用户名: 密码: 验证码:
鹿茸与牛脊髓中糖脂类物质的分离纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要是以吉林省长春市双阳区的梅花鹿茸经超临界二氧化碳萃取技术提取的脂溶性成分作为研究对象。研究了梅花鹿茸脂溶性物质中的糖脂类物质(脑苷脂、神经节苷脂)的提取、分离及纯化。同时,本文也研究了基于高压脉冲电场辅助溶剂技术下牛脊髓中糖脂类物质和鹿茸渣中卵磷脂的优化提取。内容主要的包括以下几个方面:
     (1)采用响应面的方法,对梅花鹿茸脂溶性物质中脑苷脂的提取进行优化。通过对液料比、静置时间和离心时间的单因素试验,建立了一个3水平的优化设计。结果表明,响应面优化设计对梅花鹿茸脂溶性物质中脑苷脂的提取是实际可行的。根据响应面优化和二次回归方程分析得到脑苷脂提取的优化条件为:液料比11,静置时间60min,离心时间8min。在此优化条件下,得到脑苷脂的提取率为2.08%。利用红外光谱的方法分析了石油醚萃余物中所含的官能团,分析结果表明,石油醚萃余物中含有羟基和酰胺基,此二者均为脑苷脂类物质的特征官能团,因此得出结论:利用石油醚从梅花鹿茸脂溶性物质中萃取所得到的萃余物为脑苷脂。DPPH自由基清除试验证明石油醚萃余得到的脑苷脂类物质具有相对较好的抗氧化活性。
     (2)对上述的石油醚萃取所得到的粗脑苷脂进行柱分离,采用氯仿和氯仿/甲醇体系作为洗脱剂,对洗脱得到的组分利用薄层层析的方法进行鉴定。红外光谱分析表明,得到的萃取物中含有脑苷脂的特征官能团羟基和酰胺基,可以证明萃取物为脑苷脂。生物活性研究表明,粗脑苷脂和纯脑苷脂均对大肠杆菌具有较强的抑制作用,它们的最小抑菌浓度分别为125μg/mL和27μg/mL,但对葡萄球菌无抑菌作用。
     (3)采用响应面的分析方法研究了鹿茸脂溶性物质中神经节苷脂的优化提取。研究了液料比,温度和时间对神经节苷脂提取的影响,并根据单因素试验结果设计了一个3水平的优化试验。通过优化设计试验分析,得到最优的提取条件为:液料比为13,提取温度为30℃,提取时间为4min,得到最大的提取率为1.25%。并结合红外光谱分析了神经节苷脂的结构。
     (4)采用响应面的方法,对牛脊髓中糖脂类物质的提取进行优化。通过对电场强度、脉冲数和液料比的单因素考察,建立了一个3水平的优化设计。结果表明,响应面优化设计对牛脊髓中糖脂类物质的提取是实际可行的。根据响应面优化和二次回归方程分析得到脑苷脂提取的优化条件为:电场强度为19.7kV/cm,脉冲数为9.1,液料比为11。在此优化条件下,得到的糖脂类物质的质量为0.318g/5g牛脊髓,与预测值0.319g/5g牛脊髓相符,这足以说明所建立的模型的模拟值是可以采纳的。同时对三种提取方法进行比较得出结论,高压脉冲电场辅助溶剂提取方法对于牛脊髓中糖脂类物质的提取效果更佳。
     (5)采用响应面的方法,对鹿茸渣中卵磷脂的提取进行优化。通过对电场强度、脉冲数和提取溶剂含水率进行了单因素考察,建立了一个3水平的优化设计。结果表明,响应面优化设计对鹿茸渣中卵磷脂的提取是实际可行的。根据响应面优化和二次回归方程分析得到鹿茸渣中卵磷脂提取的优化条件为:电场强度20kV/cm,脉冲数为2.48,液料比为8.5。在此优化条件下,得到的糖脂类物质的质量为1.592mg/g鹿茸渣,与预测值1.589mg/g鹿茸渣相符,这足以说明所建立的模型的模拟值是可以采纳的。同时,通过比较可以看出,高压脉冲电场比溶剂直接提取所得到的卵磷脂的量要多,因此得出结论高压脉冲电场辅助溶剂法提取卵磷脂的效果更佳,它不仅能耗少且作用时间短。
Sika deer antler velvet layer is a kind of precious traditional Chinese medicine,which has been widely used for treatment of some diseases. In this paper, sika deerantler velvet which is productive in Shuangyang, China, was choosen as the object ofstudy. We are extrcting the lipid soluble components by using supercritical carbondioxide extraction. Study on the separation and purification identification ofcompound lipids such as cerebroside and ganglioside. At the same time, this paperalso studies the extraction and optimization of glucolipid substance in bovine spinalcord. The research contents are as follows:
     (1) Study on the extraction of cerebroside from the lipid soluble fraction of sikadeer antler velvet layer was investigated using response surface methodology (RSM).The quantitative effects of ratio of liquid to raw material, standing time, centrifugationtime were investigated, and a three-level Box-Behnken design which were based onthe results of a single-factor test was employed to optimize the parameters forextraction of cerebroside. The experimental results were fitted with a second-orderpolynomial equation by a multiple regression analysis. By solving the regressionequation and also by analyzing the response surface contour plots, the optimalcerebroside extraction conditions were determined: ratio of liquid to raw material11,standing time60min and centrifugation time8min, and the maximum yield ofcerebroside extraction was2.08%. Residue which was separated from the lipid solublefraction of sika deer antler velvet layer was analysis the functional groups (hydroxyl,amide) by IR. The results show that the residue contains the two functional groupswhich are the characteristics of cerebroside. Thus draw the conclusion: Residue whichwas separated from the lipid soluble fraction of sika deer antler velvet layer wasproved to be cerebroside. Cerebroside has good bioactives of clearing DPPH freeradicals.
     (2) An antimicrobial cerebroside was extracted using petroleum ether from thelipid soluble fraction of sika deer antler velvet layer which was extracted bysupercritical CO2extraction technology. The effect of different parameters, such as ratio of liquid to raw material, standing time and centrifugation time on the extractionof crude cerebroside is using single-factor experiment. The crude cerebroside waspurified using silica gel column chromatography, was identified using TLC and wascharacterized by employing IR. The biological activities show cerebroside hasobvious inhibitory activities, and the pure one is rather good than the crude one. Theinhibitory activities of them were125μg/mL and27μg/mL on E.coli, respectively. Buthave no bacteriostasis against staphylococcus.
