用户名: 密码: 验证码:
microRNA-503在肝细胞肝癌中的功能及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     原发性肝细胞癌(Hepatocellular carcinoma, HCC)是全球患者死亡率居前的恶性肿瘤,也是我国常见的恶性肿瘤之一。与其它恶性肿瘤一样,肝癌的发生与发展是包括原癌基因激活或/和抑癌基因失活的多阶段多步骤的过程。HCC的发生与慢性肝炎及肝硬化密切相关,是一个逐步发展的渐进过程,并且HCC的发生与乙肝病毒(HBV)的感染有较高的关联性。由于我国约有1.2亿乙肝病毒携带者,占全球感染人数的1/3,如何有效地干预HCC的发生和治疗HCC患者成为了重大紧迫的问题。因此,寻找HCC的发病机制和发现有效的治疗靶点具有重要的意义。越来越多的研究结果证明,除了HCC内蛋白编码基因的变异,miRNA表达的失调也会促进HCC的发生。
     microRNA (miRNA)是近年来发现的一类长度仅为18-25个核苷酸的内源性非编码小RNA,成熟miRNA的5’非翻译区的2-7个核苷酸的“种子序列”可以与靶mRNA的3’-非翻译区互补结合,在转录后水平上抑制靶基因的表达。1993年,首个microRNA-lin4被发现,从此揭开了对microRNA研究的序幕。随后,许多实验室从线虫、果蝇、家鼠、拟南芥及人类等多种真核生物中发现了至少500种这类小分子RNA,其中在人类染色体上就有300余种,占人类基因的1-4%。miRNA的编码基因是目前最大的一类调节基因。它在细胞的生长、增殖、发育和凋亡过程中发挥着重要作用,并与许多肿瘤的发生、发展相关。rniRNA在肿瘤中发挥着相当于癌基因或抑癌基因的作用,调节着肿瘤细胞的多种重要的生物学行为。
     目前发现很多miRNAs在肝癌中异常表达,并在肝癌的发生发展中扮演着重要的角色。这些异常表达的miRNA包括,miR-1、miR-2、miR-221、miR-222、 miR-224, miR-301, let-7a, miR-101、miR-122、miR-125a、miR-139a、miR-143、 miR-195、miR-26, miR-29和miR-199a/b-3p等。这些miRNA的失调能够通过影响细胞的生长、凋亡.迁移和侵袭等生物学过程并影响HCC的发生和进展。但是,对于失调的miRNA如何参与HCC的发生和发展的机制尚有待于进一步深入研究,HCC中新的失调的miRNA及其功能的探索,将为HCC的治疗和预后判断提供新的理论基础。
     目的:
     本研究旨在寻找HCC中差异表达的miRNA,再用实时荧光定量PCR的方法验证差异表达的miR-503在肝癌组织及肝癌细胞系中的表达水平,并统计分析miR-503表达量与HCC患者临床病理参数和预后的关系。在此基础上进一步以获得性和缺失性功能实验明确miR-503在肝癌细胞中的生物学功能,分析并验证其发挥作用的直接靶基因,探索其在肿瘤发生发展中可能的分子机制。
     方法:
     1.利用microRNA实时定量PCR芯片技术高通量筛选肝癌细胞株和正常永生化肝脏细胞差异表达miRNA(由上海康成生物工程有限公司协助完成)。
     2.进一步用实时荧光定量PCR法验证明显差异表达的miR-503在肝癌组织及肝癌细胞系中的表达情况。
     收集125例肝癌患者肿瘤及周围非瘤组织手术标本,7株肝癌细胞系及2株永生化肝细胞系,经提取RNA,反转录后得到cDNA,运用实时荧光定量PCR技术检测miR-503的表达水平。
     3.根据miR-503在肝癌组织中的表达水平,将HCC患者分为miR-503高表达组和低表达组,进而分析miR-503表达量与HCC患者临床病理参数及预后之间的关系。
     4.通过体外转染niR-503mimic和inhibitor的方式来进行获得性和缺失性功能实验。以CCK-8、克隆形成、裸鼠体内成瘤实验、划痕实验、流式细胞周期检测、Edu实验等检测miR-503对细胞增殖与迁移的影响。
     5.利用在线数据库预测miR-503可能的靶基因,并通过双荧光素酶报告系统、Western blot等技术鉴定miR-503的靶基因。并进一步探讨miR-503参与细胞周期调控的分子机制。
     结果:
     1. microRNA定量PCR芯片结果提示:相对于正常肝脏细胞,miR-503, miR-218, miR-424, miR-30e, miR-147, miR-450a, miR-411等在HCC细胞株中的表达下调,选择其中表达明显下调的miR-503做进一步研究。
     2.分别检测了125例肝癌组织及配对的癌旁组织、7株肝癌细胞系及一株永生化肝细胞系L-02中miR-503的表达水平,发现在大部分肝癌组织和肝癌细胞系中miR-503表达水平降低,差异有显著性。
     3.miR-503表达水平与甲胎蛋白(P=0.015)、肿瘤病理学分级(P=0.019)、TNM分期(P=0.012)及门静脉癌栓(P=0.029)密切相关,但与年龄、性别、肿瘤大小、肿瘤数量无关,miR-503的低表达与HCC患者更短的总体生存期相关,提示miR-503可以作为一个判断HCC患者预后的独立预测因子。
