用户名: 密码: 验证码:
胶原/壳聚糖—明胶微球支架缓释三七皂甙Rg1促血管化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探索中药单体三七皂甙Rgl对血管内皮细胞生物活性影响及机制,为其促血管化、协同治疗提供依据。构建有效的复合三七皂甙Rgl的胶原/壳聚糖-明胶微球支架缓释体系,评价与探索三七皂甙Rgl在促进组织工程皮肤血管化中的作用及相关机制,为组织工程促血管化策略提供新的思路。
     方法:
     各种急、慢性损伤造成的皮肤缺损是亟待有效解决的重大临床问题之一。组织工程化皮肤为皮肤创面的修复和愈合提供了一崭新的治疗途径,但是目前各种组织工程化皮肤移植存活率较低,其中一个主要原因是组织工程化皮肤移植后血管化速度较慢。因此寻求有效促进组织工程移植物血管化的方法尤为重要。三七作为一种常见的活血化瘀中药具有良好的促血管生成作用,这一作用主要是由其有效成分三七皂甙Rgl主导的。前期研究证实胶原/壳聚糖支架具有良好的机械支持作用和促进组织、血管长入的作用,而明胶微球作为一种缓释载体技术已经非常成熟。因此我们首先通过对内皮细胞增殖和凋亡,迁移,小管形成的作用,流式细胞术检测细胞周期和凋亡率,HUVEC细胞的VEGF表达探索三七皂甙Rg1对HUVEC细胞血管生成的影响及机制。为了使Rg1能最好的应用于组织工程,我们构建了缓释三七皂甙Rgl的胶原/壳聚糖-明胶微球(CC-GMS)支架,并通
     过体外实验对这种支架的微观形貌、缓释性能以及缓释出的Rg1对HUVEC细胞增殖能力影响进行评价。为进一步表征缓释Rg1的CC-GMS支架对血管化及诱导再生的影响,我们采用SD大鼠埋植实验模型,分别采用组织病理技术、免疫组化和免疫荧光技术及分子生物学技术对组织反应性和促血管化因子的表达进行了评价。结论:
     三七皂甙Rgl有良好的促进HUVEC细胞增殖,迁移,管形成作用。Rg1增加HUVEC细胞周期中G2/M期和S期的比例,并未引起内皮细胞的凋亡。同时三七皂甙Rgl可上调HUVEC细胞VEGF表达。构建的CC-GMS支架具有很好的组织相容性并能持续释放活性的Rg1。构建的缓释Rg1的CC-GMS支架在体内具有良好的促血管化作用,作为组织工程皮肤替代物有一定应用前景。
Objective:
     The purpose of this manuscript is to evaluate the effects of Panax notoginseng saponin Rgl on HUVEC proliferation, migration and VEGF expression in vitro and to develop a collagen/chitosan-gelatin microspheres scaffold controlled release Rgl and to evaluate its effect on tissue angiogenesis and wound regeneration in vivo.
     Methods:
     The consistent and steady release of angiogenic factors is an important factor in the promotion of angiogenesis in dermal substitutes, which usually lack, yet need, a vascular network. Rgl, isolated from Panax notoginseng (PNS) saponins, has been proven to be a candidate drug for angiogenesis, whereas its applications in tissue engineering have been rarely reported. In this study, the effect of Rgl on the biological behavior of human umbilical vein endothelial cells (HUVECs) was investigated in vitro. Furthermore, to develop a local delivery and subsequent controlled release system, PNS Rgl was first introduced into gelatin microspheres (GMS), which serve as drug carriers, and then incorporated into collagen/chitosan scaffolds to fabricate a collagen/chitosan-GMS (CC-GMS) scaffold. The morphology of the CC-GMS scaffold was investigated in vitro. To characterize the effect of the CC-GMS scaffold on angiogenesis and tissue regeneration, the CC-GMS scaffold was subcutaneously embedded in Sprague-Dawley (SD) rats. At days7,10,14, and21after implantation, the implants were imaged to analyze the newly formed blood vessels, and tissue specimens were harvested for histology, immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blotting analyses.
     Conclusions:
     The results demonstrated that Rgl promoted the proliferation of HUVECs in a time-and dose-dependent manner. Moreover, the CC-GMS scaffold showed more rapid angiogenesis than did the control groups in vivo. Our data suggested that Rgl could be a candidate for accelerating angiogenesis in skin tissue engineering, and the ability of the CC-GMS scaffold to promote angiogenesis demonstrates its potential in skin tissue engineering.
引文
[1]Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev.2011,63(4-5):300-311.
    [2]Koch S, Yao C, Grieb G, Prevel P, Noah EM, Steffens GC. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med.2006,17(8):735-741.
    [3]Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A. 2008, 14(11):1775-1785.
    [4]Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A.2003,65(4):489-497.
    [5]Elia R, Fuegy PW, VanDelden A, Firpo MA, Prestwich GD, Peattie RA. Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials.2010, 31(17):4630-4638.
