用户名: 密码: 验证码:
远紫外感应式阳极光子计数成像探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极光主要是由太阳风和磁尾中的带电粒子沿地球磁场线注入高纬度地区和大气的中性成分相互作用产生的。极光的在远紫外(Far-ultraviolet, FUV)波段包括:HI121.6nm (Lyman-)、OI130.4nm、OI135.6nm和N2的140nm~180nm LBH(Lyman-Birge-Hopfield)波带。其中,N2LBH辐射强度分布能够反映极光椭圆区的形态,确定极光椭圆区的边界和地磁亚暴发生的时间和位置,并且能通过对图像的反演获得太阳EUV波段辐射通量等信息。因此需要研制一台广角极光成像仪,对极光FUV辐射中的N2分子辐射的LBH带(140nm~180nm)进行成像观测,获得太阳活动的相关信息。远紫外光子计数成像探测器作为广角极光成像仪的核心器件,本论文对其设计优化、成像性能检测、辐射定标等方面展开研究,为实际工程研制提供理论依据。研究内容有以下几点。
     (1)研究FUV光子计数成像探测器的部件组成及其工作原理,分析非晶态半导体薄膜对感应电荷读出方式光子计数探测器成像性能的影响,优化半导体薄膜相关参数。根据Fick第二定律推导了半导体薄膜方块电阻和电子云扩散时间的函数关系,确定了非晶态半导体薄膜方块电阻范围(30MΩ/□~2700MΩ/□),并进行了实验验证。
     (2)为了满足成像要求,优化探测器的性能,对远紫外光子计数成像探测器进行了性能评价研究。对微通道板的增益进行了测评,分析了不同电压下的增益,优化了探测器的工作电压。对成像探测器的空间分辨率、暗噪声、动态范围等成像性能进行了测试。
     (3)完成FUV光子计数成像探测器的量子效率定标研究,利用性能稳定的氘灯光源照射光子计数成像探测器,对远紫外光子计数成像探测器进行辐射定标,确定入射光子数和图像的灰度值随波长的变化关系。
     (4)采用后期图像处理算法提高成像质量,优化性能。采用基于Lucy-Richardson(L-R)的图像盲卷积恢复算法对探测器所成图像进行处理,重建后探测器所成图像的空间分辨率由0.5mm提高到0.4mm。
Aurora is generated by high-energy particles from the solar wind along theearth s magnetic field lines injecting into the high latitudes of the earth andinteracting with the main components of the atmosphere. Aurora spectral radiation infar-ultraviolet (FUV) includes HI121.6nm (Lyman-), OI130.4nm, OI135.6nm andthe LBH (Lyman-Birge-Hopfield) of N2from140nm to180nm. The intensitydistribution of N2LBH radiation can show the shape of aural ellipse area, determinethe boundary of aural ellipse area, occurrence time and location of the magneticsub-storms, also obtain radiation characteristics of solar EUV spectra through theinversion of the image. Therefore, a wide field aurora imager is developed forimaging and observing N2molecule LBH radiation intensity distribution(140nm~180nm) to obtain the relevant information of solar activity. Far-ultravioletphoton counting imaging detector is the core of the wide field aurora imager, so thispaper mainly researches on the optimization design, imaging performance test andthe calibration of the Far-ultraviolet photon counting imaging detector. The maincontents are concluded as follows:
     (1) Study on the components of the FUV photon counting imaging detector andtheir working principle. Analysis of the influence for the semiconductor thin film tothe performance of the photon counting imaging detector based on induced chargereadout and optimization of parameters of the semiconductor thin films. The relationship of sheet resistance of the semiconductor and the electron diffusion timewas derived according to FIck s second law and the range of the sheet resistance(30MΩ/□~2700MΩ/□) was also obtained and vertified by experiment.
     (2) Performance measurement and evaluation was implemented to meet theimaging requirements and optimize the performance of the detector. The gain wasalso obtained at different voltage.The resolution test, dark counts and dynamic rangewere also measured.
     (3) The radiation calibration of the photon counting detector was studied. Thequantum efficiency at different wavelength, different incident angle was analyzedand measured. A stable deuterium lamp was used to calibration the photon detectorto determine the relationship between the gray scale of the image and the incidentnumber of the photons changing with wavelength.
     (4) The image processing algorithm can improve the imaging quality of theimage. Using the blind deconvolution algorithm based on L-R to process theobtained images, the resolution was improved from0.5mm to0.4mm.
引文
[1]王水,空间天气研究的主要科学问题[J].中国科学大学学报,2007,8.