     4.体内和体外功能研究结果显示:CCK-8实验、Edu实验、克隆形成实验及裸鼠皮下成瘤实验证实miR-503抑制了肝癌细胞的体内体外增殖能力;划痕实验提示miR-503过表达抑制了LM3细胞的迁移。流式细胞周期检测发现miR-503可以诱导肝癌细胞发生G1期阻滞。
     5.靶基因预测分析结果与细胞表型变化相结合,确定细胞周期相关分子cyclin D3和E2F3为候选靶基因。Western blot表明:LM3细胞中过表达miR-503明显下调Cyclin D3和E2F3蛋白的表达,而其mRNA水平无明显变化,提示miR-503可能通过抑制靶基因的翻译发挥作用。
     6.构建pmirGLO-cyclin D3-UTR和pmirGLO-E2F3-UTR野生型及突变型荧光素酶报告载体,将miR-503mimic与野生型荧光素酶报告载体共转染293T细胞后,荧光素酶报告基因活性明显降低,而共转染突变型荧光素酶报告载体后荧光素酶报告基因活性无明显影响。表明miR-503过表达可直接作用于cyclin D3和E2F33’UTR的靶序列,下调靶基因的表达。
     7.miR-503过表达显著下调Rb-E2F信号通路中关键分子CDK4, CDK6,磷酸化RB及E2F3下游基因cyclin A和Cdc2蛋白水平的表达,表明miR-503通过Rb-E2F信号通路抑制了肝癌细胞周期G1/S转换。
     结论:
     1.miR-503在HCC中表达水平频频下调,暗示其表达异常可能与HCC的发生发展密切相关。
     2.HCC组织中miR-503的表达水平与HCC患者的临床病理参数及总体生存期相关,暗示miR-503的表达量可以作为判断HCC患者预后的一个潜在的预测指标。
     3.miR-503诱导肝癌细胞发生细胞周期G1期阻滞及显著抑制细胞增殖。
     4. cyclin D3和E2F3被鉴定为miR-503的直接功能靶标。
     5.miR-503通过Rb-E2F信号通路参与肝癌细胞周期调控。
Background
     Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The development and progression of HCC is typical of a multistage process, which is believed to involve the deregulation of genes that are critical to cellular processes, such as cell cycle control, cell growth, apoptosis and cell migration and spreading. In the past decades, studies have focused on investigating the genes and proteins underlying the development and progression of HCC. Recently, an increasing number of reports have described a new class of small regulatory RNA molecules termed microRNAs (miRNAs) that are implicated in HCC progression.
     MicroRNAs (miRNAs) belong to a large family of non-coding, single-stranded RNAs,18-25nucleotides long. There is growing evidence that miRNAs regulate the expression of protein-coding genes, either at the level of messenger RNA degradation or translation, by pairing with their target mRNAs3'UTR. In1993, the first miRNA lin-4was discovered. They are involved in many biological processes including cell cycle regulation, development, differentiation, metabolism, and ageing. miRNA dysregulation has been observed in many human malignancies and there is some evidence for their involvement in the progression of tumors, either as oncogenes or tumor suppressors.
     However, their exact biological role in HCC remains unclear. Further research is still needed to explore new deregulated miRNA and its functions, which provide new ideas for the treatment and prognosis of HCC.