    [6]Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol.1999,17(6):551-554.
    [7]Guo R, Xu S, Ma L, Huang A, Gao C. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials.2010,31(28):7308-7320.
    [8]Black AF. Berthod F. L'Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998. 12(13):1331-1340.
    [9]Hudon V, Berthod F. Black AF. Damour O, Germain L, Auger FA. A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol. 2003,148(6):1094-1104.
    [10]Rhule A, Navarro S, Smith JR, Shepherd DM.< i> Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. Journal of ethnopharmacology.2006,106(l):121-128.
    [11]Du J, Cheng B, Zhu X, Ling C. Ginsenoside Rgl, a novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects. J Immunol.2011,187(2):942-950.
    [12]Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X. Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol. 2007, 7(3):313-320.
    [13]Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rgl and Rbl and its mechanism of action. Acta Pharmacol Sin.2005, 26(2):143-149.
    [14]Hong SJ, Wan JB, Zhang Y, Hu G, Lin HC, Seto SW, Kwan YW, Lin ZX, Wang YT, Lee SMY. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish in vivo. phytotherapy research. 2009, 23(5):677-686.
    [15]Chen S, Liu J, Liu X, Fu Y, Zhang M, Lin Q, Zhu J, Mai L, Shan Z, Yu X. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. Journal of ethnopharmacology. 2011, 137(1):263-270.
    [16]Ling CQ, Yong L, Zhu XY, Chen Z, Min L. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor. Gen Comp Endocr. 2005,140(3):203-209.
    [17]Liu Y, Xie M-X, Kang J, Zheng D. Studies on the interaction of total saponins of Panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy. 2003,59(12):2747-2758.
    [18]Ling C, Li Y, Zhu X, Zhang C, Li M. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor. General and comparative endocrinology. 2005,140(3):203-209.
    [19]Leung KW, Pon YL, Wong RN, Wong AS. Ginsenoside-Rgl induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and β-catenin/T-cell factor-dependent pathway in human endothelial cells. Journal of Biological Chemistry. 2006, 281(47):36280-36288.
    [20]Hong SJ, Wan JB, Zhang Y, Hu G, Lin HC, Seto SW. Kwan YW, Lin ZX, Wang YT, Lee SM. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish in vivo. Phytother Res.2009, 23(5):677-686.
    [21]Huang Y-C, Chen C-T, Chen S-C, Lai P-H, Liang H-C, Chang Y, Yu L-C. Sung H-W. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharmaceutical research.2005, 22(4):636-646.
    [22]Leung K-W, Ng H-M, Tang MK, Wong CC, Wong RN, Wong AS. Ginsenoside-Rgl mediates a hypoxia-independent upregulation of hypoxia-inducible factor-la to promote angiogenesis. Angiogenesis.2011, 14(4):515-522.
    [23]Fan T-PD, Hu S. DIFFERENTIAL EFFECTS OF GINSENOSIDES ON ENDOTHELIAL CELL BIOLOGY. Angiogenesis.2(1.
    [24]Yang N, Chen P. Tao Z, Zhou N, Gong X, Xu Z, Zhang M, Zhang D. Chen B. Tao Z. Beneficial effects of ginsenoside-Rgl on ischemia-induced angiogenesis in diabetic mice. Acta biochimica et biophysica Sinica. 2012,44(12):999-1005.
    [25]WANG R, WANG G-J, WU X-L, ZHOU F, LI Y-N. Ginsenoside Rgl attenuates structural disruption of the blood-brain barrier to protect the central nervous system in ischemia/reperfusion. Chinese Journal of Natural Medicines.2013, 11(1):30-37.
    [26]Shi A, Gu N, Liu X, Wang X, Peng Y. Ginsenoside rgl enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro. Journal of International Medical Research.2011,39(4):1306-1318.
    [27]Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E. VEGF expression in human macrophages is NF-kappa B-dependent: studies using adenoviruses expressing the endogenous NF-kappa B inhibitor I kappa B alpha and a kinase-defective form of the I kappa B kinase 2. Journal of Cell Science. 2003,116(4):665-674.
    [28]Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nature medicine.2003,9(6):669-676.
    [29]Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews.2004, 25(4):581-611.
    [30]Gerber H, McMurtrey A, Kowalski J, Yan M, Keyt B, Dixit V, Ferrara N. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998, 273(30):336-343.
    [31]Tran J, Master Z, Joanne LY, Rak J, Dumont DJ, Kerbel RS. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proceedings of the National Academy of Sciences. 2002, 99(7):4349-4354.
    [32]Gerber H-P, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bel-2 and Al in vascular endothelial cells. Journal of Biological Chemistry.1998,273(21):13313-13316.
    [33]Kim SH, Schmitt CE, Woolls MJ, Holland MB, Kim JD, Jin SW. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development. Biochem Biophys Res Commun. 2013,430(4):1212-1216.
