用户名: 密码: 验证码:
五龙池小流域土壤水分时空变异及其与主要影响因子的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分是土壤物理学的一个重要研究内容,也是土地持续利用、水资源规划与管理、节水农业技术研究的基础。土壤水分的监测与模拟已经成为国际前沿研究领域的热点之一。许多组织、国家都十分重视该领域的研究,特别是在干旱半干旱地区对此问题尤为重视。土壤水分的时空异质性对于地下水补给、气候研究以及天气预报等许多科学和商业活动具有重要意义,研究土壤水分的变异对于量化特定区域的生态、水文和自然地理过程也具有非常重要的意义,因此,土壤水分及其时空变异性的研究一直是水文学、土壤学研究的一个热点。在不同尺度上,影响土壤水分变异的环境因子作用不尽相同,因此,多尺度上明确土壤水分变异及其与环境因子的关系既是研究土壤水分变异的需求,也是预测土壤水分、评价环境质量、指导小流域综合治理以及优化水土资源合理利用过程中非常重要的一环。
     丹江口水库总库容为290.5亿m3,是南水北调中线工程水源地,也是我国重要的战略水资源区。丹江口库区水源区长期水土流失加剧,植被涵养水源功能下降,近年来,国家投入大量人力物力对水源区生态环境进行修复治理,取得了一定的成效,但是水土流失问题依然比较严重,植被涵养水源功能也有待进一步加强,因此研究库区内典型小流域的土壤水分时空变化及其与影响因子的关系对于水库的水质、水量安全具有重要的理论和实际意义。本文以丹江口库区典型小流域——五龙池小流域为研究对象,以12个雨后持续6天的土壤水分观测过程为基础,研究了小流域土壤水分空间变异及其与环境因子的关系,得出了每个过程各测次土壤水分变化的主控因子,以及不同干湿时段土壤水分的时空变异及其与环境因子的关系,定量分离了主控环境因子对土壤水分变异的贡献率;在不同干湿时段主控因子的基础上,分析了各因子与土壤水分的关系以及在土壤水分时间动态变化中的作用;以不同干湿时段为基础,利用指数平滑法对土壤水分进行了时序预测。取得的主要结果有:
     (1)通过对12个过程的土壤水分均值和变异系数的分析,研究了土壤水分空间变异和土壤含水量变化之间的关系。同一个监测过程内的土壤水分均值一般情况下是以两天为单位随着观测的持续进行表现出显著性差异(p<0.01)。土壤水分的空间变异基本上随着土壤含水量的降低呈现增强趋势(过程1,2,6,7,8和11),部分过程观测后期空间变异逐渐稳定(过程1,3,4和5),过程9虽然土壤含水量持续降低,但其空间变异却出现较大波动。
     (2)通过双向指示种分析法将12个过程分为三类,分别是湿润时段、适中时段和干旱时段,此处湿润、适中和干旱是相对的概念,用来表征不同时段初始含水量的不同。通过对12个过程土壤水分数据和环境因子进行冗余分析,研究每个过程内随着土壤水分变化前两个主控因子变化情况。随着土壤水分的时间动态变化,各个过程内各测次主控因子变化较大,虽然部分过程部分测次主控因子可能相同,但是它们的作用强度在不同测次之间也不一样。从单个过程主控因子的结果综合来看,在湿润时段,控制土壤水分变化的主要因子包括:坡位、地形湿度指数、土层厚度和坡形。在适中时段,土层厚度、坡位和坡形是影响土壤水分变异的主要因子。干旱时段的主控因子主要包括坡位、地形湿度指数和土层厚度。而且相对于湿润时段和适中时段,干旱时段主控因子的作用相对比较稳定。
     (3)对不同时段土壤水分的空间变异进行研究,然后通过前项选择剔除冗余环境因子,并定量分离不同主控环境因子对土壤水分变异的解释量。在湿润时段和适中时段土壤水分的空间变异随着土壤水分的降低而逐渐增强,而在干旱时段则呈现出先增强后减弱的趋势。不同时段冗余变量剔除之后,湿润时段和适中时段的主控环境因子为土层厚度和坡位,干旱时段的主控因子为土层厚度、坡位和地形湿度指数。三个不同时段,土层厚度对土壤水分变异的解释量在单个因子当中始终最大,其贡献率在三个时段分别为39.89%、35.37%以及33.44%,坡位的单独贡献率分别为21.48%、25.00%和9.15%,地形湿度指数在干旱时段的单独贡献率为3.49%。
     (4)在三个干湿时段的基础上,研究了不同主控因子水平对土壤水分的作用。在初始含水量不同的情况下各因子作用的滞后性表现不同。初始含水量越高,因子作用的滞后性越明显。在湿润时段,土层厚度的滞后性表现比较明显,坡位则没有表现出这一特性:在适中时段,土层厚度和坡位的滞后性也比较明显;在干旱时段,土层厚度、坡位以及地形湿度指数作用的滞后性表现均不明显。
     (5)通过指数平滑法对土壤水分进行时序预测。研究通过对不同干湿时段的土壤水分进行预测表明,土壤含水量越高,指数平滑法预测越精确。指数平滑法在预测土壤水分较高的湿润时段效果最好,效率系数达到了0.90,而在适中时段效率系数严重偏低,干旱时段效率系数甚至为负值。
Soil moisture is an important research content of soil physics, and is also the fundament of sustainable land use, water resources planning&management and water-saving agricultural technology. Monitoring and simulation of soil water has become a hot cutting-edge research area internationally. Many organizations and countries have attached great importance to this area, especially in arid and