     Aims
     This study aimed to find differentially expressed miRNA in HCC, and then quantitative PCR was used to validate the miRNA expression level in HCC tissues and cell lines. Based on this we further investigated the biological function of miR-503in HCC cells by using gain-of and loss of function experiments, analyzed and verified its target genes and explored the possible molecular mechanisms of HCC in development and progress.
     Methods
     1. MicroRNA real-time quantitative PCR chips was used to explore differential expression miRNA in HCC cell lines and normal immortalized liver cells.
     2. We verified the expression of miR-503in125paired samples of clinical HCC tumor, adjacent normal liver tissues and7HCC cell lines using quantitative R-T PCR analysis and then investigated the correlation between clinicopathologic factors and miR-503expression.
     3. We conducted gain-of and loss of function analysis by transfecting HCC cell lines with chemically synthesized miR-503mimics or inhibitor. Methods including CCK-8, colony formation assays, Edu assays, tumor formation in nude mice and flow cytometry were used to measure cell proliferation and cell cycle.
     4. We investigated the direct target genes of miR-503involved in cell cycle arrest by a dual-luciferase reporter system, Western blot and qPCR.
     Results
     1MicroRNA array showed that miR-503was significantly downregulated in HCC cell line.
     2. Further study verified that significant downregulation of miR-503was observed in HCC tissues compared with their adjacent non-tumor tissues. Furthermore, the expression of miR-503was noticeably reduced in five of seven (71.4%) HCC cell lines examined compared with normal liver cell line L02
     3. Lower miR-503expression in HCC tissues significantly correlated with shorter survival of HCC patients, and miR-503was identified to be an independent predictor for prognosis of HCC patients.
     4. Restoration of miR-503dramatically suppressed HCC cell growth in vitro and in vivo by inducing G1phase cell cycle arrest.
     5. We confirm cyclin D3and E2F3are direct functional targets of miR-503by using a dual-luciferase reporter system.
     Conclusions
     In conclusion, we report the altered miR-503expression pattern in HCC, investigate the potential role of miR-503in tumorigenesis, and demonstrate that cyclin D3and E2F3are direct functional targets of miR-503. Our data demonstrate an important role for miR-503in the molecular etiology of cancer and suggest its potential application in cancer therapy.
引文
1. El-Serag HB Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007; 132:2557-76.
    2. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005; 55:74-108.
    3. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol, 2001; 2:533-43.
    4. Jeng KS, Sheen IS, Jeng WJ, et al. High expression of patched homolog-1 messenger RNA and glioma-associated oncogene-1 messenger RNA of sonic hedgehog signaling pathway indicates a risk of postresection recurrence of hepatocellular carcinoma. Ann Surg Oncol, 2013; 20:464-73.
    5. Li W, Cai HX, Ge XM, et al. Prognostic significance of BMP7 as an oncogene in hepatocellular carcinoma. Tumour Biol, 2013; 34:669-74.
    6. Santhekadur PK, Rajasekaran D, Siddiq A, et al. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma. Am J Cancer Res, 2012; 2:269-85.
    7. Taketomi A, Shirabe K, Muto J, et al. A rare point mutation in the Ras oncogene in hepatocellular carcinoma. Surg Today, 2013; 43:289-92.
    8. Wang W, He S, Ji J, et al. The prognostic significance of FOXQ1 oncogene overexpression in human hepatocellular carcinoma. Pathol Res Pract, 2013; 209:353-8.
    9. Zhang D, Cao L, Li Y, et al. Expression of glioma-associated oncogene 2 (Gli 2) is correlated with poor prognosis in patients with hepatocellular carcinoma undergoing hepatectomy. World J Surg Oncol, 2013; 11:25.
    10. Zhang Y, Zhang S, Wang X, et al. Prognostic significance of FOXP1 as an oncogene in hepatocellular carcinoma. J Clin Pathol, 2012; 65:528-33.
    11. Zhu X, Zhang J, Fan W, et al. The rs391957 variant cis-regulating oncogene GRP78 expression contributes to the risk of hepatocellular carcinoma. Carcinogenesis, 2013; 34:1273-80.
    12. Zimonjic DB Popescu NC. Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma:potential prospects for combined targeted therapeutics (review). Int J Oncol,2012; 41:393-406.
    13. Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 1989; 57:49-57.
    14. Lee RC, Feinbaum RL Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993; 75:843-54.
    15. Kim VN, Han J Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009; 10:126-39.
    16. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J, 2004; 23:4051-60.