    [34]Chan RY, Chen W-F, Dong A, Guo D, Wong M-S. Estrogen-like activity of ginsenoside Rgl derived from Panax notoginseng. Journal of Clinical Endocrinology & Metabolism.2002,87(8):3691-3695.
    [35]Leung KW, Cheng Y-K, Mak NK, Chan KK, David Fan T, Wong RN. Signaling pathway of ginsenoside-Rgl leading to nitric oxide production in endothelial cells. FEBS letters.2006,580(13):3211-3216.
    [36]Sengupta S, Toh S-A, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung H-W, Wong RN, Sasisekharan R, Fan T-PD. Modulating Angiogenesis The Yin and the Yang in Ginseng. Circulation.2004,110(10):1219-1225.
    [37]Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC. Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology.2004, 24(2):294-300.
    [38]Shi A-w, Wang X-b, Lu F-x, Zhu M-m, Kong X-q, Cao K-j. Ginsenoside Rgl promotes endothelial progenitor cell migration and proliferation. Acta Pharmacologica Sinica. 2009,30(3):299-306.
    [39]Kim YS, Jo DH, Lee H, Kim JH, Kim KW. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development. Biochem Biophys Res Commun. 2013.
    [40]Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK, Schnaper HW. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation. 1995. 91(3):755-763.
    [41]Tomita S. Muto T. Matsuzuki H, Haruyama Y, Ito A, Muto S. Haratani T. Seo A. Ayabe M, Katamoto S. Risk Factors for Frequent Work-related Burn and Cut Injuries and Low Back Pain among Commercial Kitchen Workers in Japan. Ind Health.2013.
    [42]Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell cycle. 2003,2(4):336-342.
    [1]Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Journal of Biomedical Materials Research Part A.2003,65(4):489-497.
    [2]姜育智,丁桂甫,陆树良.真皮组织微观化重建的探索性研究.中华烧伤杂志.2009,25(5):343-351.
    [3]王新刚,于玮洁,韩春茂.真皮组织微观化重建与组织工程支架三维结构关系研究进展.中华烧伤杂志.2010,26(4):292-295.
    [4]颜文龙,孙恩杰,郭海英,刘东.组织工程支架材料.上海生物医学工程.2004,25(1):51-54.
    [5]Sheu M-T, Huang J-C, Yeh G-C, Ho H-O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials.2001, 22(13):1713-1719.
    [6]Yamauchi K, Takeuchi N, Kurimoto A, Tanabe T. Films of collagen crosslinked by S-S bonds:preparation and characterization. Biomaterials.2001, 22(8):855-863.
    [7]刘伟治,刘万顺,孟祥红,贺君,刘成圣,刘晨光.天然可降解生物材料在组织工程中的应用研究进展.中国生物工程杂志.2002,22(6):54-59.
    [8]Ma L, Gao C, Mao Z. Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003,24(26):4833-4841.
    [9]Shi H, Han C, Mao Z. Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A.2008. 14(11):1775-1785.
    [10]Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition. 2001,12(1):107-124.
    [11]Haifei S, Xingang W, Shoucheng W, Zhengwei M, Chuangang Y, Chunmao H. The effect of collagen-chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure. Journal of the Mechanical Behavior of Biomedical Materials. 2014,29(114-125.
    [12]Chung JY, Kowal-Vern A, Latenser BA, Lewis RW, 2nd. Cement-related injuries: review of a series, the National Burn Repository, and the prevailing literature. J Burn Care Res. 2007,28(6):827-834.
    [13]Li P, Bai Y, Ym G. Release Performance in Vitro of nHA/PLGA Scaffolds Contained with Protein Sustained-Release PLLA Microspheres Prepared by Means of Supercritical Fluid Foaming Technology. Material Sciences. 2013,3(3).
    [14]Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug-and cell-delivery systems. Journal of Biomaterials Science, Polymer Edition. 2004, 15(6):701-726.
    [15]关林波,但卫华,曾睿,米贞健,林海,但年华,陈驰,曲健健,叶易春.明胶及其在生物医学材料中的应用.2005.
    [16]Kawaguchi H. Functional polymer microspheres. Progress in Polymer Science. 2000,25(8):1171-1210.
    [17]Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release.2005, 109(1):256-274.
    [18]徐绪国,阎天堂.明胶在缓释药物中的应用.明胶科学与技术.1996,16(4):194-194.
    [19]Bowen-Pope DF, Malpass TW, Foster DM, Ross R. Platelet-derived growth factor in vivo:levels, activity, and rate of clearance. Blood.1984, 64(2):458-469.
    [20]Ling C, Li Y, Zhu X, Zhang C, Li M. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor. General and comparative endocrinology.2005,140(3):203-209.
    [21]Chan RY, Chen W-F, Dong A, Guo D, Wong M-S. Estrogen-like activity of ginsenoside Rgl derived from Panax notoginseng. Journal of Clinical Endocrinology & Metabolism.2002,87(8):3691-3695.
