。实验结果表明,该模型对目标在像面内大幅度变速运动有较好的预测能力。
     2.粒子滤波的观测模型决定粒子权重,直接影响跟踪精度,较为经典的观测特征为目标颜色、轮廓等特征。核密度估计直方图是一种经常被采用的特征,其关键技术为核函数的选取。本文基于Snake轮廓提取算法,构建非对称核函数,融合目标的颜色信息,进而得到目标的核密度估计直方图作为粒子滤波的观测模型。该模型不但可以较好描述目标的观测信息,在目标观测特征变化时可实时更新目标模板。该模型的构建算法可以达到实时,具有实际工程应用价值。
     3.对于背景复杂的目标跟踪问题,上述非对称核函数的构建算法会出现较大误差。为此,本论文将图像分割算法融入到粒子滤波跟踪算法之中,首先提出多方向GrabCut算法,该算法相比传统分割算法具有更强的分割鲁棒性;进而提出基于该分割算法的MGC-PF粒子滤波算法。实验结果表明,该算法可以较好解决因目标处于复杂背景而引起跟踪精度较差的问题。
     4.为设计能够更好与跟踪算法相融合的GrabCut分割算法,充分利用跟踪过程目标的时间相关性及空间相关性,本文将随机森林分类器融合到GrabCut分割算法之中,提出适于融入目标跟踪算法中的RF-GC分割算法,最终提出RF-GC-PF粒子滤波跟踪算法。实验结果表明,该算法可以较好解决跟踪过程中由于目标运动规律复杂、目标观测特征实时变化、背景复杂等综合因素引起跟踪精度较差的问题。
     本论文试图解决目标跟踪过程中由于目标运动规律复杂、目标观测特征实时变化、复杂背景等因素导致的跟踪误差较大、精度较差的问题,对在传统跟踪算法中融入图像分割、目标检测算法的这一发展趋势进行了研究、分析与展望。
Target tracking technology has being a research focus in computer vision andimage processing, which has important application value in intelligence monitoring,vision navigation, intelligent transportation, human-computer interaction, defensereconnaissance, and is one of the key technology of weapon systems. Although manyscholars of the past two decades are in depth study of target tracking technology, butbecause of obtaining the inaccurate target template in the initial stage of tracking,complexity movement of the target in the image plane, changing of the targetobservational characteristics, complex background interference, occlusion and otherfactors, the current target tracking technology still can not meet the need of militaryand civilian areas, and therefore target tracking technology still need to be studied indepth.
     Target tracking problem can be defined as when having the priori information oftarget, after obtaining visual information on new observation, the iterative process ofobtaining the posterior probability of the target state vector, so the target trackingproblem can be modeled as Bayesian estimation. This thesis is mainly based onparticle filter tracking framework, focusing on the dynamic model and observationmodel; simultaneously researching on target detection and target segmentationalgorithm, trying to integrating target detection and segmentation algorithm intracking algorithm based on particle filter to reduce tracking error and improve tracking precision. The main innovation and research results are as follows:
     1. Dynamic model of particle filter is to describe how the target moving, and thedynamic model describes quite different from the pattern of target actual movement,will inevitably leading the particles cannot accurately coverage of the target trueposition in predicting stage, and leading tracking error gradually accumulate, evenleading tracking failure. For tracking ground target with cameras in airborneenvironment, this thesis proposes a Two-Stage Acceleration dynamic model(TSA),which includes liberal model and conservative model. In the liberal model, targetspeed will be modeled as a zero mean Gaussian Markov process, and can describe themotion pattern between RW model and NCV model through parameter adjustment.Conservative model estimate the current velocity of the target, and alternate theaverage target speed of Gauss-Markov process in liberal model. Experimental resultsshow that the TSA model can predict the target motion accurately when the targetmoving in large scale in the image plane.
     2. Observation model of particle filter determines the weight of the particles andaffect the tracking precision directly. Classic observational features are color, contourand so on. Kernel density estimation histogram feature is often used and the keytechnology is the selecting of kernel function. In this thesis, asymmetric kernelfunction is constructed based on the Snake contour extraction algorithm, whichintegrated the color information of the target, and then the kernel density estimationhistogram of target is constructed as observation model of particle filter. The modelnot only can describe the target appearance information better, but also can be updatedin real-time when observation features of target changes. Addition, this model isconstructed in real-time algorithm and has practical engineering value.
     3. For complex background around the target when tracking, the asymmetricalgorithm kernel is constructed with larger error. To deal with such problem, thisthesis will integrate particle filter tracking algorithm with GrabCut imagesegmentation algorithm. First more robust multi-directional GrabCut algorithm isproposed, and then MGC-PF particle filter algorithm is proposed. Experimental results show that this algorithm have better tracking precision when tracking target incomplex background.