     (3) In this study the extraction of ganglioside from the lipid soluble fraction ofsika deer antler velvet layer was investigated using response surface methodology(RSM). The quantitative effects of ratio of liquid to raw material, temperature, timewere investigated, and a three-level Box-Behnken design which was based on theresults of a single-factor test was employed to optimize the parameters for extractionof ganglioside. The experimental results were fitted with a second-order polynomialequation by a multiple regression analysis. By solving the regression equation andalso by analyzing the response surface contour plots, the optimal gangliosideextraction conditions were determined: ratio of liquid to raw material13, temperature30℃and time4min, and the maximum yield of ganglioside extraction was1.25%.Residue which was separated from the lipid soluble fraction of sika deer antler velvetlayer was proved to be ganglioside by IR and TLC.
     (4) In this study the extraction of glycolipids (cerebroside and ganglioside) inbovine spinal cord was investigated using response surface methodology (RSM). Thequantitative effects of field strength, pulse numbers, ratio of liquid to raw material,and a three-level Box-Behnken design which was based on the results of asingle-factor test was employed to optimize the parameters for extraction of glycolipid.By solving the regression equation and also by analyzing the response surface contourplots, the optimal glycolipid extraction conditions were determined: field strength19.7kV/cm, pulse numbers9.1and ratio of liquid to raw material11, and the weightof glycopilid extraction was0.318g per5g bovine spinal cord. And the extraction ofglycolipid by HIPEF is better than other traditional technologies.
     (5) In this study the extraction of phosphatidylcholine (PC) in sika deer velvetantler slag was investigated using response surface methodology (RSM). Thequantitative effects of field strength, pulse numbers, moisture concent of extractionsolvent, and a three-level Box-Behnken design which was based on the results of asingle-factor test was employed to optimize the parameters for extraction of PC. By solving the regression equation and also by analyzing the response surface contourplots, the optimal PC extraction conditions were determined: field strength20kV/cm,pulse numbers2.48and moisture concent of extraction solvent8.5, and the weight ofPC extraction was1.592mg per1g sika deer velvet antler slag. And the extraction ofPC by HIPEF is better than other methods, because it’s quick and getting more PC.
引文
[1]国家药典委员会.中国药典[S].北京:化学工业出版社,2000,264-265.
    [2]何刚.鹿茸的药理作用与临床应用的研究进展[J].延边医学院学报,1992,15(3):231-234.
    [3]张经华,杨若明,张林源,等.糜鹿梅花鹿和马鹿鹿茸中微量元素的分析测定[J].微量元素与健康研究,2000,17(4):39-40.
    [4] Panthak N N, Pattanaik A K, Patra R C, et al. Mineral composition of antlers ofthree deer species reared in captivity[J].Small ruminant research,2001,42:61-65.
    [5]丁玉华,徐安宏,沈华.麋鹿茸化学成分的测定[J].特产研究,1995,1:36-37.
    [6]董万超,赵景辉,潘久如,等.梅花鹿七种产品的化学成分研究[J].1994,1:36-43.
    [7]陈丹,孙晓秋.梅花鹿茸、马鹿茸不同部位氨基酸、总磷脂、钙、磷含量的研究[J].经济动物学报,1998,2(3):31-34.
    [8]金顺丹,郑敏芝.鹿茸中氨基酸的测定[J].特产科学实验,1979,(2):5-12.
    [9]范玉林.梅花鹿鹿茸、鹿角、鹿花盘化学成分的研究[J].中草药通讯,1979,(8):3-5.
    [10]Silaev A B, Katrukha G S, Shampanova O M, et al. Amino acid and mineralcomposition of antlers and pantocrine, Sbornik nauchnykh rabotnauchno-Issledovatel’skoi laboratotii pantovogo ollenevodstva[J].1969,2:29-32.
    [11]郝林琳,刘松财,夏青娟,等.鹿茸多肽的生物学活性研究[J].吉林农业大学学报,2006,28(3):285-288.
    [12]王丰,梅子青,周秋丽,等.鹿茸多肽的分离纯化及药理活性[J].吉林大学学报(理学版),2003,41(1):111-114.
    [13]Zhang ZQ, Zhang Y, WANG BX, et al. Purication and partialcharacterization ofanti-inflammatory peptide from pilose antler of Cervus Nippon Temminck[J].Yaoxue Xuebao,1992,27(5):321-324.
    [14]楼小红.鹿茸中水溶性蛋白含量的测定[J].中国中医药科技,2003,10(1):31.
    [15]霍玉书.鹿茸神经生长因子活性及促分化作用的研究[J].中药新药与临床药理,1997,6(8):79-81.
    [16]范玉林.鹿茸化学成分研究的进展[J].中成药研究,1980,1:23-25.
    [17]Zhang ZQ, Zhang Y, Wang BX, et al. Purification and patial characteration ofanti-inflammatory peptide from pilose antler of Cervus NipponTemminck[J].Acta Pharmaceutical Sinica(药学学报),1992,27(5):321-324.
    [18]Weng Liang, Zhou Qiu-li, Ikejima Takashi, et al. A new polypeptide promotingepidermal cells and chondrocytesprolixferation from Cervus Elaphus Linnaeus [J].Acta Pharmaceutical Sinica(药学学报),2001,36(12):913-916.
    [19]张大军,高其品,李炳川,等.鹿茸中神经节甙脂的成分研究[J].长白山中医药研究与开发,1994,3(3):33-34.
    [20]Hiroshi Tsujibo, Yoshiaki Miyake, Koshi Marruyama, et al. Hypotensivecompounds isolated from alcohol extract of the unossified horn of Cervus elaphusL.var. Xanthopygus MILNE-EDWARG (Rokujo). Isolation of lysophosphatidylcholine as a hypotensive principle and structure-activity study of relatedcompounds [J]. Chem. Pharm. Bull,1987,35(2):654-659.
    [21]樊绘曾,邢蕊凝.鹿茸酸性多糖的分离和鉴定[J].中草药通讯,1979,10(5):6-9.
    [22]钟英杰,曲晓波.梅花鹿茸的化学成分及药理作用研究进展[J].长春中医学院学报,2005,(3):61.
    [23]邱芳萍,都宏霞,王志兵.梅花鹿茸多糖提纯[J].哈尔滨工业大学学报,2009,41(7):223-225.
    [24]范玉林.鹿茸质量鉴定方法研究[J].中成药研究,1986,(3):11.
