用户名: 密码: 验证码:
干旱胁迫对稻谷品质性状及W_X基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是最重要的粮食作物之一,全球半数以上人口以水稻为主食。水稻又是耗水量最大的农作物,干旱胁迫严重影响水稻的产量和品质。全球气候变化增加了水旱灾害发生频率,进一步加深了干旱胁迫对水稻生产和人类粮食安全的威胁。因此,水稻抗旱性研究已成为稻作科学研究的热点之一。迄今国内外关于干旱胁迫与水稻产量的研究相对较多,而关于干旱胁迫对水稻品质的影响的研究则相对较少,尚缺乏系统性研究。本文以不同年份(2006-2008年)、不同地点(湖北武汉和海南陵水)、不同干旱胁迫强度(中度干旱:大田试验,37个供试品种;重度干旱:具移动式雨棚田间试验,18个供试品种)共6组田间实验的米质分析数据,对干旱胁迫与稻米品质性状的关系进行了系统研究,进而利用可调节土壤含水量的PVC管进行灌浆结实期干旱胁迫盆栽实验,定量分析了干旱胁迫对水稻胚乳中Wx基因表达与直链淀粉含量的动态变化。主要研究结果如下:
     1.对6组田间实验的稻谷加工品质(糙米率、精米率和整精米率)、外观品质(粒形、垩白粒率和垩白度)、蒸煮和营养品质(胶稠度、糊化温度、直链淀粉含量和蛋白质含量)的方差分析表明,不同年份、不同地点、不同干旱胁迫强度与不同品种间的互作效应都达到极显著水平。表明水分胁迫对稻米品质性状的影响存在基因型差异,同时与其他环境因子有关。
     2.干旱胁迫对水稻加工品质性状有不利影响,干旱胁迫下糙米率和精米率相对比较稳定,但整精米率显著下降。6次试验的干旱胁迫与对照(正常水分管理)处理下稻米的平均糙米率分别为77.31%-80.80%和77.30%-80.65%,精米率分别为65.17%-70.70%和65.71%-70.50%,其中5次试验的处理间差异均不显著,但2007年海南试验中度干旱胁迫处理的稻谷平均糙米率(79.31%)和精米率(67.71%)比对照糙米率(80.30%)和精米率(68.73%)下降约1%,分别达到显著和极显著水平。不同试验的干旱胁迫与对照处理下稻谷的平均整精米率分别为55.97%-63.54%和61.42%-64.14%,6次试验干旱胁迫处理的整精米率均低于对照,其中5次试验干旱胁迫处理整精米率的降低达到显著或极显著水平。
     3.干旱导致外观品质各个指标的变异性增加,其中粒形因干旱导致的变异性较小,而垩白粒率和垩白度的变异较大。6次试验的干旱胁迫与对照处理下稻谷的平均粒宽分别为2.0-2.4mm和2.2-2.4mm,差异均不显著。不同试验的干旱胁迫与对照处理下稻谷的平均粒长分别为6.0-6.5mm和6.5-6.6mm,干旱胁迫处理的粒长均低于对照,其中4次试验达到极显著水平。不同试验的干旱胁迫与对照处理下稻谷的平均长宽比分别为2.8-3.0和2.8-2.9,均未达到显著水平。6次试验的干旱胁迫与对照处理下稻米的平均垩白粒率分别为21.4%-47.3%和28.0%-50.8%,垩白度分别为3.2%-15.9%和9.9%-22.9%,处理间的差异均达到显著或极显著水平。
     4.干旱胁迫对稻米蒸煮品质和营养品质亦有一定影响。干旱胁迫下稻米直链淀粉含量降低,而蛋白质含量有所提高,重度干旱胁迫下稻米碱消值减小(糊化温度提高)和胶稠度降低。6次试验的干旱胁迫与对照处理下稻米的平均直链淀粉含量分别为16.6%-17.3%和17.2%-17.7%,干旱胁迫处理的直链淀粉含量均低于对照,其中4组实验干旱胁迫处理的直链淀粉含量的降低达到极显著水平。6次试验的干旱胁迫与对照处理下稻米的平均蛋白质含量分别为8.9%-9.9%和9.4%-10.8%,6次试验干旱胁迫处理的蛋白质含量均高于对照,其中5次试验干旱胁迫处理蛋白质含量的增加达到极显著水平。6次试验的干旱胁迫与对照处理下稻米的平均碱消值分别为6.5-6.8和6.5-6.9,中度干旱胁迫对碱消值的影响不显著,而重度干旱胁迫则极显著地降低了稻米的碱消值。2组重度干旱胁迫试验的干旱胁迫与对照处理下稻米的平均胶稠度分别为41.8-44.0mm和50.0-53.0mm,胶稠度降低均达到极显著水平。
     5.干旱胁迫对稻谷品质的影响存在基因型差异,不同品种的品质性状变化幅度存在显著差异。例如,在不同干旱胁迫处理条件下,C1027的整精米率、矮三芦的垩白度、以及PRIMAVERA的直链淀粉含量变化相对较小。
     6.胚乳中Wx基因的表达模式与直链淀粉积累模式基本一致。胚乳中Wx基因的表达量在开花后第5天显著增加,并在第10天达到最高值,然后逐渐下降,这与籽粒灌浆期直链淀粉的积累速率变化一致。灌浆期干旱胁迫处理下,胚乳中Wx基因的相对表达量减小,致使直链淀粉的合成和累积速率降低,最终导致稻米直链淀粉含量的降低。表明干旱胁迫通过改变相关基因的表达影响稻谷品质性状。
Rice is one of the most important food crops. It is the staple food for more than half of the global population. Rice is a crop with the largest water consumption and drought stress can cause severe lose in yield and adversely affect grain quality. Global climate change has increased frequency of flood and drought disasters, and drought stress has become a serious threat to rice production and human food security. Therefore, rice drought resistance study has become one of hot topics in rice science. Many researches have been done on drought stress and rice yield in China and abroad. However, there are few researches on the effects of drought stress on rice grain quality, and no systematic research has been reported up to present. Using grain quality data of a total of6sets of experiments in different years (2006-2008), different locations (Wuhan, Hubei province and Lingshui, Hainan province), different drought stress intensity (moderate drought: field trials,37varieties tested; severe drought:field tests with movable rain-out shelter,18varieties tested), systematic studies on the relationships between drought stress and rice quality traits have been made in this thesis, In addition, using PVC pipes with adjustable soil moisture content, a pot experiment with drought stress during grain filling stage was done and quantitative analysis was made on the dynamic changes of Wx gene expression and amylose content in rice endosperm. The main results were as follows:
     1. Variance analysis on6sets of different field tests on rice processing quality traits (brown rice rate, white rice rate, and whole polished rice rate), exterior appearance quality traits (grain shape, chalky rice rate and chalkiness degree), cooking and nutrition qualities (gel consistency, gelatinization temperature, amylose content and protein content) showed that there are extremely significant interaction effects between different years, different locations, different drought stress intensity and different varieties. This indicates the effect of water stress on rice quality traits has genotypic differences, and it is also related to other environmental factors.