    17. Cai X, Hagedorn CH Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004; 10:1957-66.
    18. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J,2002; 21:4663-70.
    19. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol, 2004; 14:156-9.
    20. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004; 303:95-8.
    21. Bohnsack MT, Czaplinski K Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004; 10:185-91.
    22. Ambros V. The functions of animal microRNAs. Nature,2004; 431:350-5.
    23. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116:281-97.
    24. Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003; 113:25-36.
    25. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004; 303:83-6.
    26. Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature, 2006; 439:283-9.
    27. Calin GA Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006; 6:857-66.
    28. Esquela-Kerscher A Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer, 2006; 6:259-69.
    29. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007; 133:647-58.
    30. Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology, 2010; 51:836-45.
    31. Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res, 2009; 69:1135-42.
    32. Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates Gl/S transition of human hepatocellular carcinoma cells. Hepatology, 2009; 50:113-21.
    33. Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 2008; 27:5651-61.
    34. Wong QW, Lung RW, Law PT, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathminl. Gastroenterology, 2008; 135:257-69.
    35. Wang Y, Lee AT, Ma JZ, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem, 2008; 283:13205-15.
    1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin,2005; 55:74-108.
    2. El-Serag HB Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology, 2007; 132:2557-76.
    3. Yuen MF, Hou JL Chutaputti A. Hepatocellular carcinoma in the Asia pacific region. J Gastroenterol Hepatol, 2009; 24:346-53.
    4. Wild CP Hall AJ. Primary prevention of hepatocellular carcinoma in developing countries. Mutat Res,2000; 462:381-93.
    5. Calin GA Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006; 6:857-66.
    6. Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res, 2009; 69:1135-42.
    7. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature,2005; 435:834-8.
    8. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006; 9:189-98.
    9. Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res,2007; 67:8699-707.
    10. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 2006; 25:2537-45.
    11. Ambros V. The functions of animal microRNAs. Nature,2004; 431:350-5.
    12. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116:281-97.
    13. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell, 2003; 115:787-98.
    14. Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003; 113:25-36.
    15. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004; 303:83-6.
    16. Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature,2006; 439:283-9.
    17. Wang W, Zhao LJ, Tan YX, et al. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis, 2012; 33:1113-20.
    18. Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology, 2009; 50:113-21.
    19. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007; 133:647-58.
    20. Wang Y, Lee AT, Ma JZ, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem, 2008; 283:13205-15.
    21. Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology, 2010; 51:836-45.
    22. Zhou J Wang W. Analysis of microRNA expression profiling identifies microRNA-503 regulates metastatic function in hepatocellular cancer cell. J Surg Oncol, 2011; 104:278-83.
    23. Lu YC, Chen YJ, Wang HM, et al. Oncogenic function and early detection potential of miRNA-lOb in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila),2012; 5:665-74.
    24. Roy P, Bhattacharya G, Lahiri A, et al. hsa-miR-503 is downregulated in beta thalassemia major. Acta Haematol, 2012; 128:187-9.
    25. Zhao JJ, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst, 2009; 25:13-20.
    26. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin, 2010; 60:277-300.
    27. Medina R, Zaidi SK, Liu CG, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res, 2008; 68:2773-80.
    28. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell, 2005; 120:635-47.
    29. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature, 2007; 447:1130-4.
    30. Ivanovska I, Ball AS, Diaz RL, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol, 2008; 28:2167-74.
    31. Li J, Wang Y, Yu W, et al. Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun, 2011; 406:70-3.
    32. Murakami Y, Tamori A, Itami S, et al. The expression level of miR-18b in hepatocellular carcinoma is associated with the grade of malignancy and prognosis. BMC Cancer, 2013; 13:99.
    33. Rong M, He R, Dang Y, et al. Expression and clinicopathological significance of miR-146a in hepatocellular carcinoma tissues. Ups J Med Sci, 2013;
    34. Zhang Y, Guo X, Xiong L, et al. MicroRNA-101 suppresses SOX9-dependent tumorigenicity and promotes favorable prognosis of human hepatocellular carcinoma. FEBS Lett, 2012; 586:4362-70.
    35. Zhi Q, Zhu J, Guo X, et al. Metastasis-related miR-185 is a potential prognostic biomarker for hepatocellular carcinoma in early stage. Biomed Pharmacother, 2013; 67:393-8.