    [25]罗方成,李志强,凌云.鹿茸中雌二醇和睾酮含量的测定[J].海军医高专学报,1999,21(1):18-19.
    [26]王本祥.次黄嘌呤—内源性单胺氧化酶(MAO)抑制剂样活性的研究[J].中药药理与临床,1996,12(1):9-14.
    [27]杨秀伟,白云鹏.马鹿茸化学成分的研究[J].中草药,1994,25(5):229-231.
    [28]仲崇林.鹿茸不同部位多胺含量的比较研究[J].中草药,1990,21(7):15-17.
    [29]董方言,弥虹,陈颖,等.花鹿茸及马鹿茸不同部位精脒的含量测定[J].中草药,1999,30(8):591.
    [30]范玉林.鹿茸中甾体化合物的研究[J].吉林农业大学学报,1987,9(2):69-72.
    [31]范玉林.鹿茸化学成分研究的进展[J].中成药研究,1980,(1):23-25.
    [32]金顺丹,卞祖福,郑敏芝.鹿茸有效成分的研究(第一报)-脂溶性物质的分离鉴定及其激素样物质的药理作用[J].24-28.
    [33]段传凤,王金和.梅花鹿茸磷脂和脂肪酸组成研究[J].特产研究,1990,(3):48-50.
    [34]杨秀伟,白云鹏.马鹿茸化学成分的研究[J].中草药,1994,25(5):229-231.
    [35]Hattori M,Yang X W,Kaneko S, et al. Constituents of the pilose antler of CervusNippon var. mantchuicus [J]. Shoyalaugaku Zasshi,1989,43(2):173-176.
    [36]Sliaev A B, Razmakhnin V E."Amino acid and lipid composition of reindeerantlers"[J]. Vestnick Moskovskogo Uneversiteta,1978, Seriya16, Biologiya3:68-71.
    [37]Ivankina N F, Isay S V, Busarova N G, et al. Prostaglandin-like activity, fatty acidandphospholipids composition of sika deer (Cervus Nippon) antlers at differentgrowth stages [J]. Biochemistry and Molecular Biology,1993,1(106):159-162.
    [38]高越,尹一子,李子健,等.鹿茸中神经节苷脂的成分研究[J].吉林医学,2004,25(12):37-38.
    [39]Y Kim, D Lim, S Shin, et al. Biochemical studies on antler (cervus Nippontaiouanus)(Ⅴ) A study of glycopilids and phospholipids of antler velvet layerand pantocrin [J]. Korean Biochemical,1977,10(3):153-164.
    [40]Thudichum J L W. Reports of the Medical Officer of Privy Council and LocalGovernment Board [J]. N serial No. VIII,1876:117.
    [41]Runuana K, Martin C. Phases and phase transitions of the sphingolipids [J].Biochimica ET Biophysica Acta, l995,1255:213-223.
    [42]华会明,裴月湖.神经鞘苷的研究概况[J].沈阳药科大学学报,2001,18(4):299-306.
    [43]桑已曙,闵知大.脑苷脂类化合物研究进展[J].中国生化药物杂志,2000,21(4):211-213.
    [44]Inagaki M, Nakata T, Higuchi R. Isolation and Structure of a GalactocerebrosideMolecular Species from the Starfish Culcita novaeguineae1)[J]. Chem. Pharm.Bull,2006,54:260-261.
    [45]Para Taeseon, Mansoor TA, Shinde PB, et al. New Cerebrosides from a MarineSponge Haliclona (Reniera) sp [J]. Chem Pharm Bull,2009,57:106-111.
    [46]Mansoor TA, Shinde PB, Luo X, et al. Renierosides, Cerebrosides from a MarineSponge Haliclona (Reniera) sp[J]. J Nat Prod,2007,70:1481-1486.
    [47]ShangHua Zhai, YaNan Lu, ChengQi Fan, et al. Cerebroside and β-carbolinealkaloids from the ascidian Ascidia longistriata[J]. Biochemical Systematics andEcology,2011,39,161–162.
    [48]La MP, Shao JJ, Jiao J, et al. Three cerebrosides from the sea cucumberCucumaria frondosa [J]. Chinese Journal of Natural Medicines,2012,10:01050109.
    [49]Ikada Y, Inagaki M, Yamada K, et al. Isolation and Structure of aGalactocerebroside from the Sea Cucumber Bohadschia argus[J]. Chem PharmBull,2009,57:315—317.
    [50]Xin Hailiang, Hou Yinhuan, Xu Yanfeng, et al. Portulacerebroside A: NewCerebroside from Portulaca oleracea L [J]. Chinese Journal of Natural Medicines,2008,6(6):401403.
    [51]Zhang Jingyan, Pu Sheban, Qian Shihui, et al. New Cerebrosides fromAcanthopanax gracilistylus [J]. Chinese Journal of Natural Medicines2011,9(2):01050107.
    [52]Dong Pei, Jun-Xi Liu, Duo-Long Di. Cerebroside and ceramide from the pollenof Brassica napus L [J]. Fitoterapia,2010,81,838–843.
    [53]Lei Chen, Jin Jiang Wang, Hong Tao Song, et al. New cytotoxic cerebroside fromGynura divaricata [J]. Chinese Chemical Letters,2009,20:1091-1093.
    [54]Bin Zhao, Jing Ren, Zhong Yuan. Isolation of a new cerebroside fromCodonopsis lanceolata [J]. Biochemical Systematics and Ecology,2013,46:26-28.
    [55]Francesca Cateni, Jelena Zilic, Gioacchino Falsone, et al. New Cerebrosides fromEuphorbia peplis L.: Antimicrobial Activity Evaluation [J]. Bioorganic&Medicinal Chemistry Letters,2003,13:4345–4350.
    [56]J.H. Chen, G.Y. Cui, J.Y. Liu, et al. Pinelloside, an antimicrobial cerebroside fromPinellia ternate [J]. Phytochemistry,2003,64:903–906.
    [57]Natori, T., Morita, M., Kohji, A., et al. Agelasphins. Novel antitumor andimmunostimulatory cerebrosides from the marine sponge Agelas mauritianus [J].Tetrahedron.,1994,50:2771–2784.
    [58]Jin, W.Z., Rinehart, K.L., Jares-Erijman, E.A. Ophidiacerebrosides: cytotoxicglycosphingolipids containing a novel sphingosine from a sea star [J]. J. Org.Chem.,1994,59:144-147.