    [22]Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK, Schnaper HW. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation.1995, 91(3):755-763.
    [23]Yang N, Chen P, Tao Z, Zhou N, Gong X, Xu Z, Zhang M, Zhang D, Chen B, Tao Z. Beneficial effects of ginsenoside-Rgl on ischemia-induced angiogenesis in diabetic mice. Acta biochimica et biophysica Sinica.2012,44(12):999-1005.
    [24]Shi A, Gu N, Liu X, Wang X, Peng Y. Ginsenoside rgl enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro. Journal of International Medical Research.2011,39(4):1306-1318.
    [25]Dai W, Kawazoe N, Lin X, Dong J, Chen G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials. 2010,31(8):2141-2152.
    [26]El Ghalbzouri A, Commandeur S, Rietveld MH, Mulder AA, Willemze R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. Biomaterials.2009, 30(1):71-78.
    [27]Kempf M, Miyamura Y, Liu PY, Chen ACH, Nakamura H, Shimizu H. Tabata Y, Kimble RM, McMillan JR. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials.2011. 32(21):4782-4792.
    [28]施洪臣,周强,许建中.组织工程中胶原支架材料的研究进展.中华创伤骨科杂志.2006,8(10):974-976.
    [29]Lee JE, Kim SE, Kwon IC, Ahn HJ, Cho H, Lee SH, Kim HJ, Seong SC, Lee MC. Effects of a chitosan scaffold containing TGF-beta 1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Artif Organs.2004, 28(9):829-839.
    [30]Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Advanced drug delivery reviews.2011,63(4):300-311.
    [31]Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003,24(26):4833-4841.
    [32]Moutahir-Belqasmi F, Balmain N, Lieberrher M, Borzeix S, Berland S, Barthelemy M, Peduzzi J, Milet C, Lopez E. Effect of water soluble extract of nacre (Pinctada maxima) on alkaline phosphatase activity and Bcl-2 expression in primary cultured osteoblasts from neonatal rat calvaria. Journal of Materials Science:Materials in Medicine.2001,12(1):1-6.
    [33]Keskar V, Gandhi M, Gemeinhart EJ, Gemeinhart RA. Initial evaluation of vascular ingrowth into superporous hydrogels. Journal of tissue engineering and regenerative medicine.2009, 3(6):486-490.
    [34]Matsuda T, Nakayama Y. Surface microarchitectural design in biomedical applications: in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser. Journal of biomedical materials research.1996,31(2):235-242.
    [35]Solorio LD, Vieregge EL, Dhami CD, Dang PN, Alsberg E. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-β1. Journal of controlled release.2012,158(2):224-232.
    [36]Abcouwer SF. Direct Effects of PPARalpha Agonists on Retinal Inflammation and Angiogenesis May Explain How Fenofibrate Lowers Risk of Severe Proliferative Diabetic Retinopathy. Diabetes. 2013,62(1):36-38.
    [37]Willard JJ, Drexler JW, Das A, Roy S. Shilo S, Shoseyov O. Powell HM. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering. Tissue Eng Part A.2013.
    [38]Iwanaga K, Yabuta T, Kakemi M, Morimoto K, Tabata Y, Ikada Y. Usefulness of microspheres composed of gelatin with various cross-linking density. Journal of microencapsulation.2003,20(6):767-776.
    [39]Wei H-J, Yang H-H, Chen C-H, Lin W-W, Chen S-C, Lai P-H, Chang Y, Sung H-W. Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rg< sub> 1 , for intramyocardial injection in a rat model with infarcted myocardium. Journal of controlled release.2007,120(1):27-34.
    [40]Freiberg S, Zhu X. Polymer microspheres for controlled drug release. International journal of pharmaceutics.2004,282(1):1-18.
    [41]Park YJ, Lee YM, Lee JY, Seol YJ, Chung CP, Lee SJ. Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. Journal of Controlled Release.2000,67(2):385-394.
    [42]Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm.2004,282(1-2):1-18.
    [43]Popovich DG, Kitts DD. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Archives of biochemistry and biophysics.2002,406(1):1-8.
    [44]Tongay S, Dag S, Durgun E, Senger R, Ciraci S. Atomic and electronic structure of carbon strings. Journal of Physics:Condensed Matter. 2005, 17(25):3823-3837.
    [1]Bottcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns.2010,36(4):450-460.
    [2]O'Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981, 1(8211):75-78.
    [3]Bottcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns. 2010,36(4):450-460.
    [4]Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering—< i> In vivo and< i> in vitro applications. Advanced drug delivery reviews. 2011,63(4):352-366.
    [5]Shalumon K, Sathish D, Nair S, Chennazhi K, Tamura H, Jayakumar R. Fabrication of aligned poly (lactic acid)-chitosan nanofibers by novel parallel blade collector method for skin tissue engineering. Journal of Biomedical Nanotechnology. 2012,8(3):405-416.
    [6]Young DM, Greulich KM, Weier HG Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J Burn Care Rehabil.1996,17(4):305-310.