     2. Drought stress has negative effects on rice processing quality traits. The brown rice percentage and white rice percentage are relatively stable under drought stress, but the whole polished rice rate dropped significantly. Under drought stressed and control (normal water management) treatments, the average brown rice percentages ranged from77.31%to77.31%and77.30%to80.65%respectively, and polished rice rate ranged from65.17%to70.70%and65.71%to70.50%respectively in6sets of drought stress tests. No significant difference has been found in5sets of tests. However, both brown rice rate (79.31%) and white rice rate (67.71%) under moderate drought stress were about1%lower than the brown rice rate (80.30%) and white rice rate (68.73%) of control in Hainan trial in2007, which reached significant and extremely significant levels respectively, the average whole polished rice rate ranged from55.97%to63.54%and61.42%64.14%respectively under drought stressed and control treatments, the whole polished rice rates under drought stress were lower than that of control. The differences between the treatments in5out of the6sets of experiments reached significant or extremely significant levels.
     3. Drought increased the variability of all exterior appearance traits. The variability of grain shape caused by drought is relatively small, while that of chalkiness is larger. Average grain width under the drought stressed and control treatments in6sets of tests were2.0-2.4mm and2.2-2.4mm respectively, no significant difference was detected between the treatments. Average grain length under drought stressed and control treatments were6.0-6.5mm and6.5-6.6mm. The grain length under drought stress were lower than that of control, and4out of the6trials reached extremely significant level. Average length/width ratio under drought stressed and control treatments were2.8-3.0and2.8-2.9respectively, no significant difference was detected between the treatments. Average chalky rice rate under drought stressed and control treatments were21.4%-47.3%and28.0%-50.8%respectively. And average chalkiness degree under the drought stress and control treatments were3.2%-15.9%and9.9%22.9%respectively. The differences in both chalkiness indexes reached significant or extremely significant levels.
     4. Drought stress also has an impact on rice cooking and nutrition traits. Amylose content decreased while protein content increased under drought stress. Alkali value decreased (gelatinization temperature increased) along with decreased gel consistency under severe drought stress. Average amylose content under drought stressed and control treatments were16.6%-17.3%and17.2%17.7%respectively. The average amylose contents under drought stress were lower than that of control, and4out of the6trials reached extremely significant level. Average protein content under drought stressed and control treatments were8.9%-9.9%and9.4%-10.8%. The average protein contents under drought stress were higher than that of control, and5out of the6trials reached extremely significant level. The average alkali value were6.5-6.8and6.5-6.5under drought stressed and control treatments, no significant difference was detected between moderate drought stressed and control treatments, while extremely significantly reduction in alkali value were found in2trials with severe drought stress. Average gel consistency under severe drought stressed and control treatments were41.8-44.0mm and50.0-53.0mm respectively, the reduction of gel consistency has reached extremely significant level.
     5. Genotyic difference was found in the impacts of drought stress on rice grain quality. There are significant differences among the tested varieties in their range of variation in grain quality traits. For example, relatively small changes were observed in whole polished rice rate of C1027, chalkiness degree of Aisanlu, and amylose content of PRIMAVERA under different drought stress conditions.