    [2]刘天波,空间天气对导航卫星的影响[J].航海技术,2001,2,41-43.
    [3]吕保维,刘振兴。空间物理学进展[M].第三卷,北京:科学出版社,2001.86-120.
    [4]张英日地空间环境与空间天气预报[J]。前沿,27-35.
    [5] S. b. Mende, H. Heetderks, H. U. Frey. far ultraviolet imaging from the imagespacecraft.1. system design [J].space science reviews.2000,91:243-270.
    [6] D. J. Strickland, j. P. Jasperse, J. A.Whalen. dependence of auroral fuv emissionson the incident electron spectrum and neutral atmosphere[J]. j. Geophys. Res.1983,88:8051–8062.
    [7] L. A.Frank, J. D. Craven, k. L.Ackerson, et al, global auroral imaging.instrumentation for the dynamics explorer mission[J]. space sci. Instrum.1981,5:369–393.
    [8] C. D.Anger, S. K. Babey, A. L Broadfoot, et al. an ultraviolet auroral imager forthe viking spacecraft[J]. geophys. Res. Lett.1987,14,387.
    [9] J. S. Murphree, R. A.King, T. Payne, et al. The freja ultraviolet imager[J]. spacesci. Rev.1994,70,421.
    [10] K. Liou. Polar ultraviolet imager observation of auroral breakup[J]. Journal ofgeophysical research: space physics (1978–2012).2010,115(a12).
    [11]M.R. Torr, D.G.Torr, M.Zukic, et al. a far ultraviolet imager for the internationalsolar-terrestrial physics mission[J].space science reviews1995,71:329-383.
    [12] S.B.Mende, H.Heetderks, H.U.Frey. far ultraviolet imaging from the imagespacecraft.2. wideband fuv imaging [J]. Space science reviews91.2000,271-285.
    [13]George r. Carruthers. Apollo16far-ultraviolet camera/spectrograph: instrumentand operations.[J]. Applied optics,1973,12(10)2501-2508.
    [14]J. M,Stock, O. H. W. Siegmund, J. S. Hull, et al. Cross delay line microchannelplate detectors for the spectrographic imager on the image satellite[J]. Spie,1998,3445:407-414.
    [15]Http://www.weather.com.cn/space/kjtqdsj/05/1868929.shtml.
    [16] R. E. Huffman, F. J. Leblanc, J. C. Larrabee, et al. Satellite vacuum ultravioletairglow and auroral observations[J]. Journal of geophysical research,1980,852201-2215.
    [17]Fu liping, miniaturized vacuum ultraviolet ionospheric/auraral imager[C].
    [18]O. Siegmund, J. Vallerga, P. Jelinsky, et al. cross delay line detectors for hightime resolution astronomical polarimetry and biological fluorescence imaging[J]. proc.Ieee nuclear science symposium, isbn:0-7803-9222-1, pp.448-452, puerto rico,october2005.
    [19]朱小龙,马新文,沙杉等.延迟线阳极微通道板两维成像探测器[J].核电子学与探测技术,2004,24(3):253-256.
    [20]S. E Sobottka, M. B williams. Delay line readout of microchannel plates[J].Nuclear science,1988,35(1):348-351.
    [21]G. Dacosta, F.Vurpillot, A. Bostel, et al. Design of a delay-line position-sensitivedetector with improved perfor mance[J]. Scientific instruments,2005,76(1).
    [22]J. S. Lapington, B. Sanderson, L. B. C. Worth, et al. Imaging achievements withthe vernier readout[J]. Nuclear instruments and methods in physics research,2002,477:250-255.
    [23]黄钧良. MAMA紫外探测器系统与高增益MCP(二)[J].红外技术,1996,19(4):43-45.
    [24]S. Jeffrey, D.C Morgan, Slater, John g. Timothy, et al. Centroid positionmeasurements and subpixel sensitivity variations with the mama detector [J]. Appliedoptics,1989,28(6):1178-1192.
    [25]李慧蕊,赵文锦,申屠军等.多阳极微通道阵列mama探测器及其应用[J].真空科学与技术学报,2004,24(1):27-32.
    [26]R.M.E. Illing and R.L. Bybee. dynamic range considerations for EUV MAMAdetectors[J]. spie,1990,1334:201-209.
    [27]C David, J.Slater, Gethyn Timothy, S.Jeffrey et al. Imaging mama detectorsystems[J]. Spie,1990.1243:35-45.