    [7]Stern R, McPherson M, Longaker MT. Histologic study of artificial skin used in the treatment of full-thickness thermal injury. J Burn Care Rehabil. 1990, 11(1):7-13.
    [8]Moiemen NS, Vlachou E, Staiano JJ, Thawy Y, Frame JD. Reconstructive surgery with Integra dermal regeneration template:histologic study, clinical evaluation, and current practice. Plast Reconstr Surg.2006,117(7 Suppl):160S-174S.
    [9]Matsuda K, Suzuki S, Isshiki N, Yoshioka K, Wada R, Hyon SH, Ikada Y. Evaluation of a bilayer artificial skin capable of sustained release of an antibiotic. Biomaterials.1992,13(2):119-122.
    [10]Colton CK. Implantable biohybrid artificial organs. Cell transplantation.1995. 4(4):415-436.
    [11]Pieper JS, van Wachem PB, van Luyn MJA, Brouwer LA, Hafmans T. Veerkamp JH, van Kuppevelt TH. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterials.2000, 21(16):1689-1699.
    [12]Anderson CR, Ponce AM, Price RJ. Immunohistochemical identification of an extracellular matrix scaffold that microguides capillary sprouting in vivo. J Histochem Cytochem.2004, 52(8):1063-1072.
    [13]Gafni Y, Zilberman Y, Ophir Z, Abramovitch R, Jaffe M, Gazit Z, Domb A, Gazit D. Design of a filamentous polymeric scaffold for in vivo guided angiogenesis. Tissue Eng.2006,12(11):3021-3034.
    [14]Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU, Homann HH. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J Biomed Mater Res A.2004,68(1):10-18.
    [15]Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL, Pober JS. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A. 2000,97(16):9191-9196.
    [16]Nor JE, Peters MC. Christensen JB, Sutorik MM, Linn S, Khan MK. Addison CL, Mooney DJ, Polverini PJ. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest.2001,81(4):453-463.
    [17]Skovseth DK. Yamanaka T. Brandtzaeg P, Butcher EC. Haraldsen G. Vascular morphogenesis and differentiation after adoptive transfer of human endothelial cells to immunodeficient mice. Am J Pathol.2002.160(5):1629-1637.
    [18]Rickert D, Moses MA, Lendlein A, Kelch S, Franke RP. The importance of angiogenesis in the interaction between polymeric biomaterials and surrounding tissue. Clin Hemorheol Microcirc.2003,28(3):175-181.
    [19]Black AF, Berthod F, L'Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J.1998,12(13):1331-1340.
    [20]Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J.2002,16(8):797-804.
    [21]Hudon V, Berthod F, Black AF, Damour O, Germain L, Auger FA. A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol. 2003,148(6):1094-1104.
    [22]Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature.2004,428(6979):138-139.
    [23]Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant.2005,5(5):1002-1010.
    [24]Dietrich F, Lelkes PI. Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis.2006,9(3):111-125.
    [25]Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol.2004,287(3):C572-579.
    [26]Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng.2006,12(10):2875-2888.
    [27]Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng. 2003,9 Suppl 1(S5-15.
    [28]King TW, Patrick CW, Jr. Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res.2000,51(3):383-390.
    [29]Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor:implications for tissue engineering and wound healing. Artif Organs.2001,25(7):558-565.
    [30]Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J.2003,17(15):2260-2262.
    [31]Steffens GC, Yao C, Prevel P. Markowicz M, Schenck P, Noah EM, Pallua N. Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng.2004,10(9-10):1502-1509.
    [32]Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials.2000,21(24):2521-2527.
    [33]Yao C, Roderfeld M, Rath T, Roeb E, Bernhagen J, Steffens G. The impact of proteinase-induced matrix degradation on the release of VEGF from heparinized collagen matrices. Biomaterials.2006,27(8):1608-1616.
    [34]Elcin AE, Elcin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng. 2006, 12(4):959-968.
    [35]Silva EA. Mooney DJ. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost.2007,5(3):590-598.
    [36]Wissink MJ, Beernink R, Scharenborg NM, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Endothelial cell seeding of (heparinized) collagen matrices:effects of bFGF pre-loading on proliferation (after low density seeding) and pro-coagulant factors. J Control Release.2000, 67(2-3):141-155.
    [37]Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release. 2000, 64(1-3):103-114.
    [38]Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery:results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999, 100(18):1865-1871.
    [39]Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003,65(4):489-497.
    [40]Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials. 2006, 27(34):5836-5844.
    [41]Fujita M, Ishihara M, Shimizu M, Obara K, Nakamura S, Kanatani Y, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T. Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen. 2007,15(1):58-65.
    [42]Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med.2002,23(6):463-483.
    [43]Bob FR, Gluhovschi G, Herman D, Potencz E, Gluhovschi C, Trandafirescu V, Schiller A, Petrica L, Velciov S, Bozdog G. Histological, immunohistochemical and biological data in assessing interstitial fibrosis in patients with chronic glomerulonephritis. Acta histochemica. 2008,110(3):196-203.