     4. To design a segmentation algorithm based on GrabCut which can integratetracking algorithm better, make full use of the time correlation and spatial correlationin target tracking process, this thesis will integrate random forest classifier to GrabCutsegmentation algorithm, RF-GC segmentation algorithm is proposed, and finallyRF-GC-PF particle filter tracking algorithm is proposed. Experimental results showthat the algorithm can solve the problem of poor tracking precision due to thecombination factors of complex movement of target, observation features changingand the complex background.
     This thesis attempts to solve the problem of poor tracking precision due tocomplex movement of target, target observation features changing in real-time, thecomplex background and other factors, and the development trend of integratingimage segmentation, target detection algorithm to traditional tracking algorithm isresearched, analysis and outlook.
引文
[1]杨廷梧.基于多传感器的机动目标跟踪与融合技术综述[J].飞行试验.2004,20(2):2-8.
    [2]权太范.目标跟踪新理论与技术[M].北京:国防工业出版社,2009.1-16.
    [3] I. Haritaoglu, D. Harwood, L. S. Davis. W4:Real-Time Surveillance of People andTheir Activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
    [4] Robert T. Collins, Alan J. Lipton, Takeo Kanade. A system for surveillance andmonitoring[R]. Tech. report CMU-RI-TR-00-12, Robotics Institute, Carnegie MellonUniversity, May,2000.
    [5] J. M. Ferryman, S. J. Maybank, A. D. Worrall. Visual Surveillance for MovingVehicles[C]. International Journal of Computer Vision,2000,37(2):187–197.
    [6] J. Tai, S. Tseng, C. Lin, et al. Real-time Image Tracking for Automatic TrafficMonitoring and Enforcement Application [J]. Image and Vision Computing,2004,22(6):485-501.
    [7]王其聪.复杂观测条件下的基于粒子滤波的视觉跟踪[D]:[博士学位论文].浙江:浙江大学,2007.
    [8] P. J. Burt, C. Yen, X. Xu. Local Correlation Measures for Motion Analysis: AComparative Study [C]. IEEE CPRIP,1982:269-274.
    [9] M. Okutomi, T. Kanade. A Locally Adaptive Window for Signal Matching [J].International Journal of Computer Vision,1992,7(2):143-162.
    [10] S. Smith, J. Brady. SUSUN:A New Approach to Low Level Image Processing [J].International Journal of Computer Vision,1997,23(1):45-78.
    [11] D. Lowe. Distinctive Image Features from Scale Invariant Keypoints [J].International Journal of Computer Vision,2004,60(2):91–110.
    [12] I. K. Sethi, R. Jain. Finding Trajectores of Feature Points in a Monocular ImageSequence [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1987,9(1):56-72.
    [13] V. Salari, I. K. Sethi. Feather Point Correspondence in the Presence of Occlusion[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(1):87-91.
    [14] K. Rangarajan, M. Shah. Establishing motion correspondence [C]. Proceedingsof IEEE Conference on Computer Vision and Pattern Recognition,1991:103-108.
    [15] A. K. Jain, Yu Zhong, S. Lakshmanan. Object Matching Using DeformableTemplates[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1996,18(3):267-278.
    [16] M. Kass, A. Witkin, D. Terzopoulous. Snake: Active Contour Models [J].International Journal of Computer Vision,1988,1(4):321-331.
    [17] V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours [J]. InternationalJournal of Computer Vision,1997,22(1):61-79.
    [18] R. Malladi, J. A. Sethian, B. C. Vemuri. Shape Modeling with Front Propagation:A Level Set Approach [J]. IEEE Transaction on Pattern Analysis and MachineIntelligence,1995,17(2):158-179.
    [19] R. E. Kalman. A new approach to linear filtering and prediction problems [J].Journal of Basic Engineering Trans. on ASME.1960,82D(1):34–45.
    [20] R. S. Bucy, K. D. Senne. Digital Synthesis of Nonlinear Filter [J]. Automatica,1971,7(3):287-298.
    [21] S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A New Approach for FilteringNonlinear System [C]. Proceedings of the American Control conference,1995,3:1628-1632.
    [22] E. A. Wan, R. Van Der Merwe. The Unscented Kalman filter for NonlinearEstimation [C]. The IEEE2000Adaptive Systems for Signal Processing,Communications, and Control Symposium,2000,153-158.
    [23] N. J. Gordon, D. J. Salmond, A. F. M. Smith. Novel Approach to Nonlinear/non-gaussian Bayesian State Estimation [J]. In IEE Proc. Radar and Signal Processing,1993,140(2):107-113.
    [24] M. K. Pitt, N. Shephard. Filtering via Simulation: Auxiliary Particle Filters [J]. J.Amer. Stat. Assoc.,1999,94(446):590–599.