    [59]Li, H.Y., Matsunaga, S., Fusetani, N. Halicylindrosides. Antifungal and cytotoxiccerebrosides from the marine sponge Halichondria cylindrata [J]. Tetrahedron.,1995,51:273-2280.
    [60]Chen, L., Wang, J.J., Song, H.T., et al. New cytotoxic cerebroside from Gynuradivaricata [J]. Chinese Chem. Lett.,2009,20:1091-1093.
    [61]Francesca Cateni, Jelena Zilic, Marina Zacchigna, et al. Cerebrosides withantiproliferative activity from Euphorbia peplis L [J]. Fitoterapia,2010,81:97–103.
    [62]F. Cateni, J. Zilic, G. Falsone, et al. Preliminary biological assays on cerebrosidemixture from Euphorbia nicaeensis All [J]. Isolation and structure determinationof fve glucocereb Il Farmaco,2003,58:809-817.
    [63]HaiYan Zhang, Joonseok Oh, Tae-Su Jang, et al. Glycolipids from the aerial partsof Orostachys japonicus with fatty acid synthase inhibitory and cytotoxicactivities [J]. Food Chemistry,2012,131:1097–1103.
    [64]刘晓军,吴梧桐.脑昔脂的制备及其抗溃疡活性研究[J].药物生物技术,1995,2(3):19-23.
    [65]张蓓,薛长湖,周鑫,等.海参和海星脑苷脂对大鼠急性肝损伤影响的比较研究[J].营养学报,2011,33(1):19-23.
    [66]高壮,周鑫,胡晓倩,等.海参脑苷脂及其长链碱基对肥胖小鼠脂代谢和糖代谢的影响[J].浙江大学学报(医学版),2012,41(1):60-64.
    [67]Xuesong Chen, Yu-Lin Wu, Dihua Chen. Structure determination and synthesis ofa new cerebroside isolated from the traditional Chinese medicine Typhoniumgiganteum Engl [J]. Tetrahedron Letters,2002,43:3529-3532.
    [68]Lei Chen, Houquan Li, Hongtao Song. A new cerebroside from Gynura divaricata[J]. Fitoterapia,2009,80:517-520.
    [69]BaiRen Zhu, SheBan Pu, Kelvin D.G. Wang. Chemical constituents of the aerialpart of Gynura segetum [J]. Biochemical Systematics and Ecology,2013,46:4-6.
    [70]韩雪,汪勇,胡长鹰,等.大豆卵磷脂中脑苷脂类物质的分离纯化研究[J].中国粮油学报,2011,26(3):11-15.
    [71]Assunta Napolitano,Angelyne Benavides,Cosimo Pizza,et al. Qualitative on-lineprofiling of ceramides and cerebrosides by high performance liquidchromatography coupled with electrospray ionization ion trap tandem massspectrometry: The case of Dracontium loretense [J]. Journal of Pharmaceuticaland Biomedical Analysis,2011,55:23-30.
    [72]Santiago Figueroa-Perez, Richard R. Schmidt. Total synthesis of a-galactosylcerebroside [J]. Carbohydrate Research,2000,328:95-102.
    [73]Emmanuel Jean Teinkela Mbosso, Jules Clément Assob Nguedia, Franck Meyer,et al. Ceramide, cerebroside and triterpenoid saponin from the bark of aerial rootsof Ficus elastica (Moraceae)[J]. Phytochemistry,2012,83:95-103.
    [74]丁宁.海洋鞘糖脂clarhamnoside的全合成及系列KRN7000类似物的合成研究[D].青岛:中国海洋大学医药学院,2006.
    [75]陈雪松,陈迪华,刘珂.脑甙类化合物的研究概况[J].天然产物研究与开发,2001,13(2):63-6.
    [76]Satoshi KAWATAKE, Kazufumi NAKAMURA, Masanori INAGAKI, et al.Isolation and Structure Determination of Six Glucocerebrosides from the StarfishLuidia maculate [J]. Chem. Pharm. Bull.2002,50(8):1091-1096.
    [77]Koji YAMADA, Kaori SASAKI, Yasuo HARADA, et al. Constituents ofHolothuroidea,12.1) Isolation and Structure of Glucocerebrosides from the SeaCucumber Holothuria pervicax [J]. Chem. Pharm. Bull.2002.50(11):1467-1470.
    [78]VukelióZ, Kalanj-BognerS, FroeschM, et al. Human glio-sarcoma-associatedganglioside composition is complex and distinctive as evidenced byhigh-performance mass spectro-metric determination and structuralcharacterization [J]. Glyco-biology. ZamfirAD,2007,17:504-515.
    [79]高翔,战国利,胡家庆,等.一种生产以神经节苷脂为主的糖脂类物质的方法:中国,CN1535974A[P].2004.
    [80]吴浩青,冯薇荪,吴文辉,等.能维护生理活性的从动物组织中提取神经节苷脂的方法:中国,CN101003553A[P].2007.
    [81]梅镇彤,韩永根,孙立群.一种汗神经节苷脂位置的糖脂类物质的生产方法:中国,C07H15/04[P].1996.
    [82]Nagai Y. Functional roles of gangliosides in bio-signaling [J]. Behav Brain Res,1995,66(1/2):99.
    [83]杨志雄,杨仕光.高血压脑出血术后应用神经节苷脂的临床疗效分析[J].中国实用医药,2011,6(8):31-33.
    [84]瞿剑峰,乔叶红,黄杰,等.单唾液酸四己糖神经节苷脂治疗急性脑出血[J].神经病学与神经康复学杂,2012,9(3):118-120.
    [85]刘晓祥,杜忠胜,张原.神经节苷脂治疗脑出血[J].中国临床医生,2008,36(9):673-675.
    [86]张敏.单唾液酸四己糖神经节苷脂对脑出血后神经功能恢复疗效观察[J].蚌埠医学院学报,2012,37(7):840-841.
    [87]刘子良.神经节苷脂对急性脑出血的疗效观察[J].中国实用神经疾病杂志,2012,15(12):60-61.
    [88]胡伟,赵聪敏,黄绍平.神经节营脂对新生鼠缺氧缺血性脑损伤的保护作用[J].中国儿童保健杂志,2005,13(2):131-133.
    [89]张桂林,傅万海.神经节苷脂治疗新生大鼠缺血缺氧性脑损伤的研究[J].中国当代儿科杂志,2001,3(5):522-524.