semi-arid regions. Variation in soil moisture is of critical importance in many scientific and operational activities, such as groundwater recharge, climate studies, and numerical weather prediction. Understanding soil moisture variability is also essential for quantifying relationships among hydrology, ecology and physiography in a given region. Therefore, the study of the spatio-temporal variability of soil moisture has been a hot spot in the fields of hydrology and soil science. Spatial patterns and temporal variability of soil moisture are influenced by different environmental factors at different scales. Characterizing its relationship to environmental factors at different scale is of critical importance for soil moisture prediction, environmental quality evaluation and other operational activities.
     As the source of water for the Middle Route Project of South-to-North Water Diversion, the Danjiangkou reservoir is also one of the important strategic water resources areas in China. Considering the serious soil-erosion problem and the vegetation degradation, studying the relationship between spatio-temporal variability of soil moisture and environmental factors in the typical small catchment is of great importance for the ecological security and ecological capacity of the Danjiangkou reservoir area. The objectives of this study is:(1) to investigate the spatial variability of soil moisture and its relationship with environmental factors;(2) to partition the variance of the soil moisture data in different wet-dry periods to the contributions of two subsets of environmental variables; and (3) to analyze the relationship of these main factors with soil moisture in different wet-dry periods. The main results are as followed:
     (1) ANOVA was applied to analyze the differences of soil moisture during each measuremt process. For all the12measurement processes, mean soil moisture shown significant difference (p<0.01) by step of two days during one measurement process. The spatial variability of soil moisture and its relation with mean soil moisture were analyzed in the Wulongchi catchment. The spatial variability of soil moisture increased with decreasing soil moisture for all of the12measurement processes. In the latter part of the measurement process1,3,4and5, the spatial variability gradually stabilized. But for measurement process9and10, their soil moisture gradually declined, but its spatial variability fluctuated.