     6. The Wx gene expression patterns in endosperm are generally consistent to the amylose accumulation patterns. Wx gene expression in rice endosperm significantly increased in the5th day after flowering, and reached to its maximum in the10th day, and then gradually declined, which was consistent to the amylose accumulation during grain filling stage. Drought stress treatments decreased the relative expression quantity of Wx gene in endosperm and reduced the synthesis and accumulation rate of amylose, and*eventually resulted in a reduction of amylose content in rice. This indicates that drought stress affects grain quality traits via regulating the expression of related genes.
引文
1.包劲松,何平,李仕贵,夏英武,陈英,朱立煌.异地比较定位控制稻米蒸煮食用品质的数量性状基因.中国农业科学,2000,33:8-13
    2.蔡昆争,吴学祝,骆世明.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响.植物生态学报,2008,32(2):491-500
    3.蔡一霞,王维,朱智伟,等.结实期水分胁迫对不同氮肥水平下水稻产量和品质的影响.应用生态学报,2006,17(7):1201-1206
    4.蔡一霞,王维,朱智伟,等.结实期水分胁迫对水稻反义Wx基因转化系主要米质性状及米饭质地的影响.作物学报,2006,32(4):475-478
    5.蔡一霞,朱庆森,徐伟,等.结实期水分胁迫对水稻强、弱势粒主要米质性状及淀粉粘滞谱特征的影响.作物学报,2004,30(30):241-247
    6.陈新红等..结实期土壤水分与氮素营养对水稻产量与米质的影响.扬州大学学报(农业与生命科学版),2003,24(3):37-41
    7.程方民,钟连进.不同气候生态条件下稻米品质性状的变异及主要影响因子分析.中国水稻科学,2001,15(3):187-191
    8.崔徽等.水稻的水分生理与合理灌溉的研究:Ⅳ水分条件和氮素营养对水稻产量和有关生理过程的影响及其相互关系.作物学报,1964,3(3):271-282
    9.戴东.大力推广水稻“浅、蓄、晒、湿”高产节水灌溉技术.水利科技,2002,(4):19-20
    10.邓定武等.节水灌溉对杂交稻产量和品质的影响.作物研究,1990,(2):7-9
    11.董明辉,唐成.不同栽培环境对稻米品质的影响.耕作与栽培,2005,3:20-22
    12.高吉寅等.水稻等品种苗期抗旱生理指标的探讨.中国农业科学,1984,17(4):41-45
    13.高如嵩,张嵩平.稻米品质的气候和生态基础的研究.山西科技出版社,1994
    14.高世斌,冯质雷,李晚忱等.干旱胁迫下玉米根系性状和产量QTLs分析.作物学报,2005,31(6):718-722
    15.关义新等.玉米花期干旱及复水对植株补偿生长及产量的影响.作物学报,1997,23(6):740-745
    16.郭振飞等.不同耐旱性水稻幼苗对氧化胁迫的反应.植物学报,1997,39(8):748-752
    17.韩建民.抗早性不同水稻品种对渗透胁迫的反应及与渗透调节关系.河北农业大学学报,1990,13(1):17-21
    18.贺浩华等.环境条件对稻米品质的影响.江西农业学报,1997,9(4):66-72
    19.胡继超等.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报,2004,15(1):63-67
    20.胡培松,翟虎渠,万建民.中国水稻生产新特点与稻米品质改良[J].中国农业科技导报,2002,4(4):33-39
    21.黄发松等.食用稻米品质形成研究的现状与展望.中国水稻科学,1998,12(3):172-176
    22.黄文江等.旱作水稻幼穗发育期若干生理特性及节水机理的研究.作物学报,2002,28(3):411-416
    23.黄义德等.水稻地膜覆盖旱作技术研究初报.安徽农业科学,1997,25(3):208-210
    24.黄元财,贾燕,刘江,姜秀英等.水稻蛋白质和直链淀粉含量的稳定性及G×E互作与气候因子的关系.生态学杂志,2008,27(11):1920-1925
    25.黄祖六,谭学林,Tragoonrung S, Vanavichit A.稻米直链淀粉含量基因座位的标记定位.作物学报,2000,26:777-782
    26.吉志军,尤娟,王龙俊,王绍华,杜永林,张国发,王强盛,丁艳锋.不同基因型水稻稻米加工品质和外观品质的生态型差异.南京农业大学学报,2005,28(4):16-20
    27.姜孝成等.干旱对水稻根系活力与结实性状的影响.湖南师范大学自然科学学报,1998,21(3):64-68
    28.姜孝成等.开花灌浆期干旱胁迫对水陆稻细胞膜透性和产量性状的影响.中国水稻科学,1998,12(增刊):34-38
    29.姜心禄,郑家国,袁勇.水稻本田期不同生育阶段受旱对产量的影响.西南农业学报,2004,17(4):435-438
    30.金千瑜等.土壤干旱胁迫对不同水稻品种叶片卷曲的影响.中国水稻科学,2003,17(4):349-354
    31.康绍忠.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,1998,16(1):11-17
    32.寇洪萍,王伯伦,王术.肥水处理对北方粳稻碾磨品质的影响[J].沈阳农业大学学报,2003,34(2):92-94
    33.黎用朝,李小湘.影响稻米品质的遗传和环境因素研究进展[J].中国水稻科学,1998,12(SI):58-62
    34.李成荃,孙明,许克农,等.杂交粳稻品质性状的遗传研究.碾米品质与籽粒外观性状的相关和通径分析.杂交水稻,1988,3(3):32-35
    35.李成荃等.杂交粳稻品质性状的遗传研究:Ⅱ.食味及营养品质的相关和通径分析.杂交水稻,1998,10(6):32-34
    36.李德全等.抗早性不同的冬小麦品种渗透调节能力的研究.山东农业大学学报,1991,22(4):377-383
    37.李国生,王志琴,袁莉民,等.结实期土壤水分和氮素营养对水稻产量与品质的交互影响.中国水稻科学,2008,22(2):161-166
    38.李太贵等.Q酶在水稻籽粒垩白形成中作用的研究.作物学报,1997,23(3):338-344.