    [90]李建军,孙琦,曹辉,等.神经节苷脂对大鼠脑缺血再灌注损伤的脑保护作用[J].临床神经病学杂志,2006,19(2):124-126.
    [91]杜江,王勇,王运杰.神经节苷脂对脑缺血再灌注大鼠海马CREB表达的影响[J].解剖科学进展,2014,20(1):65-67,72.
    [92]张姿英,梁志强,陈尚勤,等.神经节苷脂对早产儿脑损伤神经行为的影响[J].中国儿童保健杂志,2008,16(2):209-211.
    [93]张勇.神经节苷酯治疗新生儿缺氧缺血性脑病的临床分析[J].中国继续医学教育,2013,5(4):30-31.
    [94]耿家贵,张新萍,秦丽晨.神经节昔脂治疗帕金森病的疗效观察.中风与神经疾病杂志,2005,22(5):440-441.
    [95]张京兰.神经节普脂治疗血管性帕金森综合征的临床疗效观察[J].实用心脑肺血管病杂志,2013,21(10):67-68.
    [96]刘红钊.单唾液酸四己糖神经节苷脂在急性脊髓炎中的应用效果分析[J].中国社区医师,2013,15(5):164.
    [97]赵劲民,苏伟,丁晓飞,等.神经节苷脂促进周围神经再生的实验[J].中国临床康复,2005,9(37):75-77.
    [98]Kunnemann J, Dietzmann K, Heinrich P. Regeneration of the sciatic nerve in therat modified by neurotrophic factors [J]. Zentraible Neurochir,1991,52(3):119.
    [99]Sobeski JK, Kerns JM, Safanda JF, et al. Function and structural effect of GM1ganglioside treatment on peripheral nerve graft in the rat [J]. Macrosurgery,2001,21(3):108.
    [100]王华,李德川.神经节苷脂-3(GM3)与膀胱癌的相关性研究进展[J].中国肿瘤,2012,21(11):836-839.
    [101]FurukawaK, HamamuraK, AixinjueluoW, et al. Biosignalsmodulated by tumorassociated carbohydrate antigens: novel targets for cancer therapy [J]. AnnN YAcad Sci,2006,1086:185-198.
    [102]何陈云,张羽,何爱琴.神经节苷脂对紫杉醇铂类治疗宫颈癌卵巢癌所致神经毒性的预防作用[J].交通医学,2012,26(6):652-653.
    [103]Folch J, Lees M, Stanley G.H. A simple method for the isolation and purificationof total lipids from animal tissues [J]. Biol.Chem,1957,226:297-302.
    [104]黄如彬,潘颖,王泽生,等.猪脑中提取高纯度神经节苷脂[J].生物化学与生物物理进展,1994,21(5):444-447.
    [105]高剑峰,王会文,冯万祥.猪脑组织总神经节昔脂提取纯化工艺的研究[J].氮甚酸和生物资源,1996,18(4):5-8.
    [106]张新波,崔肇春,朱正美.总神经节昔脂的简便纯化方法[J].生物化学与生物物理进展,1990,17(3):243-244.
    [107]Gil-Ja JHON, Sun-Young PARK, So-Yeop HAN, et al. Studies of the ChemicalStructure of Gangliosides in Deer Antler, Cervus Nippon [J]. Chem. Pharm. Bull.1999,47(1):123-127.
    [108]Kisa F, Yamada K, Miyamoto T, et al. Constituents of Holothuroidea,17.Isolation and structure of biologicallyactive monosialofgangliosides from the seacucumber Cucumaria echinata [J]. Chem Pharm Bull,2006,54(7):982.
    [109]Svetlana M. Polyakova, ladimir N. Belov, Sergey F. Yan, et al. New GM1ganglioside Derivatives for Selective Single and Double Labelling of the aturalGlycosphingolipid Skeleton [J]. Eur.J.Org. Chew.2009,30:5162-5177.
    [110]S rensen LK. A liquid chromatography/tandem mass spectrometric approach forthe determination of gangliosides GD3and GM3in bovine milk and infantformulae [J]. Rapid Communications in Mass Spectrometry,2006,20:3625-3633.
    [111]Robert K. Yu, Yi-Tzang Tsai, Toshio Ariga, et al. Structures, biosynthesis, andfunctions of gangliosides—an overview. J Oleo Sci.2011,60(10),537-544.
    [112]王尧,杜子威.脊髓和周围神经可溶性酸性蛋白质的研究[J].生物化学杂志,1988,4(1):21-28.
    [113]赵亚朴,黄庆军,魏林.牛脊髓髓鞘碱性蛋白的提取及初步鉴定[J].中风与神经疾病杂志,2006,23(3):315-318.
    [114]许蕾,郭艳苏,刘亚玲.牛脊髓前角匀浆皮下注射损伤豚鼠脊髓运动神经元[J].基础医学与临床,2006,26(1):79-83.
    [115]任爱兵,卜晖,吴东霞,等.牛脊髓前角匀浆免疫后豚鼠血清和脑脊液氨基酸的测定[J].脑与神经疾病杂志,2007,15(5):321-324.
    [116]E.H. Eylar, Millie Thompson. Allergic encephalomyelitis: the physico-chemicalproperties of the basic protein encephalitogen from bovine spinal cord [J].Archives of Biochemistry and Biophysics,1969,129(2),468–479.
    [117]Akira Nakao, William J. Davis, Elizabeth Roboz Einstein. Basic proteins fromthe acidic extract of bovine spinal cord: I. Isolation and characterization [J].Biochimicaet Biophysica Acta (BBA)-General Subjects,1966,130(1),163-170.
    [118]K. Nishimura, T. Hazato. Isolation and Identification of an Endogenous Inhibitorof Enkephalin-Degrading Enzymes from Bovine Spinal Cord [J]. Biochemicaland Biophysical Research Communications,1993,194(2),713-719.
    [119]George A. Hashim, E.H. Eylar. Allergic encephalomyelitis: Isolation andcharacterization of encephalitogenic peptides from the basic protein of bovinespinal cord [J]. Archives of Biochemistry and Biophysics,1969,129(2),645-654.
    [120]殷涌光,刘静波,林松毅.食品无菌加工技术与设备[J].化学工业出版社,2006,(1):118.
    [121]Alexander, A.U., Volker H., and Dietrich K.. Effects of pulsed electric fields oncell membranes in real food systems [J]. Innovative Food Science&EmergingTechnologies,2000,135-149.