     (2) These12measurement processes were classified into three different wet-dry periods, such as humid, moderate and dry period. Redundancy analysis was applied to determine the first two main factors on each day of the12measurement processes. The effects of environmental factors on soil moisture vary along with changes in soil moisture. Although the two main factors may be same on some of the measurement days, they were different more or less at most cases. On the whole, slope position, the topographic wetness index, soil thickness and slope shape are the main factors affecting soil moisture variability during the humid period. For the moderate periods, soil thickness and slope position and slope shape are the main factors regulating soil moisture variability. The main factors control soil moisture variability during dry periods are slope position, the topographic wetness index and soil thickness. During dry period, the main factors of the6days in each measurement period were still different from each other, but for all that they were relatively stable than that of the humid and moderate period.(3) The spatial variability of the three different periods was analyzed. Spatial variability of the humid and moderate period increased with decreasing soil moisture. But in the dry period, the soil moisture decreased during this period, however the spatial variability first increased and then decreased. The redundant environmental factors of these three different wet-dry periods were excluded using forward selection and Monte Carlo test. And then we partitioned the variance of the soil moisture in different wet-dry periods into the contributions of two subsets of environmental variables. After removing the redundant variables, the main factors for the humid and moderate period were soil thickness and slope position, but for the dry period, soil thickness, slope position and topographic wetness index were the main factors. Dyring the three wet-dry periods, soil thickness was the most important factors respectively. The relative contribution without the shared portion of soil thickness for the variability of soil moisture in different wet-dry periods were39.89%,35.37%and33.44%, respectively. The relative contribution without the shared portion of slope position for the three different wet-dry periods were21.48%,25.00%and9.15%, respectively. The relative contribution without the shared portion of topographic wetness indexin the dry period was only3.49%。
     (4) Based on the three different wet-dry periods, the effect of main factors at different level on soil moisture were analyzed. The result indicated that the lag effect of main factors' role were different due to the different initial soil moisture. The higher the initial soil moisture, the more obvious lag effect. During the humid period, lag effect of soil thickness was evident, but slope position did not have the lag effect. During the moderate period, the lag effect of soil thickness and slope position were both evident. And during dry period, all of soil thickness, slope position and topographic wetness index had no such effect.
     (5) Soil moisture of different wet-dry periods were predicted using exponential smoothing method. The results indicated that the prediction accuracy increase sharply from dry period, moderate period to humid period. For the humid period, the value of Nash-Sutcliffe efficiency for the prediction was0.90, but for the moderate it was0.26, and for the dry period, it was-0.61.