    [28]O. H. W. Siegmund, M. Lampton, J. Bixler, et al. operational characteristics ofwedge and strip image readout systems[J]. IEEE Trans.Nucl.sci.1986, ns-33,724-727.
    [29]O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga, et al. cross strip imaging anodesfor microchannel plate detectors[J]. IEEE Trans. Nucl. Sci.2001,48pp.430-434.
    [30]A. S. Tremsin, J. V. Vallerga, O. H.W. Siegmund, et al. centroiding algorithmsand spatial resolution ofphoton counting detectors with cross strip anodes[J], proc.Spie,2003, vol.5164, pp.113-124.
    [31]O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga. high performance cross-stripdetector technologies for space astrophysics[C]. nuclear science symposiumconference record,2007, vol.3, pp2246–2251.
    [32]O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, et al. high resolution crossstrip anodes for photon counting detectors[J]. nucl. Instr. And meth.2003, A504pp.177-181.
    [33]O. H. W. Siegmund, A. Tremsin, R. Abiad, et al. Cross-strip anodes formicrochannel plate detectors[J]. Spie,2001,4498:131-140.
    [34]O Jagutzki, J. S. Lapington, L. B. C. Worth, et al. position sensitive anodes forMCP readout using induced charge measurement [J]. Nucl. Instr. And meth. A,2002,477(1-3):256~261.
    [35]W.becker.advanced time-correlated single photon counting[M].springer.2005
    [36]尼启良,何玲平,刘世界等.使用感应电荷位敏阳极的极紫外单光子计数成像系统[J].光学精密工程,2010,18(12):2543-2548.
    [37]向世明,倪国强.光电子成像器件原理[m].北京:国防工业出版社,2006.300-305.
    [38]O. H. W. Siegmund, K. Coburn, R. F.Malina. investigation of large formatmicrochannel plate z configurations,”IEEE Trans.Nucl.Sci.1985, ns-32,443-447.
    [39]S.R. Jelinsky, O.H.W. Siegmund, J.A. Mir. Progress in soft x-ray and uvphotocathodes[J]. spie vol.2808,617-624.
    [40]B. L. Henke, J, P, Knauer, K. J.Premaratne. The characterization of x-rayphotocathodes in the0.1-10-kev photon energy region[J].appl.phys.1981,52,1509.
    [41]I.Mizuno,T.Nihashi,T.Nagai,etal.Development of UV image intensifier tube withGaN photocathode,2008, pp.69451N-69451N-11, doi:10.1117/12.778539
    [42]刘元震,杨伟毅,常本康.远紫外CsI/Au/LiF光阴极特性研究[J].真空科学与技术,1991,10(11):315:321.
    [43]徐登高,刘元震,杨伟毅. CsI/Ni/Lif半透明真空紫外光阴极的分析研究[J].真空科学与技术,1989,12(9):397:401.
    [44]M.J. Whiteley, J.F. Pearson, G.W. Fraser, et al. the stability of csi coatedmicrochannel plate x-ray detectors[J]. nucl.instrum.meth.1984,a224,287-297.
    [45]潘京生.微通道板及其主要特征性能[J].应用光学,2004,5(5):25-29.
    [46]邹异松,刘玉凤,白廷柱.光电成像原理[M].北京:北京理工大学出版社,1997.163-165.
    [47] Whikun Yi, Sunghwan Jin, Taewon Jeong, etal. Microchannel plate forhigh-efficiency field emission display [J]. Applied physics letters,2000,77(11).1716-1718.
    [48]O. H.W. Siegmund, J.V. Vallerga, J. MCPhate, etal. next generationmicrochannel plate detector technologies for uv astronomy.[J]. Spie,5488,789-800.
    [49]Edward h. Eberhardt. Gain model for microchannel plates.[J]. Applied optics,18(9).1418-1423.
    [50]O.H.W. Siegmunda, J V. Vallergaa, Anton S. Microchannel plate imaging photoncounters for ultraviolet through nir detection with high time resolution.[J]. Proc. Ofspie.8033,1-12.
    [51]D. H. Ceckowski, E. Eberhardt, E. Carney. Proxity focused microchannel platephotomultiplier tubes[J]. IEEE transactions on nuclear science,1981;ns-28(1):2.
    [52]黄敏,戴丽英.微通道板光电倍增管及其应用.光电子技术,1994;14(2):151.
    [53]O. H. W. Siegmund. Preconditioning of microchannel plate stacks[J]. Spie,1989,1072:111-118.
    [54]王益军,严诚,曾桂林等.微通道板清洗技术[J].工艺技术与材料,2007,32(5):413-416.