    [122]Quass, D.W., Palo A. Pulsed electric field processing in the food industry. Astatus report on PEF, Palo Alto, CA. Electric Power Research Institute,CR-109742,1997.
    [123]王黎明,史梓男,关志成.脉冲电场非热杀菌效果分析[J].高电压技术,2005,31(2):64-66.
    [124]Qin, U.. Food pasteurization using high-intensity pulse-electric field [J]. FoodTechnology,1995.55(12):55.
    [125]Sato, M., Clements S.. Formation of chemical species and their effects onmicroorganisms using a pulsed high-voltage discharge in water [J]. TEEETransactions on Industry Applications,1996,32(1,2):106.
    [126]励建荣,夏道宗.高压脉冲电场与脉冲强光灭菌技术的研究[J].食品研究与开发,2002,(5):71-72.
    [127]Bendicho, S., Barbosa-Canovas G.V., and Martin O.. Milk processing by highintensity pulsed electric fields [J]. Trends in Food Science&Technology,2002.13(6-7):195.
    [128]D. Gaskova, K. Sigler, B. Janderova, et al. Effect of high-voltage electric pulseson yeast cells: factors influencing the killing efficency [J]. Bioelectrochemistryand Bioenergetics,1996,39:195-202.
    [129]Humberto Vega-Mercado, Usha R. Pothakamury, Fu-Jung Chang, et al.Inactivation of Escherichia coli by combining pH, ionic strength and pulsedelectric fields hurdles [J]. Food Research International,1996,29:117-121.
    [130]Qin, B.-L., Zhang, Q. H., Barbosa-Canovas, G. V., et al. Pulsed electric fieldtreatment chamber design for liquid food pasteurization using a fmite elementmethod[J]. Transactions of the ASAE.1995,38(2):557-565.
    [131]FernandeZ-Molina, J. J., Barkstrom, E., Torstensson, P., Barbosa-Canovas, G.V.and Swanson, B. G. Shelf-life extension of raw skim milk by combining heatand pulsed electric fields[J]. Food Res Int,1999.
    [132]Calderon-Miranda, M. L. Inactivation of listeria inocua by pulsed electric fieldsand nisin. Pullman [D]. WA.Washington State University,1998.
    [133]Castro, A. J. Pulsed electrical field modification of activity and denaturation ofalkaline phosphatase [D].Food Science and Human Nutrition. Pullman, WA.Washington State University,1994.
    [134]Grahl, T. and Maerkl, H. Killing of microorganisms by pulsed electric fields [J].Applied Microbiol Biotechnol,1996,45(1/2):148-157.
    [135]Zhang, Q. H., Qiu, X. and Sharma, S. K. Recent development in pulsed electricfield processing [J]. Washington, DC. National Food Processors Association.New Technologies Yearbook,1997,31-42.
    [136]Ho, S. Y., Mittal, G. S. and Cross, J. D. Effects of high field electric pulses onthe activity of selected enZymes [J]. J Food Eng,1997,31(1):69-84.
    [137]Vega-Mercado, H., Powers, J. R., Barbosa-Canovas, G. V. et al. Plasmininactivation with pulsed electric fields [J]. J Food Sci.1995,60(5):1143-1146.
    [138]Yeom, H.W., Zhang, Q.H., Dunne, C.P.Inactivation of papain by pulsed electricfields in a continuous system [J]. Food Chemistry,1999,67:53-59.
    [139]Barsotti, L., Dumay, E., Mu, T.H., et al. Effects of high voltage electric pulseson proteinbased food constituents and structures [J]. Trends in food Science andTechnology,2001,12(3):136-144.
    [140]钟葵,孙志健,廖小军,等.高压脉冲电场对辣根过氧化物酶活性及构象的影响效果[J].中国食品学报,2005,5(1):31-36.
    [141]曾新安,陈勇.脉冲电场非热灭菌技术[M].北京,中国轻工业出版社,2005.
    [142]孙沈鲁,梁国珍,陈锦权.高压脉冲电场对多聚半乳糖醛酸酶活性及构象影响[J].河南科技大学学报,2008,29(2):83-87.
    [143]陈玉江,殷涌光,李扬,等.高压脉冲电场作用于蛋黄卵磷脂提取过程的研究[J].食品科学,2006,27(12):781-783.
    [144]Qin, B., Pothakamury, U. R., Vega, H., Martin, O., Barbosa-Cánovas, G. V. andSwanson, B. G. Food pasteuriZation using high intensity pulsed electric fields [J].Food Technol,1995,49(12):55-66.
    [145]Qin, B.-L., Zhang, Q. H., Barbosa-Canovas, G. V., Swanson, B. G. and Pedrow,P.D. Pulsed electric field treatment chamber design for liquid food pasteurizationusing a fmite element method [J]. Transactions of the ASAE,1995,38(2):557-565.
    [146]曾新安,高大维,李国基.高压电场灭菌效果研究[J].微生物学通报,1998,25(5):268-271.
    [147]Zhang, Q. H., Qiu, X. and Sharma, S. K. Recent development in pulsed electricfield processing [J]. Washington, DC. National Food Processors Association,New Technologies Yearbook,1997,31-42.
    [148]Z. Tony Jin and Q. Howard Zhang. PEF inactivation of microorganisms andpreservation of quafity of cranberry juice [J]. Jounal of Food ProcessingPreservation,1999,23:481-497.
    [149]L.Barsotti, P.Merle and J.C.Cheftel. Food processing by PEF. I: Physical aspects.II: Biological aspects [J]. Food Rev. Int.1999,15(2):163-213.
    [150]Simpson, M. V., Barbosa-Canovas, G. V. and Swanson, B. G. The Combinedinhibitory effect.
    [151]Dunn, J. E. and Pearlman, J. S. Methods and apparatus for extending theshelf-life of fluid food products [J]. Maxwell Laboratories, Inc. U. S. Patent,1987,4:695,472.
    [152]SitZmann, V. High voltage pulse techniques for food preservation. G. W.Gould.New methods for food preservation [D]. London:UK. Blackie Academicand Professional,1995,236-252.
    [153]Calderon-Miranda, M. L. Inactivation of listeria inocua by pulsed electric fieldsand nisin. Pullman [D]. WA.Washington State University,1998.
    [154]Reina, L. D., Jin, Z. T., Yousef, A. E. et al. Inactivation of Listeriamonocytogenes in milk by pulsed electric field[J]. J Food Protect,1998,61(9):1203-1206.