    39.李勇,王伯伦等.不同粳稻品种米质与形态性状关系的研究.辽宁农业科学,1999,(3):20-23
    40.梁水超等.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,320):26-32
    41.刘爱秋,梁奉军,王平荣,邓晓建.水稻Wx基因PCR-ACCI标记与稻米AC的关系及其辅助育种效果.应用与环境生物学报,2006,12:318-321
    42.刘保国等.水稻旱种的生理基础研究.西南农业大学学报,1993,15(6):477-482
    43.刘凯,张耗,张慎凤,等.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276
    44.刘宜柏,黄英金等.稻米食味品质的相关研究.江西省农业大学学报,1989,11(4):1-5
    45.卢从明等.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601-606
    46.陆定志等.植物衰老及调控.第一版.中国农业出版社,1997,150-151
    47.陆建飞等.持续土壤水分胁迫对水稻生育与产量构成的影响.江苏农学院学报,1998,19(2):43-48
    48.陆建飞等.持续土壤水分胁迫对水稻物质积累和运转的影响.江苏农业学报,1998,14(3):135-140
    49.罗良国等.我国农业可持续发展的水危机及广泛开展节水农业前景初探.节水灌溉,2000,(5):6-12
    50.罗守进等.稻类旱作研究.安徽农业科学,1997,25(4):333-337
    51.马跃芳等.灌水方式对杂交水稻衰老及生育后期一些生理活动的影响.中国水稻科学,1990,4(2):56-62
    52.茆智.节水灌溉试验.灌排工程新技术.中国地质大学出版社,1999
    53.孟雷等.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响.沈阳农业大学学报,1999,30(5):477-480
    54.孟亚利,高如嵩,张蒿午.影响稻米品质的主要气候生态因子研究.西北农业大学学报,1996,24(5):21-24
    55.孟亚利,周治国.结实期温度与稻米品质的关系.中国水稻科学,1997,11(1):51-54
    56.莫惠栋.我国稻米品质改良.中国农业科学,1993,26(4):8-14
    57.倪郁,李唯等.作物抗早机制及其指标的研究进展与现状.甘肃农业大学学报,2001,36(1):14-22
    58.潘瑞炽.水稻生理.第一版.科学技术出版社,1979,347-352
    59.彭永康等.陆稻和水稻苗期根系的比较研究.植物学通报,1989,6(1):33-36
    60.沈康荣等.水稻地膜湿润栽培研究.湖北农业科学,1997,(1):6-8
    61.沈希宏,杨仕华,谢芙贤,等.水稻品种区域试验的品种×环境互作及其与气候因子的关系.中国水稻科学,2000,14(1):31-36
    62.沈秀英等.干旱对玉米中SOD, CTA及酸性磷酸醋酶活性的影响.植物生理学通迅,1995,31(3):183-186
    63.沈振荣,张启舜.中国农业持续发展的水危机及其对策.作物杂志,1997,(6):9-12
    64.盛海君,沈其荣,周春霖.旱作水稻产量和品质的研究.南京农业大学学报,2003,26(4):13-16
    65.石春海,朱军.籼稻稻米外观品质与其它品质性状的相关性分析[J].浙江农业大学学报,1994,20(6):606-610
    66.石春海.水稻粒形与优质米育种[J].中国农学通报,1994,10(1):41-45
    67.石庆华等.水稻根系性状与地上部的相关及根系性状的遗传研究.中国农业科学,1997,30(4):61-67
    68.舒庆尧,徐光华.稻米表观直链淀粉含量研究进展.浙江农业科学,1998,10(1):47-54
    69.司徒淞等.中国水稻节水若干问题的探讨与建议.灌溉排水,2000,19(1):30-33
    70.宋凤斌,截俊英.水分胁迫对玉米叶片活性氧清除酶类活性的影响.吉林农业大学学报,1995,17(3):9-15
    71.唐登银等.农业节水的科学基础.灌溉排水,2000,19(2):1-9
    72.唐湘如,余铁桥.灌浆成熟期温度对稻米品质及有关生理生化特性的影响.湖南农学院学报,1991,17(1):1-8
    73.陶龙兴,符冠富,宋建,等.花期干旱胁迫钝感与敏感水稻保持系的生理特性.作物学报,2010,36(10):1796-1803
    74.屠曾平.水稻光合特性研究与高光效应育种.中国农业科学,1996,30(3):28-35
    75.王伯伦,于贵瑞等.不同灌溉条件下水稻品种的产量及生育特性分析.第四届全国水稻高产理论与实践研讨会论文汇编.中国农业出版社,1994,233-239
    76.王成瑗,王伯伦,张文香,等.土壤水分胁迫对水稻产量和品质的影响.作物学报,2006,32(1):131-137
    77.王成瑗,王伯伦,张文香,等.干旱胁迫时期对水稻产量及产量性状的影响.中国农学通报,2008,24(2):160-166
    78.王福荣等.旱作水稻生理特性与栽培技术研究.吉林农业大学学报,1978,(2):l-10
    79.王国忠.刘秀丽.不同类型水稻品种的籽粒灌浆生理.江苏农学院学报,1997,18(4):19-22
    80.王贺正,马均,李旭毅,等.水分胁迫对水稻结实期光合特性及叶片防御酶系统的影响.西南农业学报,2009,22(2):290-294
    81.王平荣,邓晓建,高晓玲,等.干旱对稻米品质的影响研究.中国农学通报,2004,20(6):282-284
    82.王人民,丁元树.土壤水分对早稻结实和籽粒品质的影响.浙江农业大学学报,1989,15(1):14-20
    83.王赛飞,裴光(译).日本培育出高赖氨酸含量的水稻新品种.世界农业,2000,(11):55.