    36. Deshpande A, Sicinski P Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene, 2005; 24:2909-15.
    37. Massague J. G1 cell-cycle control and cancer. Nature, 2004; 432:298-306.
    38. Caporali A, Meloni M, Vollenkle C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 2011; 123:282-91.
    39. Forrest AR, Kanamori-Katayama M, Tomaru Y, et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia, 2010; 24:460-6.
    40. Jiang Q, Feng MG Mo YY. Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer, 2009; 9:194.
    41. Sarkar S, Dey BK Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell, 2010; 21:2138-49.
    42. Zhang HS, Postigo AA Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell,1999; 97:53-61.
    43. Chang CN, Feng MJ, Chen YL, et al. pl5(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression. PLoS One, 2013; 8:e61196.
    44. Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res, 2008; 36:5391-404.
    45. Sato F, Tsuchiya S, Meltzer SJ, et al. MicroRNAs and epigenetics. FEBS J, 2011; 278:1598-609.
    46. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ, 2010; 17:193-9.
    47. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature, 2005; 435:828-33.
    48. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004; 101:2999-3004.
    49. Hermeking H. p53 enters the microRNA world. Cancer Cell, 2007; 12:414-8.
    50. Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol, 2008; 28:6773-84.
    51. Permuth-Wey J, Thompson RC, Burton Nabors L, et al. A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neurooncol, 2011; 105:639-46.
    52. Yue C, Wang M, Ding B, et al. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol Oncol, 2011; 122:33-7.
    53. Alexander IE, Cunningham SC, Logan GJ, et al. Potential of AAV vectors in the treatment of metabolic disease. Gene Ther, 2008; 15:831-9.
    1. Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol,2007; 25:1457-67.
    2. Sarasin-Filipowicz M, Krol J, Markiewicz I, et al. Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat Med, 2009; 15:31-3.
    3. Ambros V. The functions of animal microRNAs. Nature,2004; 431:350-5.
    4. Bushati N Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007; 23:175-205.
    5. Aravalli RN, Steer CJ Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008; 48:2047-63.
    6. Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 1989; 57:49-57.
    7. Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003; 113:25-36.
    8. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004; 303:83-6.
    9. Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature,2006; 439:283-9.
    10. Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA,2003; 9:277-9.
    11. Kim VN, Han J Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009; 10:126-39.
    12. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J,2002; 21:4663-70.
    13. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol, 2004; 14:156-9.
    14. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004; 303:95-8.
    15. Bohnsack MT, Czaplinski K Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004; 10:185-91.
    16. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell, 2009; 136:215-33.
    17. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell,2003; 115:787-98.
    18. John B, Enright AJ, Aravin A, et al. Human MicroRNA targets. PLoS Biol, 2004; 2:e363.
    19. Lytle JR, Yario TA Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci U S A,2007; 104:9667-72.
    20. Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature,2008; 455:1124-8.
    21. Saetrom P, Heale BS, Snove O, Jr., et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res, 2007; 35:2333-42.
    22. Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 2005; 309:1573-6.
    23. Humphreys DT, Westman BJ, Martin DI, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A, 2005; 102:16961-6.
    24. Kiriakidou M, Tan GS, Lamprinaki S, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 2007; 129:1141-51.
    25. Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitment of eIF6. Nature,2007; 447:823-8.
    26. Petersen CP, Bordeleau ME, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell,2006; 21:533-42.
    27. Nottrott S, Simard MJ Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol, 2006; 13:1108-14.
    28. Maroney PA, Yu Y, Fisher J, et al. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol, 2006; 13:1102-7.
    29. Yekta S, Shih IH Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004; 304:594-6.
    30. Kong YW, Cannell IG, de Moor CH, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A, 2008; 105:8866-71.
    31. Filipowicz W, Bhattacharyya SN Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 2008; 9:102-14.
    32. Lewis BP, Burge CB Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005; 120:15-20.
    33. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic micro RNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res,2005; 65:9628-32.
    34. Ma L, Teruya-Feldstein J Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007; 449:682-8.
    35. Chan JA, Krichevsky AM Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005; 65:6029-33.
    36. Sgarra R, Rustighi A, Tessari MA, et al. Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett, 2004; 574:1-8.
    37. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature, 2005; 435:828-33.
    38. Sato F, Tsuchiya S, Meltzer SJ, et al. MicroRNAs and epigenetics. FEBS J, 2011; 278:1598-609.
    39. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ, 2010; 17:193-9.