    [25] J. F. G. de Freitas, M. Niranjan, A. H. Gee, et al. Sequential Monte CarloMethods To Train Neural Network Models [J]. Neural Computation,2000,12(4):955-993.
    [26] R. van der Merwe, A. Doucet, N. de Freitas, et al. The Unscented Particle Filter
    [R]. Technical Report CUED/F-INFENG/TR380, Cambridge University EngineeringDepartment,Aug.2000.
    [27] J. C. Spall. Estimation via Markov chain Monte Carlo [C]. Proceedings of the2002American Control Conference,2002,(4):2559-2564.
    [28] T. Schon, F. Gustafsson, P.-J. Nordlund. Marginalized Particle Filters for MixedLinear/nonlinear State-Space Models [J]. IEEE Trans. On Signal Processing,2005,53(7):2279-2289.
    [29] J. H. Kotecha, P. M. Djuric. Gaussian Particle Filtering [J]. IEEE Trans. OnSignal Processing,2003,51(10):2592-2601.
    [30] J. H. Kotecha, P. M. Djuric. Gaussian Sum Particle Filtering [J]. IEEE Trans. OnSignal Processing,2003,51(10):2602-2612.
    [31] D. Fox. KLD-Sampling: Adaptive Particle Filter[C]. In: T. G. Dietterich, S.Becker, Z. Ghahramani, eds., Advances in Neural Information Processing Systems14(NIPS), MIT Press,Cambridge,MA,2002.
    [32] C. Kwok, D. Fox, M. Meila. Real-time particle filters [J]. Proceedings of theIEEE,2004,92(3):469-484.
    [33] A. S. Bashi, V. P. Jilkov, X. R. Li, et al. Distributed Implementations of ParticleFilters [C]. Proceeding of the Sixth International Conference of Information Fusion,2003,(2):1164-1171.
    [34] A. Doucet, N. de Freitas, N. Gordon, et al. Sequential Monte Carlo Methods inPractice [M]. New York: Springer-Verlag, January2001.
    [35] B. Ristic, S. Arulampalam, N. Gordon. Beyond the Kalman Filter: Particle Filtersfor Tracking Applications [M]. Boston: Artech House,2004.
    [36] D. T. Magrill. Optimal Adaptive Estimation of Sampled Stochastic Process [J].IEEE Trans. Automatic Control,1965,10(4):434-439.
    [37] H. A. P. Blom, Y. Bar-Shalom. The Interacting Multiple Model Algorithm forSystems with Markovian Switching Coefficients [J]. IEEE Trans. On AutomaticControl,1988,33(8):780-783.
    [38] S. McGinnity, G. W. Irwin. Multiple model bootstrap filter for maneuveringtarget tracking[J]. IEEE Trans. On Aerospace and Electronic Systems,2000,36(3):1006-1012.
    [39] J. S. Liu, R. Chen. Sequential Monte Carlo Methods for Dynamical Systems [J].J. Amer. Stat. Assoc.,1998,93(443):1032–1044.
    [40] P. Fearnhead. Sequential Monte Carlo methods in filter theory [D]:PhD thesis.Merton College,1998.
    [41] S. M. Herman. A Particle Filter Approach to Joint Passive Radar Tracking andTarget Classification [D]: PhD thesis. University of Illinois,2002.
    [42] Z. Chen. Bayesian filtering: From Kalman filters to particle filters,and beyond [J].Statistics,2003,182(1):1-69.
    [43] M. S. Arulampalam, S. Maskell, N. Gordon, et al. A Tutorial on Particle Filtersfor Online Nonlinear/Non-gaussian Bayesian Tracking [J]. IEEETrans. SignalProc.,2002,50(2):174–188.
    [44] T. Kailath. The Innovations Approach to Detection and Estimation Theory [J].InProc. of the IEEE,1970,58(5):680–695.
    [45] I. B. Rhodes. A Tutorial Introduction to Estimation and Filtering [J].IEEE Trans.Automatic Control,1971,16(6):688–706.
    [46] I. Kailath. Lecture on Wiener and Kalman Filtering [M]. New York:Springer-Verlag,1980.
    [47] A. H. Jazwinski. Stochastic Processes and Filtering Theory [M]. New York:Academic Press,1970.
    [48] V. Peterka. Trends and Progress in System Identification [M]. Pergamon Press,1981:239–304.
    [49] B. D. O. Anderson, J. B. Moore. Optimal Filtering [M]. New Jersy: Prentice-Hallinc,1979.
    [50] H. Tanizaki, R. S. Mariano. Nonlinear Filters Based on Taylor Series Expansion[J]. Commu. Statist. Theory and Methods,1996,25(6):1261–1282.