引文
1. 安慧,安钰.毛乌素沙地南缘沙柳灌丛土壤水分及水量平衡.应用生态学报,2011,22(9):2247-2252
    2. 陈怀亮,毛留喜,冯定远.遥感监测土壤水分的理论、方法及研究进展.遥感技术与应用,1999.14(2):55-65
    3. 陈怀亮,冯定远,邹春辉等.用遥感资料估算深层土壤水分的方法和模型.应用气象学报,1999,10(2):232-237
    4. 陈怀亮,冯定远,邹春晖.麦田土壤水分NOAA/AVHRR遥感监测方法研究.遥感技术与应用,1998,13(4):27-35
    5. 陈佳,史志华,李璐等.小流域土层厚度对土壤水分时空格局的影响.应用生态学报,2009,20(7):1-7
    6. 陈奇恩,张宝林.建立山西省特色的高效稳产高产旱地农业技术体系.北京:中国农业科技出版社,1994,17-20
    7. 邓英春,许永辉.土壤水分测量方法研究综述.水文,2007,27(4):20-24
    8. 傅伯杰.陕北黄土高原土地评价研究.水土保持学报,1991,5(1):1-7
    9. 傅伯杰,陈利顶,马克明.黄土丘陵小流域土地利用变化对生态环境的影响.地理学报,1999,54(3):241-246
    10.傅伯杰,王军,马克明.黄土丘陵区土地利用对土壤水分的影响.中国科学基金,1999,4:225-227
    11.傅伯杰,杨忠坚,王仰麟等.黄土丘陵坡地土壤水分空间分布数学模型.中国科学,2001,31(3):185-191
    12.高峰,王介民,孙成权等.微波遥感土壤湿度究进展.遥感技术与应用,2001,16(2):97-102
    13.龚学臣,杨立廷,牛端明.冀西北风沙半干旱区农田土壤水分动态分析.土壤侵蚀与水土保持学报,1998,4(2):88-91
    14.龚元石,李春友,李子忠.农田土壤水分测定三种方法的比较.中国农业大学学报,1997,2(3):53-58
    15.高绪科,王小彬.晋东南旱地麦田蓄水保墒耕作研究.北京:中国农业科技出版社,1994
    16.韩仕峰,李玉山,张孝中等.提高黄土高原农田土壤水分利用的主要途径.水土保持通报,1990,10(6):39-45
    17.黄明斌,康绍忠,李玉山.黄土高原沟壑区森林和草地小流域水文行为的比较研究.自然资源学报,1999,14(3):226-231
    18.侯喜禄,白岗栓,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验.水土保持学报,1995,9(3):90-95
    19.黄奕龙,陈利顶,傅伯杰等.黄土丘陵小流域地形和土地利用对土壤水分时空格局的影响.第四季研究,2003,23(3):334-342
    20.黄志刚,欧阳志云,李锋瑞等.南方丘陵区不同坡地利用方式土壤水分动态.生态学报,2009,29(6):3136-3146
    21.金龙,袁成松.农田土壤湿度的人工神经网络预测诊断系统.气象,1997,23(3):25-39
    22.金一谔,刘长盛,张义忠.利用气象卫星GMS和AVHRR资料推算地面水分含量的方法.应用气象学报,1998,9(2):197-204
    23.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988
    24.李洪建,王孟本,陈良富等.不同利用方式下土壤水分循环规律的比较研究.1996,16(2):24-28
    25.李洪文,高焕文.保护性耕地土壤水分模型.中国农业大学学报,1996,1(2):25-30
    26.李开元.黄土高原早地土壤水资源管理.水土保持通报,1995,15(6):34-38
    27.李向民,苏陕民,王胜琪.旱作苹果园深沟施肥效益分析.水土保持通报,1993,13(5):44-48
    28.李笑吟,毕华兴,刁锐民等.TRIME-TDR土壤水分测定系统的原理及其在黄土高原土壤水分检测中的应用.中国水土保持科学,2005,3(1):112-115
    29.李新平,李素俭.黄土高原早作土壤水分动态及提高水分利用率的研究.土 壤侵蚀与水土保持学报,1997,3(1):75-79
    30.李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响.生态学报,1983,3(2):91-101
    31.罗勇,陈家宙,林丽蓉等.基于土地利用和微地形的红壤丘岗区土壤水分时空变异性.2009,25(2):36-41
    32.马柱国,符淙斌,谢力等.土壤湿度和气候变化关系研究中的某些问题.地球科学进展,16(4):563-568
    33.马柱国,魏和林,符淙斌.中国东部区域土壤湿度的变化及其与气候变率的关系.气象学报,2000,58(3):278-287
    34.穆兴民,陈霁伟.黄土高原水土保持措施对土壤水分的影响.土壤侵蚀与水土保持学报,1999,5(4):39-44
    35.穆兴民,王文龙,徐学选.黄土高原沟壑区水土保持对小流域地表径流的影响.水利学报,1999,2:71-75
    36.穆兴民.试论黄土区旱地土壤水资源的地带性与非地带性.土壤学报,1999,36(2):237-244
    37.邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析.生态学报,2000,20(5):741-747
    38.邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分的空间异质性及其形成机制.应用生态学报,2001,12(5):715-720
    39.邱扬,傅伯杰,王军等.土壤水分时空变异及其与环境因子的关系.生态学杂志,2007,26(1):100-107
    40.山仑.提高农田降水利用效率的原理与途径.北京:科学出版社,1993
    41.邵明安,陈志雄.SPAC中的水分运动.西北水土保持研究所集刊,1991,13:3-12
    42.尚松浩,毛晓敏,雷志栋等.土壤水分动态模拟模型及其应用.北京:科学出版社,2009
    43.申双和,周英.农田土壤水分预测模型应用研究.南京气象学院学报,1992,15(4):540-548
    44.史志华,朱华德,陈佳等.小流域土壤水分空间异质性及其与环境因子的关系.应用生态学报,2012,23(4):889-895
    45.王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响.地理学报,2000,55(1):84-91
    46.王军,傅伯杰,邱扬等.土丘陵小流域土壤水分的时空变异特征——半变异函数.地理学报,2000,55(4):428-438
    47.王军,傅伯杰,蒋小平.土壤水分异质性的研究综述.水土保持研究,2002,9(1):1-5
    48.王孟本,李洪建.晋西北河北杨林水分生态的研究.生态学报,1991,11(4):313-317
    49.王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究.生态学报,1995,15(2):178-184
    50.王孟本,李洪建,柴宝峰.极端降水条件对林地水分循环的影响.土壤侵蚀与水土保持学报,1996,2(3):83-92
    51.王志强,刘宝元,路炳军.黄土高原半干旱区土壤干层水分恢复研究.生态学报,2003,23(9):1944-1950.