    84.王守海.灌浆期气候条件对稻米糊化温度的影响.安徽农业科学,1987,(1):16-17
    85.王维,蔡一霞,蔡昆争,等.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响.作物学报,2006,32(7):972-979
    86.王秀珍等.早稻与水稻苗期的淀粉酶同工酶及其活性的研究.北京农业大学学报.,1995,11(2):135-140
    87.王秀珍等.水、陆稻苗期淀粉酶活性与抗旱性的关系.北京农业大学学报,1991,17(2):37-41
    88.王一凡,周毓晰.北方节水稻作.第一版.辽宁科学技术出版社,2000
    89.王余龙,蔡建中.水稻籽粒受容活性及其控制途径一Ⅲ.籽粒灌浆有效含水量与受容活性的关系.江苏农学院学报,1991,12(2):17-23
    90.王余龙等.水稻籽粒受容活性及其控制.Ⅳ.汕优良3不同部位籽粒的结实能力.江苏农学院学报,1993,14(2):19-24
    91.王余龙等.水稻籽粒受容活性及其控制途径一Ⅰ.籽粒含水量与受容活性的关系.江苏农学院学报,1990,11(3):25-29
    92.王远,吴玉柏.几种主要节水灌溉技术的经济效益分析.水利经济,2000,(11):36-40.
    93.文汉,聂凡.干旱对水稻抽穗后旗叶衰老和产量构成因子的影响.安徽农业大学学报,2000,27(2):135-137
    94.巫伯舜等.水稻的旱种技术.北京农业出版社,1985
    95.吴关庭,李旭晨.稻米食味的研究与改良.中国农学通报,2000,16(6):21-24
    96.吴关庭,夏英武.环境与栽培对稻米品质的影响.中国稻米,1994,(4):37-39
    97.熊双莲.水稻覆膜旱作栽培效应初步研究.湖北农业科学,2003,(5).9-12
    98.熊振民,蔡洪法主编.中国水稻.北京:中国农业科技出版社,1992,106-110
    99.徐春梅,王丹英,邵国胜,等.施氮量和栽插密度对超高产水稻中早22产量和品质的影响,中国水稻科学,2007,21(3):1-5
    100.徐国伟,王朋,唐成,等.旱种方式对水稻产量与品质的影响.作物学报,2006,32(1):112-117
    101.徐一戎.水稻优质米生产技术与研究.黑龙江朝鲜民族出版社.第一版,1993,152,105-109,99-103,336,178
    102.徐正进,陈温福.,水稻品质性状的品种间差异及其与产量关系的研究.沈阳农业大学学报,1993,24(3):217-223
    103.薛德榕(译).水稻高蛋白质含量与品质的诱变育种.国外农业科技,1976,(1):39-41
    104.严长杰,徐辰武,裔传灯,梁国华,朱立煌,顾铭洪.利用SSR标记定位水稻糊化温度的QTL.遗传学报,2001,28:1006-1011
    105.杨德光.玉米干旱活性氧伤害机制及化学调控方法的研究.中国水稻科学,2008,22(5):507-512
    106.杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-167
    107.杨建昌,王志琴,陈义芳,等.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3):1-5
    108.杨建昌,王志琴.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66
    109.杨建昌等.早种水稻结实期茎中碳同化物的运转及其生理机制.作物学报,2004,30(2):108-114
    110.杨建昌等.早种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17
    111.杨建昌等.水稻旱秧大田期需水特性与节水灌溉指标研究中国农业科学,2002,33.(2):34-42
    112.杨建昌等.水分胁迫对水稻叶片气孔频度、气孔导度及脱落酸含量的影响.作物学报,1995,21(5):532-539
    113.杨建昌等.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1):110-114
    114.杨建昌等.土壤水分对水稻籽粒增重过程的影响.江苏农学院学报,1994,15(3):9-14
    115.杨联松,白一松,许传万,等.水稻粒形与稻米品质间相关性研究进展[J].安徽农业科学,2001,29(3):312-316
    116.杨日耀.水稻种子发育过程中种子蛋白四组分的差别合成.植物生理学通讯,1991,27(4):284-285
    117.殷延勃,朱美静,马洪文,等.基因型和环境互作对宁夏稻米整精米率的影响.西北农林科技大学学报(自然科学版),2001,29(6):34-38
    118.应存山主编.中国稻种资源.北京:中国农业科技出版社,1993,530-533
    119.于立河等.粮食作物栽培学.哈尔滨:黑龙江科学技术出版社,2001,153-154
    120.原保忠等.植物补偿作用机制探讨.生态学杂志,1998,6(4):12-15
    121.张福锁主编.植物营养生态生理和遗传学北京:中国科学技术出版社,1993,2-13
    122.张国民,张玉华,宋立泉,郭旭欣.浅谈大米中的蛋白质对营养价值及食味品质的影响.黑龙江农业科学,2001,(3):38-39