    [44]郭英军,赵玉铭,王雅坤,陈洪铎.正常皮肤中单核巨噬细胞和树枝状细胞的分布规律.中国免疫学杂志.2006,22(6):565-568.
    [45]Wietecha MS, Chen L, Ranzer MJ, Anderson K, Ying C, Patel TB, DiPietro LA. Sprouty2 downregulates angiogenesis during mouse skin wound healing. American Journal of physiology-heart and circulatory physiology.2011, 300(2):H459-H467.
    [46]Ehrbar M, Zeisberger SM, Raeber GP, Hubbell JA, Schnell C, Zisch AH. The role of actively released fibrin-conjugated VEGF for< i> VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials.2008, 29(11):1720-1729.
    [47]Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E. VEGF expression in human macrophages is NF-kappaB-dependent:studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci.2003,116(Pt 4):665-674.
    [48]Liang H-C, Chen C-T, Chang Y, Huang Y-C, Chen S-C, Sung H-W. Loading of a novel angiogenic agent, ginsenoside Rgl in an acellular biological tissue for tissue regeneration. Tissue engineering.2005, 11(5-6):835-846.
    [49]Huang YC, Chen CT, Chen SC, Lai PH. Liang HC. Chang Y, Yu LC, Sung HW. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharmaceutical research.2005, 22(4):636-646.
    [50]Xingang W, Chuangang Y, Xinlei H, Yurong Z, Qiyin L, Zhanzeng F, Huafeng S, Changyou G, Han C. The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. Acta biomaterialia.2013.
    [51]Valarmathi MT, Davis JM, Yost MJ, Goodwin RL, Potts JD. A three-dimensional model of vasculogenesis. Biomaterials.2009, 30(6):1098-1112.
    [52]滕建英,郭瑞,谢菁,孙东杰,吴佳佳,庞心念,沈明强,徐少骏.血管内皮生长因子DNA质粒对真皮支架修复猪Ⅲ度烧伤创面中血管化的影响.中华医学杂志.2011,91(36):2568-2572.
    [53]Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E. VEGF expression in human macrophages is NF-кB-dependent: studies using adenoviruses expressing the endogenous NF-кB inhibitor IкBα and a kinase-defective form of the IкB kinase 2. Journal of cell science. 2003, 116(4):665-674.
    [54]Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011,13(e23.
    [55]Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nature medicine. 2003,9(6):669-676.
    [56]Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochemical pharmacology.1999, 58(11):1685-1693.
    [57]Leung KW, Pon YL, Wong RN, Wong AS. Ginsenoside-Rgl induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and β-catenin/T-cell factor-dependent pathway in human endothelial cells. Journal of Biological Chemistry.2006, 281(47):36280-36288.
    [58]Lee Y, Chung E, Youl Lee K, Hee Lee Y, Huh B, Lee SK. Ginsenoside-Rgl, one of the major active molecules from< i> Panax ginseng, is a functional ligand of glucocorticoid receptor. Molecular and cellular endocrinology.1997, 133(2):135-140.
    [59]Leung K-W, Ng H-M, Tang MK, Wong CC, Wong RN, Wong AS. Ginsenoside-Rgl mediates a hypoxia-independent upregulation of hypoxia-inducible factor-la to promote angiogenesis. Angiogenesis.2011, 14(4):515-522.
    [60]Leung KW, Cheng Y-K, Mak NK, Chan KK, David Fan T, Wong RN. Signaling pathway of ginsenoside-Rgl leading to nitric oxide production in endothelial cells. FEBS letters.2006,580(13):3211-3216.
    [61]Yin H, Liu Z, Li F, Ni M, Wang B, Qiao Y, Xu X, Zhang M, Zhang J, Lu H. Ginsenoside-Rgl enhances angiogenesis and ameliorates ventricular remodeling in a rat model of myocardial infarction. Journal of Molecular Medicine.2011, 89(4):363-375.
    [62]Leslie-Barbick JE, Moon JJ, West JL. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly (ethylene glycol) diacrylate hydrogels. Journal of Biomaterials Science, Polymer Edition.2009,20(12):1763-1779.
    [63]Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. The EMBO journal.2002, 21(8):1939-1947.
    [64]Ma PX. Biomimetic materials for tissue engineering. Advanced drug delivery reviews.2008,60(2):184-198.
    [65]Lanza R. Langer R, Vacanti JP. Principles of tissue engineering:Academic press; 2011.
    [66]Young S. Wong M. Tabata Y. Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release.2005. 109(1):256-274.
    [67]Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Advanced drug delivery reviews. 2011,63(4):300-311.
    [68]Nissen NN, Polverini P, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. The American journal of pathology. 1998, 152(6):1445.
    [69]Yan S, Zhang Q, Wang J, Liu Y, Lu S, Li M, Kaplan DL. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta biomaterialia. 2013.