    52.魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究.土壤侵蚀与水土保持学报,1999,5(4):45-51
    53.巫东堂,焦晓燕,韩雄.旱地麦田土壤水分预测模型研究.土壤学报,1996,33(1):105-110
    54.伍永秋,刘宝元,van den Elsen E等.黄土高原土壤水分的自动监测-TDR系统及其应用.水土保持学报,2001,15(2):108-111
    55.萧复兴,刘国定.旱地麦田二次秸秆覆盖增产模式及机理研究.中国北方旱地农业综合发展与对策.北京:中国农业科技出版社,1994,211-217
    56.徐梅,隋吉东,刘振忠.土壤水分含量的理论分析及预测模型.生物数学学报,1999,14(1):95-99
    57.王树楼,王笳.旱地玉米免耕整秸秆半覆盖耕作技术试验研究.北京:中国农业科技出版社,1994,217-221
    58.伊传逊.隔坡梯田效益研究.中国水土保持,1984,6:16-17
    59.余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究.生态学报,1996,16(3):238-245
    60.张全发,苏荣辉,江明喜等.南水北调工程及其生态安全:优先研究领域.长江流域资源与环境,2007,16(2):217-221
    61.张仁陟,李小刚,胡华等.甘肃黄土地区农田土壤水分变异规律研究.土壤侵蚀与水土保持学报,1998,4(4):53-59
    62.赵晓光,吴发启,刘秉正等.黄土高原坡耕地土壤水分主要受控因子研究.水土保持通报,1999,19(1):10-14
    63.张兴昌,卢宗凡.坡地水平沟耕作的土壤水分动态及增产机理研究.水土保持学报,1993,3(7):58-66
    64.朱祖祥.土壤水分的能量概念及其意义.土壤学进展,1979,(1):1-2
    65.庄季屏.四十年来的中国土壤水分研究.土壤学报,1989,26(3):241-247
    66.邹厚远,程积民.陕北黄龙山植被保水作用的研究.林业科学,1982,18(1):20-28
    67.余优森,林日暖,邓振镛等.人工草地土壤水分周年变化规律的研究.土壤学报,1992,29(2):175-182
    68. Afyuni M M, Cassel D K, Robarge W P. Effect of landscape position on soil water and corn silage yield. Soil Science Society of America Journal,1993,57:1573-1580
    69. Andraski B J, Lowery B. Erosion effects on soil water storage, plant water uptake, and corn growth. Soil Science Society of America Journal,1992,56 (6):1911-1919
    70. Bardossy A. Generating precipitation time series using simulation annealing. Water Resources Research,1998,34:1737-1744
    71. Bell K R, Blanchard B J, Schmugge T J, Witezak M W. Analysis of surface moisture variations within large field sites. Water Resources Research,1980,16 (4):796-810
    72. Beven K J, Kirkby N J. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Journal,1979,24:43-69
    73. Bloschl G, Sivapalan M. Scale issues in hydrological modelling:A review. Hydrological Processes,1995,9 (3-4):251-290
    74. Breshears D D, Myers O B, Johnson S R, Meyer C W, Martens S N. Differential use of spatially heterogeneous soilmoisture by two semiarid woody species:Pinus edulis and Juniperus monosperma. Journal of Ecology,1997,85:289-299
    75. Brij G. Natural and constructed wetlands for wastewater treatment:potential sand problems. Water Science and Technology,1992,40 (3):27-35
    76. Brocca L, Melone F, Moramarco T, Morbidelli R. Soil moisture temporal stability over experimental areas in Central Italy. Geoderma,2009,148:364-374
    77. Brocca L, Melone F, Moramarco T, Morbidelli R. Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research,2010, 46:W02516
    78. Broccaa L, Tulloa T, Melonea F, Moramarcoa T, Morbidellib R. Catchment scale soil moisture spatial-temporal variability. Journal of Hydrology,2012,422-423: 63-75
    79. Burt T P, Butcher D P. Topographic controls of soil moisture distributions. Journal of Soil Science,1985,36:469-486
    80. Charpentier M A, Groffman P M. Soil moisture variability within remote sensing pixels. Journal of Geophysical Research:Atmospheres,1992,97 (D17):18987-18995
    81. Chen L D, Wang J P, Wei W, Fu B J, Wu D P. Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China. Forest Ecology and Management,2010,259,1291-1298
    82. Cooke J G. Nutrient transformations in a natural wetland receiving sewage effluent and the implications for waste treatment. Water Science and Technology,1994, 29 (5):209-227
    83. Dunne T, Black R D. Partial area contributions to storm runoff in a small New England watershed. Water Resource Research,1970,6 (5):1296-1311