    123.张坚勇,万向元,肖应辉,等.水稻品种食味品质性状稳定性分析.中国农业科学,2004,37(6):788-794
    124.张坚勇,肖应辉,万向元.水稻品种外观品质性状稳定性分析[J].作物学报,2004,30(6):548-554
    125.张立军等.渗透胁迫下玉米幼苗离体叶片膜透性变化机理的研究.沈阳农业大学学报,2002,27(3):207-210
    126.张孟希.大力发展水稻节水增产新技术.湖南水利水电,2002,(6):45-46
    127.张明炷等.非充分灌溉条件下水稻生长发育及生理机制研究.灌溉排水,1994,13(4):6-10
    128.张鹏.抑制淀粉分支酶类基因表达对稻米品质影响的研究.扬州:扬州大学,2008,41-43
    129.张平远.国外水稻旱作的最新方法.垦殖与稻作,2000,(4):45-45
    130.张矢等.水稻、陆稻地膜覆盖栽培的技术效应.黑龙江农业科学,1983,(5):27-29
    131.张旭.水稻生态育种.北京农业出版社,1991,168-199
    132.张亚洁,许德美,孙斌,等.种植方式对陆稻和水稻籽粒灌浆及垩白的影响。中国农业科学,2006,39(2):257-264
    133.张亚洁,周然,孙斌,等.种植方式对陆稻中旱3号和水稻武香粳99-8米质的影响.作物学报,2007,33(1):31-37
    134.张燕之等.不同类型稻抗旱性鉴定指标研究.沈阳农业大学学报,2002,33(2):90-93
    135.张玉屏等.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学,2001,29(1):58-59
    136.赵步洪等.不同旱种方式水稻的生长发育与产量形成特性.江苏农业学报,2003,19(4):211-217
    137.赵松林.春小麦干旱生理生态学[M].西安:陕西科学技术出版社,1996,274-298
    138.郑家国等.花后水分亏缺对水稻产量和品质的影响.中国水稻科学,2003,17(3):239-243
    139.郑王尧.作物生理学导论.第一版.北京农业大学出版社,1992,507-510
    140.中国水稻研究所.稻米品质及其理化分析.杭州中国水稻研究所,1985,40-48,5,12-16,160
    141.周广洽等.水稻结实过程中温度对稻米氨基酸的影响.湖南农业科学,1986,(5):27-30
    142.周广生等.水稻孕穗期干旱对籽粒性状的影响.华中农业大学学报,2003,22(3):219-222
    143.周利民.水稻节水灌溉机理研究.广东水利水电,2003,2:29-33
    144.周毓晰等.水稻品种在旱作时主要经济性状变化规律研究.辽宁农业科学,1986,(1):10-13
    145.朱碧岩,吴永常.结实期环境温度对稻米糊化温度的影响.西北农林大学学报,1994,10(4):23-27
    146.朱杭中,黄王生.土壤水分胁迫与水稻活性氧代谢.南京农业大学学报,1994,17(2):7-11
    147.朱庆森等.水稻各生育期不同土壤水势对产量的影响.中国农业科学,1998,27(6):15-22
    148.朱庆森等.水稻节水栽培研究论文集.第一版.中国农业出版社,1995,48-58.75
    149.朱庆森等.水稻籽粒灌浆的生长分析.作物学报,1998,14(3):182-193
    150.朱维琴等.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究.土壤通报,2003,34(1):25-28
    151.朱永义.稻谷加工与综合利用.第一版.中国轻工业出版社,1999,13,19,27-28,27
    152.朱智伟,程式华.1999.稻米品质的研究进展.世界农业,1999,(3):19-21
    153. Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard H J. QTL mapping of grain quality traits from the interspecific cross Oryza sativa xO.glaberrima. Theor Appl Genet,2004,109:630-639
    154. Asaoka M, Okuno K, Sugimoto Y, Fuwa H. Effect of environmental temperature at the millky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.). Agri. Biol. Chem, 1985, 49:373-379
    155. BatesL H, HallA E. Stomatal closure with soilde pletion not associated with changes in bulk lesf water status. Oecologia, 1981,50:62-65
    156.Blum A. Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive. Australian Journal of Agricultural Research,2005,56:1159-1168.