    [51] S. Julier, J. Uhlmann. A General Method for Approximating NonlinearTransformations of Probability Distributions[R]. Technical report, Department ofEngineering Science, University of Oxford,1996.
    [52] S. J. Julier, J. K. Uhlmann. A New Extension of The Kalman Filter to NonlinearSystems [C].In International Symp. on Aerospace/Defence Sensing, Simulation andControl,1997,21–24.
    [53] S. J. Julier, J. K. Uhlmann. A Consistent, Debiased Method for ConvertingBetween Polar and Cartesian Coordinate Systems [C]. In Proceedings of AeroSense:The11th International Symposium on Aerospace/Defense Sensing, Simulation andControl,1997.
    [54] S. J. Julier. The Scaled Unscented Transformation [C]. Proceedings of the2002American Control Conference,2002(6):4555–4559.
    [55] K. Ito, K. Xiong. Gaussian Filters for Nonlinear Filtering Problems [J].IEEETrans. Automatic Control,2000,45(5):910–927.
    [56] M. N rgraad, N. K. Poulsen, O. Ravn. New developments in state estimation fornonlinear systems[J].Automatica,2000,36(11):1627–1638.
    [57] R. van der Merwe, E. Wan. Sigma-point Kalman filters for probabilisticinference in dynamic state-space models[C]. In Workshop on Advances in MachineLearning,2003.
    [58] R. van der Merwe. Sigma-point Kalman filters for probabilistic inference indynamic state-space models[D]. PhD thesis, OGI School of Science&Engineering,Oregon Health&Science University,2004.
    [59] H. W. Sorenson, D. L. Alspach. Recursive Bayesian estimation using Gaussiansums[J]. Automatica,1971,7(4):465–479.
    [60] D. L. Alspach, H. W. Sorenson. Nonlinear Bayesian estimation using Gaussiansum approximations[J]. IEEE Trans. Automatic Control,1972,17(4):439–448.
    [61] James C. Spall. Bayesian Analysis of Time Series and Dynamic Models [M].New York: Dekker,1988.
    [62] R. S. Bucy, H. M. Youssef. Nonlinear filter representation via splinefunctions[C].In Symposium on Nonlinear Estimation,1974,51–60.
    [63]S. C. Kramer, H. W. Sorenson. Recursive Bayesian Estimation Using Piece-wiseConstant Approximations [J]. Automatica,1988,24(6):789–801.
    [64]A. H. Wang, R. L. Klein. Optimal Quadrature Formula Nonlinear Estimators [J].Inform. Sci.,1978,16(3):169–184.
    [65]G. Kitagawa. Non-Gaussian State-Space Modelling of Nonstationary Timeseries[J]. J. Amer. Stat. Assoc.,1987,82(400):1032–1063.
    [66]G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Non-LinearState Space Models[J]. J. Comp. and Graph. Statistics,1996,5(1):1–25.
    [67] R. van der Merwe, E. Wan. Gaussian Mixture Sigma-Point Particle Filters forSequential Probabilistic Inference in Dynamic State-Space Models [C]. In Proc. IEEEInt. Conf. Acoust., Speech, Signal Processing,2003,(6):701–704.
    [68] J. Deutscher, A. Blake, I. Reid. Articulated Body Motion Capture by AnnealedParticle Filtering [C]. In Proc. Conf. Comp. Vis. Pattern Recognition,2000,(2):126–133.
    [69] J. MacCormick, A. Blake. Probabilistic Exclusion and Partitioned Sampling forMultiple Object Tracking [J]. Int. J. Comput. Vision,2000,39(1):57–71.
    [70] P. Perez, J. Vermaak, A. Blake. Data Fusion for Visual Tracking with Particles
    [C]. Proc. of the IEEE,2004,92(3):495–513.
    [71]N. Bergman. Recursive Bayesian Estimation: Navigation and TrackingApplications [D]: PhD thesis. Linkoping University,1999.
    [72] B. D. Ripley. Stochastic Simulation [M]. New York: John Wiley and Sons,1987.
    [73] J. Carpenter, P. Clifford, P. Fearnhead. Improved Particle Filter for NonlinearProblems [J]. IEE Proceedings Radar, Sonar and Navigation,1999,146(1):2–7.
    [74] J. MacCormick. Probabilistic Modelling and Stochastic Algorithms for VisualLocalisation and Tracking [M]: PhD thesis. University of Oxford,2000.
    [75] M. Isard, A. Blake. Contour Tracking by Stochastic Propagation of ConditionalDensity[C]. In Proc. European Conf. Computer Vision,1996(1):343–356.
    [76] A. Farina, F. A. Studer. Radar Data Processing, Vol. I: Introduction and Tracking,Vol. II: Advanced Topics and Applications [M]. Letchworth, Hertfordshire, England:Research Studies Press,1985.