    84. Edoardo A., Costantini C., Fabio C., et al. Assessing soll moisture regimes with traditional and new methods. Soil Science Society of America Journal, 2002, 66 (6):1889-1896
    85. Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope:Rattlesnake Hill, Texas. Journal of Hydrology, 1998,210:259-281
    86. Fernandez J M, Ceballos A. Temporal stability of soil moisture in a large-field experiment in Spain. Soil Science Society of America Journal,2003,67,1647-1656
    87. Fitzjohn C, Ternan J L, Williams A G. Soil moisture variability in a semiarid gully catchment:implications for runoff and erosion control. Catena,1998,32:55-70
    88. Flugel W A. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany. Hydrological Processes,1995,9:423-436
    89. Francis C F, Thomes J B, Romero Diaz A, Lopez Bermudez F, Fisher G C. Topographic control of soil moisture, vegetation cover and land degradation in a moisture stressed Mediterranean environment. Catena,1986,13:211-225.
    90. Fu B J, Wang J, Chen L D, Qiu Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena,2003,54:197-213
    91. Fu Z Y, Li Z X, Cai C F, Shi Z H, Xu Q X, Wang X Y. Soil thickness effect on hydrological and erosion characteristics under sloping lands:A hydropedological perspective. Geoderma,2011,167:41-53
    92. Gardner E S. Exponential smoothing:The state of the art. Journal of Forecasting, 1985,4:1-28
    93. Geroy I J, Gribb M M, Marshall H P, et al. 2011. Aspect influences on soil water retention and storage. Hydrological Processes, 25:3836-3842
    94. Gilley J E, Doran J W, Karlen D L, Kaspar T C. Runoff, erosion, and soil quality haracteristics of a former conservation reserve program site. Journal of Soil and Water Conservation,1997,52 (3):89-193
    95. Gomez-Plaza A, Alvarez-Rogel J, Albaladejo J, Castillo, V M. Spatial patterns and temporal stability of soil moisture across a range of scales in a semi—arid environment. Hydrological Processes,2000,14:1261-1277
    96. Gomez-Plaza A, Martinez-Mena M, Albaladejo J, Castillo V M, Factors regulating spatial distribution of soil water content in small semiarid catchments. Journal of Hydrology,2001,253:211-226
    97. Gollany H T, Schumacher T E, Evenson P D, Lindstrom M J, Lemme G D. Aggregate stability of an eroded and desurfaced typic Argiustoll. Soil Science Society of America Journal, 1991,55:811-816
    98. Gonzalez C M, Pignata M L, Orellana L. Application of redundancy analysis for the detection of chemical response patterns to air pollution in lichen. Science of the Total Environment,2003,312:245-253
    99. Crave A, Gascuel-Odoux C. The influence of topography on time and space distribution of soil surface water content. Hydrological Processes,1997,11:203-210
    100. Guo D L, Mou P, Jones R H, Mitchell R J. Temporal changes in spatial patterns of soil moisture following disturbance:an experimental approach, Journal of Ecology, 2002,90:338-347
    101. Grayson R B, Western AW. Towards area estimation of soil water content from point measurements:time and space stability of mean response. Journal of Hydrology,1998,207:68-82
    102. Hauck C, Barthlott C, Krauss L, Kalthoff N. Soil moisture variability and its influence on convective precipitation over complex terrain. Quarterly Journal of the Royal Meteorological Society,2011,137:42-56
    103. Hawley M E, Jackson T J, McCuen R H. Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology,1983,62,179-200