    [70]Wang DI, Gotlieb AI. Fibroblast Growth Factor 2 Enhances Early Stages of< i> in Vitro Endothelial Repair by Microfilament Bundle Reorganization and Cell Elongation. Experimental and molecular pathology. 1999, 66(3):179-190.
    [1]Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nature biotechnology. 2005,23(7):821-823.
    [2]Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A, Torio-Padron N, Schramm R, Rucker M, Junker D. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue engineering. 2006, 12(8):2093-2104.
    [3]Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Advanced drug delivery reviews. 2011,63(4):300-311.
    [4]Karamysheva A. Mechanisms of angiogenesis. Biochemistry (Moscow). 2008, 73(7):751-762.
    [5]Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-oncology. 2000, 50(1-2):1-15.
    [6]Zwaginga J, Doevendans P. Stem cell - derived angiogenic/vasculogenic cells: Possible therapies for tissue repair and tissue engineering. Clinical and experimental pharmacology and physiology.2003,30(11):900-908.
    [7]姜育智,丁桂甫,陆树良.真皮组织微观化重建的探索性研究.中华烧伤杂志.2009,25(5):343-351.
    [8]王新刚,于玮洁,韩春茂,真皮组织微观化重建与组织工程支架三维结构关系研究进展.中华烧伤杂志.2010,26(4):292-295.
    [9]颜文龙,孙恩杰,郭海英,刘东.组织工程支架材料.上海生物医学工程.2004,25(1):51-54.
    [10]Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU, Homann HH. Neovascularization of poly (ether ester) block - copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy. Journal of Biomedical Materials Research Part A. 2004,68(1):10-18.
    [11]曹峥,胡蕴玉,潘纬敏,白雪东.毕龙,李丹,杨小彬.刘民.交联温度对京尼平交联胶原/壳聚糖组织工程支架的影响.中国矫形外科杂志.2009,17(3):217-220.
    [12]Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials. 2010,31(13):3736-3743.
    [13]Gafni Y, Zilberman Y, Ophir Z, Abramovitch R, Jaffe M, Gazit Z, Domb A, Gazit D. Design of a filamentous polymeric scaffold for in vivo guided angiogenesis. Tissue engineering.2006,12(11):3021-3034.
    [14]Thomas M, Augustin HG. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis.2009,12(2):125-137.
    [15]Moya ML, Cheng M-H, Huang J-J, Francis-Sedlak ME, Kao S-w, Opara EC, Brey EM. The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials.2010,31(10):2816-2826.
    [16]Morishita R, Aoki M, Hashiya N, Yamasaki K, Kurinami H, Shimizu S, Makino H, Takesya Y, Azuma J, Ogihara T. Therapeutic angiogenesis using hepatocyte growth factor (HGF). Current gene therapy.2004,4(2):199-206.
    [17]张志,姚敏,许伟石.组织工程血管化的研究进展.中华烧伤杂志.2004,20(5):318-320.
    [18]李强,何清义,许建中VEGF促进骨组织工程血管化的研究进展.第三军医大学学报.2005,27(16):1704-1707.
    [19]Pieper J, Hafmans T, Van Wachem P. Van Luyn M, Brouwer L, Veerkamp J, Van Kuppevelt T. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. Journal of biomedical materials research.2002,62(2):185-194.
    [20]Perets A, Baruch Y. Weisbuch F. Shoshany G. Neufeld G. Cohen S. Enhancing the vascularization of three - dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Journal of Biomedical Materials Research Part A.2003,65(4):489-497.
    [21]Bean AC, Tuan RS. Stem Cells and Nanotechnology in Tissue Engineering and Regenerative Medicine. Micro and Nanotechnologies in Engineering Stem Cells and Tissues. 2013:1-26.
    [22]Reed S, Wu B. Sustained Growth Factor Delivery in Tissue Engineering Applications. Annals of biomedical engineering. 2013:1-9.
    [23]Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002, 295(5557):1009-1014.
    [24]Gu F, Amsden B, Neufeld R. Sustained delivery of vascular endothelial growth factor with alginate beads. Journal of controlled release. 2004, 96(3):463-472.
    [25]Moya ML, Garfinkel MR, Liu X, Lucas S, Opara EC, Greisler HP, Brey EM. Fibroblast growth factor-1 (FGF-1) loaded microbeads enhance local capillary neovascularization. Journal of Surgical Research. 2010,160(2):208-212.
    [26]Moya ML, Lucas S, Francis-Sedlak M, Liu X, Garfinkel MR, Huang J-J, Cheng M-H, Opara EC, Brey EM. Sustained delivery of FGF-1 increases vascular density in comparison to bolus administration. Microvascular research. 2009, 78(2):142-147.
    [27]Rophael JA, Craft RO, Palmer JA, Hussey AJ, Thomas GP, Morrison WA, Penington AJ, Mitchell GM. Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. The American journal of pathology.2007, 171(6):2048-2057.