    [77] A. Gelb. Applied Optimal Estimation [M].Cambridge, MA: MIT Press,1974.
    [78] P. S. Maybeck. Stochastic Models, Estimation and Control, Vol. I [M].New York:Academic Press,1979.
    [79] P. S. Maybeck. Stochastic Models, Estimation and Control, Vols. II, III [M]. NewYork: Academic Press,1982.
    [80] Y. Bar-Shalom, X. R. Li, T. Kirubarajan. Estimation with Applications toTracking and Navigation: Theory, Algorithms, and Software[M]. New York: Wiley,2001.
    [81] R. A. Singer. Estimating Optimal Tracking Filter Performance for MannedManeuvering Targets [J].Transactions on Aerospace and Electronic Systems,1970,AES-6(4):473–483.
    [82] S. Blackman, R. Popoli. Design and Analysis of Modern Tracking Systems [M].Boston, MA: Artech House,1999.
    [83] R. A. Singer, K. W. Benhke. Real-time Tracking Filter Evaluation and Selectionfor Tactical Applications [J].Transactions on Aerospace and Electronic Systems,1971,AES-7(1):100–110.
    [84] R. J. McAulay, E. J. Denlinger. A Decision-Directed Adaptive Tracker [J].Transactions on Aerospace and Electronic Systems,1973,AES-9,(2):229–236.
    [85] J. R. Cloutier, J. H. Evers, J. J. Feeley. Assessment of air-to-air missile guidanceand control technology[J]. IEEE Control Systems Magazine,1989,9(6):27–34.
    [86] P. F. Easthope, N. W. Heys. Multiple-Model Target-Oriented Tracking System[C].In Proceedings of the1994SPIE Conference on Signal and Data Processing of SmallTargets,1994,(2235):624-635.
    [87] P. J. Costa. Adaptive model architecture and extended Kalman-Bucy filters[J].Transactions on Aerospace and Electronic Systems,1994,30(2):525–533.
    [88] C. N. D’Souza, M. A. McClure, J. R. Cloutier. Spherical Target State Estimators
    [C]. In Proceedings of1994American Control Conference,June1994,(2):1675–1679.
    [89] G. Pulford, B. La Scala. A survey of manoeuvring target tracking methodsandtheir applicability to over-the-horizon radar[R].Technical Report CSSIP14,Cooperative Research Centerfor Sensor Signal and Information Processing, Australia,July1996.
    [90] J. B. Pearson. Basic Studies in Airborne Radar Tracking Systems [D]:Ph.D.dissertation. University of California at LosAngeles,1970.
    [91] J. B. Pearson, E. B. Stear. Kalman filter applications in airborne radartracking[J].Transactions on Aerospace and Electronic Systems,1974,AES-10(3):319–329.
    [92] J. M. Fitts. Aided tracking as applied to high accuracy pointing systems[J].Transactions on Aerospace and Electronic Systems,1973,AES-9(3):350-368.
    [93] M. Landau. Radar tracking of airborne targets[C]. Presented at the NationalAerospace and ElectronicsConference (NAECON), Dayton, OH,1976.
    [94] W. D. Blair, G. A. Watson, T. R. Rice. Tracking maneuvering targets with aninteracting multiple model filter containing exponentially correlated accelerationmodels[C]. Southeastern Symposium on Systems Theory, Columbia,SC, Mar.1991.
    [95] S. Mandzuka. Ship tracking control: Optimal estimation of navigationparameters[C]. In Proceedings of the42th International Symposium ELMAR, Zadra,2000.
    [96] B. Ekstrand. Tracking filters and models for seeker applications[J]. Transactionson Aerospace and Electronic Systems,2001,AES-37,(3):965–976.
    [97] X. R. Li, V. P. Jilkov. A survey of maneuvering target tracking: Dynamicmodels[C]. In Proceedings of the2000SPIE Conference on Signal and DataProcessing of Small Targets,2000(4048),212–236.
    [98] X. R. Li, V. P. Jilkov. A Survey of maneuvering target tracking—Part IV:Decision-based methods[C]. In Proceedings of the2002SPIE Conference on Signaland Data Processing of Small Targets,2002,(4728).
    [99] X. R. Li, V. P. Jilkov. A survey of maneuvering target tracking—Part V:Multiple-model methods[C]. In Proceedings of the2003SPIE Conference on Signaland Data Processing of Small Targets,2003(5204).
    [100] Y. Bar-Shalom, X. R. Li. Estimation and Tracking: Principles, Techniques, andSoftware[M].Boston, MA: Artech House,1993.
    [101] Y. Bar-Shalom, X. R. Li. Multitarget-Multisensor Tracking: Principles andTechniques[M]. Storrs, CT: YBS Publishing,1995.