    [155]Mingyu Jia, Q. Howard Zhang, David B. Min.Pulsed electric field processingeffects on flavor compounds and microorganisms of orange juice[J]. FoodChemistry,1999,65:445-451.
    [156]韩玉珠,殷涌光,李凤伟,等.高压脉冲电场提取中国林蛙多糖的研究[J].食品科学,2005,26(9):337-309.
    [157]吴小辉,龚雪梅,贺苏岚,等.高压脉冲电场在食品加工及天然产物提取中的研究现状和前景展望[J].安徽农学通报,2008,14(24):24-26.
    [158]殷涌光,卢敏,丁宏伟,等.高压电脉冲提取米糠多糖的影响因素研究[J].中国粮油学报,2005,12(9):20-22.
    [159]崔彦如.桦褐孔菌有效成分的PEF技术提取提取、化学修饰和抗癌活性的研究[D].长春:吉林大学,2008.
    [160]Ganeva V, GalutZov B, Teissie J.High yield electroextraction of proteins fromyeast by a flow process [J]. Analytical Biochemistry,2003,315(1):77.
    [161]卢敏,殷涌光,刘瑜.高压电脉冲提取小麦胚谷胱苷肽的影响因素研究[J].食品科学,2005,26(8):205-207.
    [162]韩玉珠,殷涌光,丁宏伟,等.高压脉冲电场对啤酒酵母细胞溶解释放蛋白质的影响[J].吉林农业大学学报,2006,(21):24-26.
    [163]刘铮,杨瑞金,赵伟,等.高压脉冲电场破壁法提取废啤酒酵母中的蛋白质与核酸[J].食品工业科技,2007(3):85-88.
    [164]殷涌光,金哲雄,王春利,等.利用PEF从牛脾脏中快速提取食用DNA[J].食品工业科技,2007,(03):163-166.
    [165]金哲雄.高压脉冲电场常温快速提取动植物成分工艺及机理研究[D].长春:吉林大学,2007.
    [166]Knorr,D.,Geulen,M.,Grhal,T.nadSitmZnan,W. Foodpa Plication of highelecrtic field Pulses.Ternds Food Sci Technol [J].1994,5:71-75.
    [167]Fincan M, DeVito F, Dejmek P. Pulsed electric field treatment forsolid-liquidextraction of red beetroot pigment [J]. Journal of Food Engineering,2004,64(3):381.
    [168]陈梅英,龚雪梅,王文成,等.高压脉冲电场集成冷冻浓缩加工果汁初探[J].中国农学通报,2008,(4):440-444.
    [169]樊向东.利用高压脉冲电场技术提取苹果渣果胶的研究[D].长春:吉林大学,2008.
    [170]陶柳.高压脉冲电场萃取干松针中类黄酮物质的研究[D].长春:吉林大学,2008.
    [171]Kim K H, Kim K S, Choi B J, et al. Anti-bone resorption activity of deer antleraqua-acupunture, the pilose antler of Cervus korean TEMMINCK var.mantchuricus Swinhoe (Nokyong) in adjuvant-induced arthritic rats[J]. Journal ofEthnopharmacology,2005,96:497-506.
    [172]周冉.鹿茸中有效成分的提取与分离关键技术及其抗氧化活性的研究[D].天津:天津大学,2009.
    [173]Wang B X, Zhao X H, Yang X W, et al. Identification of the inhibitor formonoamine oxidase B in the extract from deer antler (Rokujo)[J]. Journal ofMedical and Pharmaceutical Society for WAKAN-YAKU,1988,5:116-122.
    [174]Sunwoo H H, Nakano T, Sim J S. Effect of water-soluble extract from antler ofwapiti (Cervus elaphus) on the growth of fibroblasts [J]. Can. J. Anim. Sci,1997,77:343-345.
    [175]Wang B X, Zhao X H, Qi S B, et al. Effects of repeated administration of deerantler (Rokujo) extract on biochemical changes related to aging insenescence-accelerated mice [J]. Chem. Pharm. Bull,1988,36:2587-2592.
    [176]陈书明,聂向庭,鹿茸醇提物抗氧化作用的实验研究[J].实验动物界科学与管理,2000,17(1):22-24.
    [177]Kang S K, Kim K S, Kim S I, et al. Immunosupperssive activity of deer antlerextracts of Cervus Korean TEMMINCK var. mantchuricus Swinhoe, on type IIcollagen-induced arthritis [J]. In Vitro Cellular&Developmental Biology-Animal,2006,42(3):100-107.
    [178]Zhang Z Q, Wang B X, Zhou H O, et al. Purification and partial characterizationof anti-inflammatory peptide from pilose antler of Cervus nippon Temminck [J].Acta Pharmaceutica Sinica,1992,27:321-324.
    [179]陈晓光,常一丁,崔志勇,等.鹿茸提取物对老年小鼠衰老指标的影响[J].中药药理与临床,1992,8(2):17-20.
    [180]陈晓光,贾越光,王本祥.鹿茸提取物对老年小鼠单胺氧化酶抑制作用的研究[J].中国中药杂志,1992,17(2):107-110.
    [181]周冉.鹿茸中有效成分的提取与分离关键技术及其抗氧化活性的研究[D].天津:天津大学,2009.
    [182]徐彩娜.卵黄高磷蛋白磷酸肽的抗炎机理研究[D].长春:吉林大学,2012.
    [183]Yin GH. Dang YL.. Optimization of extraction technology of the Lyciumbarbarum polysaccharides by Box–Behnken statistical design [J]. CarbohydratePolymers,2008,74:603-610.
    [184]Dong CH., Xiea XQ., Wanga XL., et al. Application of Box-Behnken design inoptimization for polysaccharides extraction from cultured mycelium ofCordyceps sinensis [J]. Food and bioproducts processing,2009,87:139-144.
    [185]Zhao WZ., Yu ZP., Liu JB., et al. Optimized extraction of polysaccharides fromcorn silk by pulsed electric field and response surface quadratic design [J]. Jouralof the Science of Food and Agriculture,2011,91:2201-2209.
    [186]Bersuder P, Hole M and Smith G. Antioxidants from a heated histidine-glucosemodel system. I. Investigation of the antioxitant role of histidine and isolation ofantioxidants byhigh-perfromance liquid chromatography [J]. J Am Oil Chem Soc.,1998,75:181-187.
    [187]徐志红,王金宇,李淑芬.快速测定鹿茸超临界CO2萃取物中胆固醇的含量[J].中药材,2006,29(8):800-802.