    104. Henderson-Sellers A. Soil moisture:A critical focus for global change studies. Global and Planetary Change,1996,13:3-9
    105. Henninger D L, Petersen G W, Engman E T. Surface soil moisture within a watershed-variations, factors influencing, and relationship s to surface runoff. Soil Science Society of America Journal,1976,40 (5):773-776
    106. Hill J N S, Sumner M E. Effect of bulk density on moisture characteristics of soils. Soil Science,1967,103:234-238
    107. Hill M O. TWINSPAN-a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University, New York, 1979
    108. Hill M O, Smilauer P. TWINSPAN for Windows version 2.3. Center for Ecology and Hydrology & University of South Bohemia, Huntington and Ceske, Budejovice, 2005
    109. Hills R C, Reynolds S G. Illustrations of soil moisture variability in selected areas and plots of different sizes. Journal of Hydrology,1969,8:27-47
    110. Hupet F, Vanclooster M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. Journal of Hydrology,2002,261:86-101.
    111. Hyndmana R J, Koehlerb A B, Snydera R D, Grosea S. A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting,2002,18 (3):439-454
    112. Jawson S D, Niemann J D. Spatial patterns from EOF analysis of soil moisture at a large scale and their dependence on soil, land-use, and topographic properties. Advances in Water Resources,2007,30 (3):366-381
    113. Kim S, Lee H, Woo N C, Kim J. Soil moisture monitoring on a steep hillside. Hydrological Pocesses,2007,21:2910-2922
    114. Krumbach A W JR. Effects of microrelief on distribution of soil moisture and bulk density. Journal of geophysical research,1959,64 (10):1587-1590
    115. Ladson A R, Moore ID. Soil water prediction on the Konza Prairie by microwave remote sensing and topographic attributes. Journal of Hydrology,1992,138:385-407
    116. Loague K. Soil water content at R-5. Part 1. Spatial and temporal variability. Journal of Hydrology,1992,139:233-251
    117. Long F L. A Field System for Automatically Measuring Soil Water Potential. Soil Science,1984,137 (4):227-230
    118. Lyon J G, Yuan D, Lunetta R S, Elvidge C D. A change detection experiment using vegetation indices Photogrammetric Engineering and Remote Sensing,1998,64 (2):143-150
    119. Makridakis S, Andersen A, Carbone R, Fildes R, Hibon M, Lewandowski R et al. The accuracy of extrapolation (time series) methods:Results of a forecasting competition. Journal of Forecasting,1982,1:111-153
    120. Makridakis S, Hibon M. The M3-Competition:Results, conclusions and implications. International Journal of Forecasting,2000,16:451-476
    121. Manabe S. The atmospheric circulation and the hydrology of the earth's surface Monthly Weather Review,1969,91:739-774
    122. Manabe S, Smagorinsky J, Stricker R J. Simulated climatology of a general circulation model with a hydrological cycle. Monthly Weather Review,1965,93: 769-798
    123. Mathier L, Roy A G. A study on the effect of spatial scale on the parameters of a sediment transport equation for sheetwash. Catena,1996,26 (3-4):161-169
    124. McKenzie N J, Austin M P. A quantitative Australian approache to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma,1993,57:329-355
    125. McKenzie N J, MacLeod D A. Relationships between soil morphology and soil properties relevant to irrigated and dryland agriculture. Soil Research,1989,27: 235-258
    126. Mehrez Z. Monique D. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sensing of Enviromnent,2002,84: 42-52