    [102] Y. Bar-Shalom. Multitarget-Multisensor Tracking: Advanced Applications[M].Norwood, MA: Artech House,1990.
    [103] Y. Bar-Shalom. Multitarget-Multisensor Tracking: Applications and Advances,Vol. II[M]. Norwwod, MA: Artech House,1992.
    [104] Y. Bar-Shalom, T. E. Fortmann. Tracking and Data Association[M]. New York:Academic Press,1988.
    [105] S. Blackman. Multiple Target Tracking with Radar Applications[M]. Norwood,MA: Artech House,1986.
    [106] X. R. Li, Y. Bar-Shalom. Performance prediction of the interacting multiplemodel algorithm[J]. IEEE Trans. Aerosp. Electron. Syst.,1993,29(3):755–771.
    [107] Y. Bar-Shalom. Multitarget/Multisensor Tracking: Applications andAdvances[M]. Storrs, CT: YBS Publishing,1998.
    [108] S. McGinnity, G. Irwin. Multiple model bootstrap filter for maneuvering targettracking[J]. IEEE Trans. Aerosp. Electron. Syst.,2000,36,(3):1006–1012.
    [109] H. A. P. Blom, E. A. Bloem. Exact Bayesian and particle filtering of stochastichybrid systems[J]. IEEE Trans. Aerosp. Electron. Syst.,2007,43(1):55–70.
    [110] J. Xue, N. Zheng, J. Geng, et al. Tracking multiple visual targets via particle-based belief propagation[J]. IEEE Trans. Syst.,Man, Cybern. B, Cybern.,2008,38(1):196–209.
    [111] M. Kristan, K. Stanislav, A. Leonardis. A Two-Stage Dynamic Model for VisualTracking[J]. IEEE Transactions on Systems, Man,and Cybernetics-Part B:Cybernetics,2010,40(9):1505-1519.
    [112] R. G. Brown, P. Y. C. Hwang. Introduction to Random Signals and AppliedKalman Filtering[M]. Hoboken, NJ: Wiley,1997.
    [113] M. Kristan. Tracking people in video data using probabilistic models[D]: Ph.D.dissertation. Faculty Elect. Eng., Univ. Ljubljana, Ljubljana,Slovenia,2008.
    [114] H. Zhou, K. S. P. Kumar. A “current” statistical model and adaptive algorithmfor estimating maneuvering targets[J]. Journal of Guidance Control and Dynamics,1984,7(9):596–602.
    [115] N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human Detection[C].Computer Vision and Pattern Recognition,2005,(1):886-893.
    [116] Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang. Real-Time Compressive Tracking[C]. ECCV,2012,866-879.
    [117] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, et al. Fast KeypointRecognition Using Random Ferns[J]. IEEE Transaction on Pattern Analysis andMachine Intelligence,2010,32(3):448-461.
    [118] Paul Viola, Michael Jones. Rapid Object Detection using a Boosted Cascade ofSimple Features[C]. Computer Vision and Pattern Recognition,2001,(1):511-518.
    [119] R. Mottaghi. Augmenting Deformable Part Models with Irregular-shapedObject Patches[C]. Computer Vision and Pattern Recognition,2012,3116–3123.
    [120] M. Pandey, S. Lazebnik. Scene Recognition and Weakly Supervised ObjectLocalization with Deformable Part-Based Models[C]. IEEE International Conferenceon Computer Vision,2011,1307-1314.
    [121] H. Azizpour, I. Laptev. Object Detection Using Strongly-SupervisedDeformable Part Models[C]. Computer Vision-ECCV,2012,(7572):836-849.
    [122] Ju Hong Yoon, Du Yong Kim, Kuk-Jin Yoon. Visual Tracking via AdaptiveTracker Selection with Multiple Features[C]. Computer Vision-ECCV,2012,(7575):28-41.
    [123] B. Stenger, T. Woodley, R. Cipolla. Learning to Track with MultipleObservers[C]. Computer Vision and Pattern Recognition,2009,2647-2654.
    [124] Zhangzhang Si, Haifeng Gong, Ying NianWu, et al. Learning Mixed Templatesfor Object Recognition[C]. Computer Vision and Pattern Recognition,2009,272-279.
    [125] R. Mottaghi, A. Ranganathan, A. Yuille. A Compositional Approach toLearning Part-based Models of Objects[C]. IEEE International Conference onComputer Vision,2011,561-568.
    [126] ZhangzhangSi, Song-Chun Zhu. Learning AND-OR Templates for ObjectRecognition and Detection[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence,2013,35(9):2189-2205.
    [127] Long (Leo) Zhu, Yuanhao Chen, Alan Yuille, et al. Latent HierarchicalStructural Learning for Object Detection[C]. Computer Vision and PatternRecognition,2010,1062-1069.