    [28]Sun G, Shen Y-I, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials.2011,32(1):95-106.
    [29]Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nature biotechnology.2001,19(11):1029-1034.
    [30]Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly (ethylene glycol) hydrogels. Acta biomaterialia.2011. 7(1):133-143.
    [31]Graziano S, Marchio S, Bussolino F, Arese M. A peptide from the extracellular region of the synaptic protein a Neurexin stimulates angiogenesis and the vascular specific tyrosine kinase Tie2. Biochemical and biophysical research communications.2013.
    [32]Banfi A, von Degenfeld G, Gianni-Barrera R, Reginato S, Merchant MJ, McDonald DM, Blau HM. Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. The FASEB Journal.2012, 26(6):2486-2497.
    [33]Lei Y, Haider HK, Shujia J, Sim ES. Therapeutic angiogenesis. Basic research in cardiology.2004, 99(2):121-132.
    [34]Mcllhenny S, Zhang P, Tulenko T, Comeau J, Fernandez S, Policha A, Ferroni M, Faul E, Bagameri G, Shapiro I. eNOS transfection of adipose - derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering. Journal of tissue engineering and regenerative medicine.2013.
    [35]Jung S, Kleinheinz J. Angiogenesis—The Key to Regeneration. 2013.
    [36]Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes & development.2008,22(10):1276-1312.
    [37]Thurston G. Complementary actions of VEGF and Angiopoietin - 1 on blood vessel growth and leakage*. Journal of anatomy.2002.200(6):575-580.
    [38]Pola R. Ling LE, Silver M, Corbley MJ. Kearney M, Pepinsky RB. Shapiro R. Taylor FR. Baker DP. Asahara T. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nature medicine. 2001,7(6):706-711.
    [39]Dery M-AC, Michaud MD, Richard DE. Hypoxia-inducible factor 1:regulation by hypoxic and non-hypoxic activators. The international journal of biochemistry & cell biology.2005,37(3):535-540.
    [40]Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van der Bent C, Papapoulos SE, Lowik CW. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002,143(4):1545-1553.
    [41]Sahota PS, Burn JL, Heaton M, Freedlander E, Suvarna SK, Brown NJ, Mac Neil S. Development of a reconstructed human skin model for angiogenesis. Wound repair and regeneration.2003, 11(4):275-284.
    [42]Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin H, Stark G, Kneser U. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue engineering.2004,10(9-10):1536-1547.
    [43]Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science.1997,275(5302):964-966.
    [44]Hur J, Yoon C-H, Kim H-S, Choi J-H, Kang H-J, Hwang K-K, Oh B-H, Lee M-M, Park Y-B. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, thrombosis, and vascular biology.2004,24(2):288-293.
    [45]Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis:therapeutic implications. Seminars in oncology: Elsevier; 2002. p.10-14.
    [46]Simcock JW, Penington AJ, Morrison WA, Thompson EW, Mitchell GM. Endothelial precursor cells home to a vascularized tissue engineering chamber by application of the angiogenic chemokine CXCL12. Tissue Engineering Part A. 2008,15(3):655-664.
    [47]Kelm JM, Lorber V, Snedeker JG. Schmidt D, Broggini-Tenzer A, Weisstanner M, Odermatt B, Mol A, Ziind G, Hoerstrup SP. A novel concept for scaffold-free vessel tissue engineering:self-assembly of microtissue building blocks. Journal of biotechnology.2010,148(1):46-55.
    [48]Neumann T, Nicholson BS, Sanders JE. Tissue engineering of perfused microvessels. Microvascular research.2003,66(1):59-67.
    [49]李彬,洪浪,尹秋林.组织工程血管支架材料的评价.Journal of ClinicalRehabilitative Tissue Engineering Research.2010,14(21).
    [50]Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials.2012, 33(2):524-534.
    [51]赵亮,徐艳丽,邱慧,李敏,陈雨晴.蛛丝蛋白双层小直径血管支架的制备及其血液相容性体外实验Chinese Journal of Reparative and Reconstructive Surgery.2013,27(7):800.
    [52]Zhang H. Jia X, Han F, Zhao J, Zhao Y, Fan Y. Yuan X. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials.2013.
    [53]张大春.电纺构建pNSR16/Gt-PU双层小直径血管支架及性能的初步研究:福建师范大学;2012.
    [54]Mian R, Morrison WA, Hurley JV. Penington AJ, Romeo R, Tanaka Y, Knight KR. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue engineering. 2000.6(6):595-603.
    [55]Tanaka Y, Sung K-C. Tsutsumi A. Ohba S, Ueda K. Morrison WA. Tissue engineering skin flaps:which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plastic and reconstructive surgery.2003,112(6):1636-1644.
    [56]Lee J-Y, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Bio fabrication.2013, 5(4):045003.
    [57]Blinder Y, Mooney D, Levenberg S. Engineering approaches for inducing blood vessel formation. Current Opinion in Chemical Engineering.2014, 3(56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700