    40. Hermeking H. p53 enters the microRNA world. Cancer Cell,2007; 12:414-8.
    41. Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol, 2008; 28:6773-84.
    42. Permuth-Wey J, Thompson RC, Burton Nabors L, et al. A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neurooncol, 2011; 105:639-46.
    43. Yue C, Wang M, Ding B, et al. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol Oncol,2011; 122:33-7.
    44. El-Serag HB Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007; 132:2557-76.
    45. Hall AJ Wild CP. Liver cancer in low and middle income countries. BMJ, 2003; 326:994-5.
    46. Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis,2005; 25:143-54.
    47. Blum HE. Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol,2005; 11:7391-400.
    48. Llovet JM, Burroughs A Bruix J. Hepatocellular carcinoma. Lancet, 2003; 362:1907-17.
    49. Bruix J Sherman M. Management of hepatocellular carcinoma. Hepatology, 2005; 42:1208-36.
    50. Cramp ME. Hbv+Hcv=Hcc? Gut, 1999; 45:168-9.
    51. Soini Y, Chia SC, Bennett WP, et al. An aflatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. Carcinogenesis, 1996; 17:1007-12.
    52. Donato F, Tagger A, Gelatti U, et al. Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am J Epidemiol, 2002; 155:323-31.
    53. Coleman WB Tsongalis GJ. Molecular mechanisms of human carcinogenesis. EXS,2006; 321-49.
    54. Vogelstein B Kinzler KW. Cancer genes and the pathways they control. Nat Med, 2004; 10:789-99.
    55. Giaccia AJ Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev,1998; 12:2973-83.
    56. Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature, 1991; 350:429-31.
    57. Kim CM, Koike K, Saito I, et al. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature,1991; 351:317-20.
    58. Tannapfel A, Busse C, Weinans L, et al. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene, 2001; 20:7104-9.
    59. Jablkowski M, Bocian A, Bialkowska J, et al. A comparative study of P53/MDM2 genes alterations and P53/MDM2 proteins immunoreactivity in liver cirrhosis and hepatocellular carcinoma. J Exp Clin Cancer Res, 2005; 24:117-25.
    60. Higashitsuji H, Itoh K, Sakurai T, et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell, 2005; 8:75-87.
    61. Llovet JM, Chen Y, Wurmbach E, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology, 2006; 131:1758-67.
    62. Higashitsuji H, Itoh K, Nagao T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med, 2000; 6:96-9.
    63. Malumbres M Barbacid M. To cycle or not to cycle:a critical decision in cancer. Nat Rev Cancer, 2001; 1:222-31.
    64. Burkhart DL Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer, 2008; 8:671-82.
    65. Azechi H, Nishida N, Fukuda Y, et al. Disruption of the p16/cyclin D1/retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology, 2001; 60:346-54.
    66. Pimienta G Pascual J. Canonical and alternative MAPK signaling. Cell Cycle, 2007; 6:2628-32.
    67. Chau BN Wang JY. Coordinated regulation of life and death by RB. Nat Rev Cancer, 2003; 3:130-8.
    68. Challen C, Guo K, Collier JD, et al. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol, 1992; 14:342-6.
    69. Cerutti P, Hussain P, Pourzand C, et al. Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res, 1994; 54:1934s-38s.
    70. Schmitz KJ, Wohlschlaeger J, Lang H, et al. Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol, 2008; 48:83-90.
    71. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004; 101:2999-3004.
    72. Lu L, Katsaros D, de la Longrais IA, et al. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res, 2007; 67:10117-22.
    73. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006; 9:189-98.
    74. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 2005; 353:1793-801.
    75. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002; 99:15524-9.
    76. Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008; 22:894-907.
    77. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008; 10:593-601.
    78. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 2006; 25:2537-45.
    79. Gramantieri L, Ferracin M, Fornari F, et al. Cyclin Gl is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res,2007; 67:6092-9.
    80. Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem, 2006; 99:671-8.
    81. Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res, 2009; 69:1135-42.
    82. Li S, Fu H, Wang Y, et al. Micro RNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology, 2009; 49:1194-202.
    83. Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology, 2009; 50:113-21.
    84. Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology, 2010; 51:836-45.
    85. Gramantieri L, Fornari F, Callegari E, et al. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med, 2008; 12:2189-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700