    [128]L. Cehovin, M. Kristan, A. Leonardis. An adaptive coupled-layer visual modelfor robust visual tracking[C]. IEEE International Conference on ComputerVision,2011,1363-1370.
    [129] Long (Leo) Zhu, Yuanhao Chen, Chenxi Lin, et al. Max Margin Learning ofHierarchical Configural DeformableTemplates (HCDTs) for Efficient Object Parsingand Pose Estimation[J].Int J Comput Vis,2011,(93):1–21.
    [130] Iasonas Kokkinos, Alan Yuille. Inference and Learning with Hierarchical ShapeModels[J]. Int J Comput Vis,2011,(93):201–225.
    [131] Iasonas Kokkinos, Alan Yuille. HOP: Hierarchical Object Parsing[C].Computer Vision and Pattern Recognition,2009,802-809.
    [132]Hao Jiang, Mark S. Drew, Ze-Nian Li. Linear Programming Matching andAppearance-Adaptive Object Tracking[C]. Computer Vision and Pattern Recognition,2005,(3757):203-209.
    [133] LongyinWen, ZhaoweiCai, Zhen Lei, et al. Online Spatio-temporal StructuralContext Learning for Visual Tracking[C]. Computer Vision-ECCV,2012,(7575):716-729.
    [134] Alper Yilmaz, Omar Javed, Mubarak Shah. Object Tracking: A Survey[J].ACM Computing Surveys,2006,38(4):1-45.
    [135] Xiaobai Liu, Liang Lin, ShuichengYan, et al. Integrating Spatio-TemporalContext with Multiview Representation for Object Recognition in Visual Surveillance[J]. IEEE Transactions on Circuits and Systems for Video Technology,2011,21(4):393-407.
    [136] Junseok Kwon, KyoungMu Lee. Tracking by Sampling Trackers[C]. IEEEInternational Conference on Computer Vision,2011,1195-1202.
    [137] D. Comaniciu. An algorithm for data-driven bandwidth selection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(2):281–288.
    [138] D. Comaniciu, V. Ramesh, P. Meer. Kernel-based object tracking[J]. IEEETrans. on Pattern Analysis and Machine Intelligence,2003,25(5):564–575.
    [139] M. Wand, M. Jones.Kernel smoothing[M]. Chapmanand Hall,1995.
    [140] A. Yilmaz. Object Tracking by Asymmetric Kernel Mean Shift with AutomaticScale and Orientation Selection[C]. in Proc. CVPR,2007:1-6.
    [141]Dai Yuan-ming. Enhanced Mean Shift Tracking Algorithm based on EvolutiveAsymmetric Kernel[C]. International Conference on Multimedia Technology(ICMT),2011,5394-5398.f
    [142] L. D. Cohen, I. Cohen. A finite element method applied to new active contourmodels and3D reconstruction from cross sections[C]. International Conference onComputer Vision,1990,587-591.
    [143] A. A. Amini, T. E. Weymouth, R. C. Jain. Using dynamic programming forsolving variational problem in vision[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,1990,12(9):855-867.
    [144] D. J. Williams, M. Shab. A Fast Algorithm for Active Contours and CurvatureEstimation[J]. CVGIP:Image Understanding,1992,55(1):14-16.
    [145] L. D. Cohen. On Active Contour Models and Balloons[J]. CVGIP:ImageUnderstanding,1991,53(2):211-218.
    [146]李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757.
    [147] S. Osher, J. Sethian. Fronts propagating with curvature dependent speed:algorithms based on the hamilton-Jacobi formulation[J]. Journal of ComputationalPhysics,1988,79(1):12-29.
    [148] J.Kwon, Kyoung Mu Lee. Visual Tracking Decomposition[C]. Computer Visionand Pattern Recognition,2010,1269-1276.
    [149] Xue Mei, Haibin Ling. Robust Visual Tracking and Vehicle Classification viaSparse Representation. IEEE Transaction on Pattern Analysis and MachineIntelligence,2011,33(11):2259-2272.
    [150] Tianzhu Zhang. Robust Visual Tracking via Structured Multi-Task SparseLearning[J]. International Journal of Computer Vision,2013,101(2):367-383.
    [151] XueMei, Haibin Ling. Minimum Error Bounded Efficient L1Tracker withOcclusion Detection. Computer Vision and Pattern Recognition,2011,1257-1264.
    [152] B. Babenko, M. H. Yang, S. Belongie. Robust Object Tracking with OnlineMultiple Instance Learning. IEEE Transactions on Pattern Analysis and MachineIntelligence,2011,33(8):1619-1632.