    [188]Cateni F, Zilic J, Zacchigna M, et al. Cerebrosides with antiproliferative activityfrom Euphorbia peplis L [J]. Fitoterapia,2010,81:97–103.
    [189]Ravneet K, Grewal A. Mahmood KA. The effects of ethanol administration onbrush border membrane glycolipids in rat intestine [J]. Alcohol,2010,44:515-522.
    [190]Teinkela Mbosso, E.J., Assob Nguedia, J.C., Meyer, F., et al. Ceramide,cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica(Moraceae)[J]. Phytochem,2012,83:95–103.
    [191]王海龙,孙润广,张静,等.神经节苷脂的红外、紫外光谱分析及其多聚体结构的原子力显微镜观测[J].光谱学与光谱分析,2009,4(29):1045-1049.
    [192]葛保胜,王秀道,孟磊,等.超临界二氧化碳萃取核桃油的工艺研究[J].食品工业,2003,2:44-46.
    [193]黄彪,刘雁,陈彦,等.超临界二氧化碳提取肉桂精油的研究[J].林产化学与工业,2003,23(1):59-62.
    [194]王文侠,张慧君,任健,等.超临界二氧化碳流体萃取亚麻籽油的生产工艺研究[J].食品工业科技,2009,7:232-234.
    [195]刘玉平,孙宝国,石华治,等.超临界二氧化碳萃取芫荽籽油的研究[J].中国粮油学报,2008,23(4):157-159.
    [196]张慧敏,关东胜,孙容芳,等.超临界二氧化碳法萃取杏仁油的研究[J].中国粮油学报,2001,16(1):18-21.
    [197]李莉,陈爱政,王士斌,等.超临界二氧化碳流体萃取油茶籽油及其GC/MS分析[J].广州化工,2011,39(11):49-52.
    [198]陈玉江,殷涌光,刘瑜,等.利用高压脉冲电场提取蛋黄卵磷脂的研究[J].食品科学,2007,28(10):271-274.
    [199]陈玉江,殷涌光,李扬,等.高压脉冲电场作用于蛋黄卵磷脂提取过程的研究[J].食品科学,2006,27(12):781-784.
    [200]赵景辉,王再幸,赵伟刚,等.高压脉冲电场法快速提取鹿茸提取物工艺研究[J].中国现代中药,2011,13(2):42-44.
    [201]于庆宇,殷涌光,姜旸.高电压脉冲电场法提取大豆油工艺研究[J].粮油加工,2007,72-75.
    [202]Kuldiloke J., Sc.Effect of ultrasound, Temperature and Pressure Treatments onEnzyme Activity and Quality Indicators of Fruit and Vegetabe Juices, DrDissenation,2002.
    [203]王君.超声技术在化工生产中的应用[J].当代化工,2002,31(4):187-189.
    [204](日)松浦一雄.超声波辐射工艺在酒类发酵中的应用[J].中国食品工业,1998,(10):40-42.
    [205]Mason T J, Paniwnyk L, Lorimer J P. Ultrasonics Sonochemistry,1996,3:S253-S260.
    [206]靳胜英,李久长.银耳多糖提取工艺的研究[J].山西食品工业,1995,(3):23-25.
    [207]廖建民,张瑾,沈子龙.超声波法提取海带多糖的研究[J].药物生物技术,2002,9(3):157-160.
    [208]刘强.超声波辅助提取胖大海多糖工艺[J].食品科学,2012,33:99-103.
    [209]王昌利,张振光,杨景亮,等.超声提高薯蓣皂甙得率的实验研究[J].中成药,1994,16(4):7.
    [210]马秀婷,肖志刚,孙旭,等.超声波辅助提取豆渣蛋白工艺优化[J].食品机械,2013.
    [211]杨萌萌,郭兆斌,余群力,等.超声波辅助法提取胶原蛋白工艺研究[J].甘肃农业大学学报,201348(6):121-126.
    [212]郝俊,王建中,呼晓姝.超声波辅助提取螺旋藻藻胆蛋白的工艺探讨[J].食品工业科技,2007,2(28):169-172.
    [213]Zhang Yan, Liao Xiaojun, Ni Yuanying, et al. Kinetic analysis of the degradationand its color change of cyanidin-3-glucoside exposed to pulsed electric field[J].European Food Research Technology,2007,224(5):597-603.
    [214]Deak A, Chaudhuri B, Bhattacharjee S. A kinetic study of the oxidation ofphenol, o-chlorophenol and catechol by hydrogen peroxide between298K and333K: the effect of pH, temperature and ratio of oxidant to substrate [J]. Journalof Chemical Technology and Biotechnology,1999,74(2):162-168.
    [215]Teresa Garde-Cerdan, Margaluz Arias-Gil, A. Robert Marselles-Fontanet, et al.Effects of thermal and non-thermal processing treatments on fatty acids and freeamino acids of grape juice [J]. Food Control,2007,18(5):473-479.
    [216]Li Yingqiu, Chen Qun, Liu Xiuhe, et al. Inactivation of soybean lipoxygenase insoymilk by pulsed electric fields [J]. Food Chemistry,2008,109(2):408-414.
    [217]Yin YG and He GD, A fast high-intensity pulsed electric fields (PEF)-assistedextraction of dissoluble calcium from bone [J]. Sep. Purif. Technol.2008,61:148-152.
    [218]SB/T10206-1994,卵磷脂通用技术条件[S].
    [219]张丽.超临界二氧化碳精制大豆卵磷脂[D].沈阳:东北大学,2006.
    [220]王琦.海产动物来源n-3PUFA磷脂的提取及生物活性研究[D].青岛:中国海洋大学,2008.
    [221]张馨文.鹿茸脂溶性组分的成分及抗疲劳研究[D].重庆:西南大学,2010.
    [222]张佑红,陈燕,朱雄伟等.鸡蛋黄中磷脂的提取及分析[J].食品科学,2007,28(07):373-376.
    [223]李涛,王天志.卵磷脂的研究进展[J].食品科技,2002,25(2):752-753.
    [224]谭利伟,麻丽坤,赵进,等.蛋黄卵磷脂的应用研究进展[J].中国家禽,2005,27(21):35-36.
    [225]刘静波,周玉权,刘丹,等.高压脉冲电场辅助溶剂提取蛋黄卵磷脂效果及品质保证[J].农业工程学报,2013,29(5):251-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700