    [55]李东仓,杨勇等.基于sallen-key滤波器的核脉冲成形电路研究[J].核电子学与探测技术,2008,28(3):563-566.
    [56]何玲平.极紫外光子计数探测器成像特性研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,光学专业,2010.
    [57]D.F.Ogletree, G. S. Blackman, R. Q. Hwang. A new pulse counting low-energyelectron diffraction system based on a position sensitive detector[J]. Rev. Sci.Instrum.,1992,63(1):104-113.
    [58]A. Rasmusse,C. Martin. development and testing of a prototype mosaicwedge-and–strip anode detector[J]. SPIE,1985,1159:539-550.
    [59]O. H. W. Siegmund, M. Lampton, J. Bixler, et al. wedge and strip imagingreadout systems for photon counting detectors in space astronomy[J], journal of theoptical society of america-a,1986,3:2139-2145.
    [60]C. Martin, H. O. Anger, M. Lampton, et al. wedge-and-strip anodes forcentroid-finding position-sensitive photon and particle detectors[J]. Rev. Sci. Instrum.,1981,52(7):1067-1074.
    [61]J. O. Goldsten, D. C. Humm. Performance of the wedge and strip microchannelplate detectors and electronics for the global ultravilot imager[J]. Spie,1999,3765:408-416.
    [62] J. S. Lapington, H. E. Schwarz. The design and manufacture of wedge and stripanodes[J]. IEEE,1986,33(1):288-292.
    [63]O. H. W. Siegmund, B. Y. Welsh, J. V. Vallerga, et al. high-performancemicrochannel plate imaging photon counters for spaceborne sensing[J]. proc. Spie vol.6220,“spaceborne sensors iii”, orlando, florida, may2006.
    [64]O. H. W. Siegmund, J.V. Vallerga, B. Welsh,et al. High speed optical imagingphoton counting microchannel plate detectors for astronomical and space sensingapplications[C]. proceedings of the advanced maui optical and space surveillancetechnologies conference.2009,(2009), p.90.
    [65]J. S.Lapington. Developments in imaging devices for microchannel platedetector[J]. SPIE,3003,4854:191-203.
    [66]尼启良,刘世界,陈波.极紫外位置灵敏阳极光子计数成像探测器研究[J].中国光学与应用光学,2009,2(1):36-40.
    [67]卜绍芳,尼启良,何玲平,等.紫外波段微通道板光子计数探测器[J].中国光学,2012,5(3):302:309.
    [68]O.H.W. Siegmund, R. F. Malina, K. Coburn, et al. microchannel plate euvdetectors for the extreme ultraviolet explorer[J].IEEE trans.nucl.sci.1984,ns-31,776-779.
    [69]G. W. Fraser, J. F. Pearson, J. E. lees. Dark noise in microchannel plate x-raydetectors[J].Nuclear instruments and methods in physics research.1987,254:447-462.
    [70]G.Battistoni, P.Campana, V.Chiarella, et al. resistive cathode transparency [J].nuclerar instruments and methods.1982,202:459-464.
    [71]M. Saito, Y. saito, K. asamura. Spatial charge cloud size of microchannelplates[J]. Rev. Sci. Instrum.2007,78(2)023-302.
    [72]M. Saito, Y. Saito, K. Asamura. Spatial charge cloud size of microchannel plates[J]. Review of science instruments,2007,78:023302.
    [73]A.S. Tremsin, O. H. W. Siegmund. charge cloud asymmetry in detectors withbiased MCPs[J]. in x-ray and gamma-ray instrumentation for astronomy xii, proc.Spie4497, pp.127-138(2001).
    [74]M.Ellila. Charge diffusion in the capacitive readout of resistive cathodes. Nucl.Instr. And meth.277(2-3):507-512.
    [75]Juan Bisquert. Theory of the impedance of electron diffusion and recombinationin a thin film.[J]. J. Phys. Chem. B2002,106,325-333.
    [76]韩素立,陈波,尼启良,等.光子计数探测器感应位敏阳极电子云扩散研究[J].光学精密工程.2014.07.
    [77]Danniel Care, Bjorn Kemper, et al. Parameter-optimized digital holographicmicroscope for high-resolution living-cell analysis[J]. Applied optics,2004,43(36):6536-6544.
    [78]Joseph Ladislas Wiza. Microchannel plate detectors [J]. Nuclear instruments andmethods,1979,162:587-601.