    157. Boojung H, Fukai S. Effects of soil water deficit at different growth stage on rice growth and yield under upland conditions.. Phenology, biomass production and yield. Field Crop Res,1996,48:47-55
    158.Bouman B A M, Peng S, Castaneda A R, et al. Yield and water useof irrigated tropical aerobic rice systems. Agric Water Manag,2005,74:87-105
    159.Boyer J S, Westgate M E. Grain yields with limited water. Journal of Experimental Botany,2004, (55):2385-2394.
    160. Boyer J S. Advance in drought tolerance in plants. Advances in Agronomy, 1996,56:187-218
    161. Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S. A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods,2007,3(1):7
    162. Chen JG, Zhu J. Genetic effects and genotypexenvironment interactions for cooking quality traits in IndicaxJaponica crosses of rice (Oryza sativa L). Euphytica,1999,109:9-15
    163. Cheng FM, Zhong LJ, Wang F, Zhang GP. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem,2005, 90(1-2):39-46
    164. Cheng, WD, Zhang GP, Zhao GP, H G Yao and H M Xu. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Res.2003,80:245-252
    165. Cooper M, Rajatasereekul S, Fukai S and Basnayake J. Rainfed lowland rice breeding strategies for Northest Thailand. I. Genotypic variation and genotypexenvironment interactions for grain yield. Field Crop Res,1999,4:131-151
    166. Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet, 2005,110:1445-1452
    167. FisherR A, MaurerR. Drought resistance in spring wheat cultivars. Grain yield response.Aust. J.Agric Rrs,1998,27:897-912
    168. Frankie J et al. Relative sensitivity of photosynthetic assimilation and translocationofl4carbontowaterStress.Plant Physiol.1979,64:852-856
    169. Gomex KA. Effect of environment on protein and amylose content of rice. In: Proeeding of the Workshop on Chemical Aspects of Rice Grain Quality,IRRI, 1979, 59-68
    170. Hall A E. Ecological Studies, Analysis and Synthesis, 1976, 19:76-83
    171. Han XZ, Hamaker BR. Amylopectin fine structure and rice starch paste breakdown. J. Crop Sci, 2001,34:279-284
    172. He P, Li S G, Qian Q, Ma Y Q, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet,1999,98:502-508
    173. Heinemann R B, Fagundes P L, Pinto E A, Penteado M V C, Lanfer-Marquez U M. Comparative study of nutrient composition of commercial brown parboiled and milled rice from Brazil, J Food Comp Anal,2005,18:287-296
    174. Hirano HY, Sano Y. Enhancement of Wx gene expression and the accumulation of amylose in response to cool temperature during seed development in rice. Plant Cell Physiol,1998,39:807-812
    175. Hiroshi Y. Biosynthesis of storage protein in developing rice seeds. Plant Physiology,1982,70:1094-1100
    176. Huber SC etal. Effect of water stress on carbon partitioning in soybean plants growninthefieldatdifferent CO2 levels.PlantPhysiol,1984,76:244-249
    177. Jiang HW, Dian WM, Wu P. Effect of temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry,2003,63:53-59
    178.JONGDEE B, FUKAI S, COOPER M. Leaf water potential and osmotic adjustmentas physiological traits to improve drought tolerance in rice Field Crops Res,2002,76:153-163.
    179. Juliano BO. Structure, chemistry and function of the rice grain and its fraction. Cereal Food World,1992,41:827-832
    180. Lanceras J C, Pantuwan G, Jongdee B, Toojinda T. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol, 2004, 135:384-399
    181. Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Research,2000,7:93-101
    182. Larkin PD, Park WD. Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol. Biol, 1992,40:719-727
    183.Legg B J, Day W, Lawtor D W, et al. The effect of drought on barley growth: models and measurements showing relative importance of leaf area and photosynthetic rate[J]. Journal of Agricultural Science,1979,92:703-716.
    184. Lilley JM, Ludiow MM. Expression of osmotic adjustment and dehydration Toleran cein diverserice lines. Field Crops Res,1996,48:185-197
    185. Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot,2010,61(13):3509-3517
    186. Matsue Y. Influence of abnormal weather in 1993 on the palatability and physicochemical characteristics of rice. Jpn J. Crop Sci,1995,64:709-713
    187. Murty KS et al. Drought Resistancein crops with emphasison rice.IRRI,1982,145-152
    188. Mushtaq R, Katiyar S, Bennett J. Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality. J. Crop Sci. Biotech.2008,11 (4):227-232
    189.Muthurajan R, Shobbar Z S, Jagadish S V K, et al. Physiological and Proteomic Responses of Rice Peduncles to Drought Stress.Molecular Biotechnology,2011, 48(2):173-182.