    [153] B. Babenko, M. H. Yang, S. Belongie. Visual Tracking with Online MultipleInstance Learning[C]. Computer Vision and Pattern Recognition,2009,983-990.
    [154] Z. Kalal, J. Matas, K. Mikolajczyk. P-N learning: Bootstrapping binaryclassifiers by structural constraints. Computer Vision and PatternRecognition,2010:49-56.
    [155] Z. Kalal, J. Matas, K. Mikolajczyk. Face-TLD: Tracking Learning DetectionApplied to Faces[C]. International Conference on Image Processing(ICIP),2010,3789-3792.
    [156] Vasileios Belagiannis, F. Schubert, N. Navab, et al. Segmentation Based ParticleFiltering for Real-Time2D Object Tracking. Computer Vision-ECCV,2012:842-855.
    [157] M. Godec, P. M. Roth, H. Bischof. Hough-based tracking of non-rigid objects.IEEE International Conference on Computer Vision,2011:81-88.
    [158] Xiao-Tong Yuan, Xiaobai Liu, Shuicheng Yan. Visual Classification WithMultitask Joint Sparse Representation[J]. IEEE Transaction on Image Processing,2012,21(10):4349-4360.
    [159] Hanxi Li, Chunhua Shen, Qinfeng Shi. Real-time Visual Tracking UsingCompressive Sensing[C]. Computer Vision and Pattern Recognition,2011,1305-1312.
    [160] Thang Ba Dinh, Gerard Medioni. Co-training Framework of Generative andDiscriminative Trackers with Partial Occlusion Handling[C]. IEEE Workshop onApplication of Computer Vision(WACV),2011,642-649.
    [161] Juergen Gall, Nima Razavi, Luc Van Gool. On-line Adaption of Class-specificCodebooks for Instance Tracking[C]. British Machine Vision Conference(BMVC),2010,1-12.
    [162] Rui Yao,Qinfeng Shi,Chunhua Shen, et al. Robust Tracking with WeightedOnlineStructured Learning[C]. Computer Vision-ECCV,2012,(7574):158-172.
    [163] Jianyu Wang, Xilin Chen, Wen Gao. Online Selecting Discriminative TrackingFeatures using Particle Filter[C]. Computer Vision and Pattern Recognition,2005,(2):1037-1042.
    [164] Y. Boykov, M.-P. Jolly. Interactive graph cuts for optimal boundary and regionsegmentation of objects in N-D images[C]. In Proc. IEEE Int. Conf. on ComputerVision,2001,(1):105-112.
    [165] Y. Boykov, V. Kolmogorov. Computing Geodesics and Minimal Surfaces viaGraph Cut[C]. In Proc. IEEE Int. Conf. on Computer Vision,2003,(1):26-33.
    [166] Carsten Rother, V. Kolmogorov, A. Blake. Grabcut-Interactive foregroundextraction using iterated graph cuts[J]. ACM Trans-actions on Graphics,2004.
    [167] H. Ling, K. Okada. Diffusion distance for histogram comparison[C]. ComputerVision and Pattern Recognition,2006,(1):246-253.
    [168] L. Breiman. Random forests[J]. Machine Learning,2001,45(1):5-32.
    [169] P. Geurts, D. Ernst, L. Wehenkel. Extremely randomized trees[J]. MachineLearning,2006,63(1):3-42.
    [170] M. Tom.机器学习[M]:曾华军等译.北京:机械工业出版社,2003.
    [171] J. P. Marques de Sa.模式识别——原理、方法及应用[M]:吴逸飞译.北京:清华大学出版社,2003.
    [172] M. Ozuysal, P. Fua, V. Lepetit. Fast Keypoint Recognition in Ten Lines ofCode[C]. Computer Vision and Pattern Recognition,2007,1-8.
    [173] T. K. Kim, T. Woodley, B. Stenger, et al. Online multiple classifier boosting forobject tracking[C]. In Proc. Computer Vision and Pattern Recognition Workshop,2010,1-6.
    [174] Bo Yang, R. Nevatia. Multi-Target Tracking by Online Learning of Non-linearMotion Patterns and Robust Appearance Models[C]. Computer Vision and PatternRecognition,2012,1918-1925.
    [175] Stefan Holzer, Marc Pollefeys, Slobodan Ilic, et al. Online Learning of LinearPredictors for Real-Time Tracking[C]. Computer Vision-ECCV,2012,(7572):470-483.
    [176] K. Fragkiadaki, Jianbo Shi. Detection Free Tracking: Exploiting Motion andTopology for Segmenting and Tracking under Entanglement[C]. Computer Vision andPattern Recognition,2011,2073-2080.
    [177] Y. Boers, J. N. Dressen. Interacting multiple model particle filter[J]. IEEProceedings, Radar,Sonar and Navigation,2003,150(5):344-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700