    [79]O. H. W. Siegmund, J. V. Vallerga, J. MCPhate, et al.. Next generation micro-channel plate detector technologies for uv astronomy[J]. Spie,2004,5488:789-800
    [80]Joseph ladislas wiza. Microchannel plate detectors [J]. Nuclear instruments andmethods,1979,162:587-601.
    [81]H. Oswald. W. Siegmund. Advances in microchannel plate detectors foruv/visible astronomy [J]. Spie,2003,4854(181).
    [82]O. H. W Siegmund. High-performance microchannel plate detectors foruv/visible astronomy[J]. Nuclear instruments and methods in physics research,2004,525(1-2):12-16.
    [83]田景全,朱宝仁,姜德龙,等.测量微通道板电子增益的紫外光电法[J].兵工学报1987,2:67-71.
    [84]G. W. Fraser, J. F. Pearson, G. C. Smith, et al. the gain characteristics ofmicrochannel plates for x-ray photo counting[J].IEEE,trans.nucl.sci.1983, ns-30,455-460.
    [85]W. Priedhorsky, J. J. Bloch. Optical detection of rapidly moving objects inspace[J]. Appl.opt.2005,44:423-433.
    [86]O.H.W.Siegmund, J.Vallerga, B.Wargelin. background events in microchannelplate[J]. IEEE transactions on nuclear science,1988,35(1):524-528.
    [87]Martin V. Zombeck. Dead-time effects in microchannel-plate imaging detectors.Spie[J],1991vol.1594:90-100.
    [88]I. M. Ismail, M. Barat, J.-C. Brenot, et al. a zero dead-time, multihit, time andposition sensitive detector based on micro-channel plates[J]. rev. Sci. Instr.,2005,vol.76, p.043304.
    [89]R. F. Malina, K. Coburn, R. L. Bybee. comparative lifetesting results formicrochannel plates in windowless euv photon detectors [J].IEEE trans. Nucl.sci.1984, ns-31,404-407.
    [90]B.R. Sandel, A.L. Broadfoot, D.E. Shemansky. microchannel plate life tests[J].appl.optics,16,1435-1437.
    [91]A.S. Tremsin, J.F. Pearson, G.W. Frasera. microchannel plate operation at highcount rates: new results[J]. nuclear ins&uments and methods in physics research A1996,379:139-151.
    [92]A. S. Tremsin, O. H. W. Siegmund, J. V. Vallerga, et al. novel high resolutionreadout for uv and x-ray photon counting detectors with microchannel plates[J].inproc. Spie6276,627616–high energy, optical, and infrared detectors for astronomy ii,dorn and holland, eds., orlando, fl, may2006.
    [93]何玲平,岳巾英,刘世界,等.光子计数位置灵敏探测器畸变多项式校正[J].光学学报,2012,32(6):0604002.
    [94]尼启良,韩素立,陈斌,等.球面微通道板在极紫外波段的量子探测效率[J].光学精密工程,2011,19(11):2602-2607.
    [95]何飞,陈波,张效信.月基观测地球等离子体层极紫外辐射特性[J].光学精密工程,2010,18(12):2564-2573.
    [96]常军弢,吴令安。单光子探测器绝对量子效率自身标定方法[J]物理学报,2003,5(52):1132-1136.
    [97]李敏,范鲜红,尼启良,等.微通道板在12~40nm波段的量子效率测量[J].光学精密工程,2008,16(1):1-5.
    [98]G. W. Fraser. The electron detection efficiency of microchannel plates [J].nucl.Instrum. Methodes phys.res.206,251(1983).
    [99]尼启良,齐立红,陈波,使用气体靶激光等离子体光源的软x射线反射率计[J].光学精密工程,2004,12(6):576-580.
    [100] http://www.ird-inc.com/axuvope.html.
    [101] O. H. W. Siegmund, J. Vallerga and p. Jelinsky. calibration of photon countingimaging microchannel plate detectors for euv astronomy[J].SPIE,1986,689:40-48.
    [102]王振国.基于极大似然原理的天文图像盲恢复与重建[D]:[硕士学位论文].郑州:中国人民解放军信息工程大学,2006.
    [103] Henri lanteri, claude aime, hubert beaumont, et al. blind deconvolution usingthe richardson-lucy algorithm[J]. proc. Spie2312, optics in atmospheric propagationand random phenomena,182(december21,1994); doi:10.1117/12.197374.
    [104] D. A. Fish, A. M. Brinicombe, E. R. Pike, et al. blind deconvolution by meansof the richardson–lucy algorithm[J]. Opt. Soc. Am.,1995,A12:58-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700