    190. Okagaki RJ, Wessler SR. Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics,1998,120 (4):1137-1143
    191. Ong MH, Blanshard JMV. Texture determinants in cooked, parboiled rice. I: Rice starch amylase and the fine structure of amylopectin. J. Cereal Sci,1995,21: 251-260
    192.Pieters A J, El Souki S. Effects of drought during grain filling onPSII activity in rice. Journal of plant physiology,2005,162(8):903-911
    193. QuickW P etal. The effect of water stress on photo synthetic carbon metabolism in four species grown under field conditions. Plant Celland Env,1992,15:25-35
    194. Ramesh M, Ali SZ, Bhattacharya KR. Structure of rice starch and its relation to cooked-rice texture. Carbohydr. Polym,1999,38:337-347
    195. Reddy KR, Subramanian R, Zakiuddin SA. Viscoelastic properties of rice flour pastes and their relationship to amylose content and rice quality. Cereal Chem, 1994,75:548-552
    196. RedonaED, Mackill DJ. Quantitative trait locus analysis forrice panicle and grain characteristic. Theoretical andApplied Genetics,1998,96:6-7,957-963
    197.Rie Terada, Midori Nakajima, Masayuki Isshiki, et,al.. Antisense Waxy Genes with Highly Active Promoters Effectively Suppress Waxy Gene Expression in Transgenic Rice. Plant Cell Physiol.2000,41(7):881-888
    198. Rosenthal WD et al. Water deficit effects on transpiration and leaf growth. Agron J, 1987,79:1019-1026
    199.Salekdeh G H, Siopongco J, Wade L J, et al. Proteomics analysis ofrice leaves during drought stress and recovery. Proteomics, 2002(2):1131-1145.
    200. Sano Y, Katsumata M, Okuno K. Genetic studies of speciation in cultivated rice.5.Inter-and intraspeciffic differentiation in the waxy gene expression of rice. Euphytica,1986,35:1-9
    201. Sano Y. Differential regulationg of waxy gene expression in rice endosperm. Theor Appl Genet,1984,68:467-473
    202. SASAKI T, BURR B. International rice genome sequencing project to completely sequence the rice genome. Currop in Plant Biol,2000,3(2):138-141
    203. Shi CH, Wu JG, Lou XB, Zhu J, Wu P. Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res, 2002,76:1-9.
    204. Shi CH, Yu YG. Genotypexenvironment interaction effect genotypic correlation for nutrient quality traits of indica rice (Oryza sativa L.). Indian J. Agric. Sci, 2000, 70:85-89.
    205. Shi CH,He CX, Zhu J et al. Analysis of genetic effects andgenotype environment interaction effects for apparent qualitytraits of indicarice.Chinese J Rice Sci, 1999,13(3):179-182
    206. Smith AM, Denyer K, Matin C. The synthesis of starch granule. Annu. Rev. Plant Physiol. Plant Mol. Bio, 1997,48:67-87
    207. Steward CR. Adaptation of plant to water and High Temperature Stress New York-Chichester-Brisbane-Toronto:John Wilcy and sons, 1980, 173-189
    208. Tan Y, Corke, H. Factor analysis of physicochemical properties of 63 rice varieties. J. Sci. Food Agric,2002, 82:745-752
    209. TanY F, Li J X, Yu S B, XingY Z, Xu C G, Zhang Q F. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet,1999, 99:642-648
    210. TanY F, XingY Z, Li J X, Yu S B.Genetic bases of appearancequality of rice grains in Shanyou63,an eliterice hybrid.Theor Appl Genet,2000,101:823-829
    211.Tao H, Brueck H, Dittert K, et al. Growth and yield formation for rice (Oryza sativa L.)in the water-saving ground cover rice production system(GCRPS). Field Crops Research,2006,95:1-12.
    212. Tian R, Jiang G H, Shen L H, Wang L Q, He Y Q. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol breed,2005,15:117-124
    213. Toole JC. Drought resistance in crops with emphasis onrice,IRRI,1982,195-216
    214. Turner NC etal. Osmotic adjustment of sorghumands un flower crops in responsetowaterdeicitsanditsinfluenceonthewaterpotentialatwhich stomata close. AustJ Plant Physiol,1978,5:597-608
    215. Turner NC. Drought resistance and adaptation to deficitsincropplants,In:Mussel H, Stapes R C. Stress Physiology in Crop Plants, New York:Wiley,1979,343-372
    216. TurnerNC etal, There sponse of stomata and leaf exchang etovap our pressure deficitand soil water content, I,in the mesophyllieherbaccons species Heliamthusanrnus.Oecologia,1985,65:348-355
    217. Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet,2005,110:1334-1346
    218. Wang SJ, Liu LF, Chen CK, Chen LW. Regulations of granule-bound starch synthase I gene expression in rice leaves by temperature and drought stress. Biologia Plantarum, 2006, 50(4):537-541
    219. Wopereis MCS et al. Drought-stern responses of lowland ricecultivates to soilwaterstatus. Field Crops Research, 1996, 46:21-39
    220.Yamance K, Hayakawa K, Kawasaki M. Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. Plant Physiology, 2003,160:1319-1327
    221. Yang J, Zhang J, Wang Z, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. PlantPhysiology,2001(127):315-323.
    222. Yawinder SD, Har PS, Gurdial SS. Physicochemical milling and cooking quality of rice as affected by sowing and transplanting dates. J. Sci. Food Agric, 1986, 37:881-887
    223. Yoshida S, Hara T. Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Sci. Pant Nutr,1977,23:93-107
    224. Zhou ZY, Robards K, Helliwell S, Blanchard C. Ageing of stored rice: changes in chemical and physical attributes. J. Cereal Sci, 2002, 35:65-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700