    127. Moore, I D, Burch, G J, Mackenzie, D H.1988. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the American Society of Agricultural Engineers,31 (4),1098-1107
    128. Moore I D, Gessler P E, Nielsen G A, Peterson G A. Soil attribute predictions using terrain analysis. Soil Science Society of America Journal,1993,57:443-452
    129. Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE,2007,50:885-900
    130. Namias J. Surface-atmosphere interactions as fundamental causes of droughts and other climate fluctuations. Arid Zone Research,1963,20:345-359
    131. Neal J, Murphy S, Harden S, Fulkerson W J. Differences in soil water content between perennial and annual forages and crops grown under deficit irrigation and used by the dairy industry. Field Crops Research,2012,137:148-162
    132. Ng E, Miller P C. Soil moisture relations in the southern California chaparral. Ecology,1980,61:98-107
    133. Niemann K O, Edgell M C R. Preliminary analysis of spatial and temporal distribution of soil moisture on a deforested slope. Physical Geography,1993,14 (5):449-464
    134. Nyberg L. Spatial variability of soil water content in the covered catchment of Gardsjon, Sweden. Hydrological Processes,1996,10:89-103
    135. Nioku E G, Entekhabi D. Passive microwave remote sensing of soil moisture. Journal of Hydrology,1996,184:101-129
    136. Noborio J. Measurement of soil water content and electrical conductivity by time domain reflectometry:a review. Computer and electronics in agriculture,2001,31: 213-237
    137. Ochoa C G, Fernald A G, Guldan S J, Shukla M K, Tidwell V C. Deep percolation and water table fluctuations in response to irrigation inputs field observations. New Mexico's Water Resources,2012,46:89-104
    138. Owe M, Jones E B, Schmugge T J. Soil moisture variation patterns observed in Hand county, South Dakota Water Resources Bulletin,1982,18 (6):949-954
    139. Pierce L L, Running S W, Walker J. Regional scale relationships of leaf area index to specific leaf area and leaf nitrogen content. Ecological Applications,1994,4 (2): 313-321
    140. Qiu Y, Fu B J, Wang J, Chen L D. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology,2001,240:243-263
    141. Rajkai K, Ryden B E. Measuring areal soil moisture distribution with the TDR method. Geoderma,1992,52:73-85
    142. Reid I. The influence of slope orientation upon the soil moisture regime and its hydrogeomorphological significance. Journal of Hydrology,1973,19:309-321
    143. Reynolds S G. The gravimetric method of soil moisture determination, III:An examination of factors influencing soil moisture variability. Journal of Hydrology, 1970,11:288-300
    144. Robinson M, Dean T J. Measurement of near surface soil water content using a capacitance probe. Hydrological Processes,1993,7:77-86
    145. Rolecek J, Tichy L, Zeleny D, Chytry M, Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 2009,20:596-602
    146. Sala O E, LauenrothW K, PartonW J.1992. Long-term soil water dynamics in the shortgrass steppe. Ecology,73:1175-1181
    147. Schmugge T J, Jackson T J. Passive microwave remote sensing system for soil moisture:Some supporting research. Geoscience and Remote Sensing,1989,27: 225-235
    148. Schneider K, Huisman J A, Breuer L, Breuer L, Zhao Y, Frede H G. Temporal stability of soil moisture in various semi-arid steppe ecosystems and its application in remote sensing. Journal of Hydrology,2008,359 (1-2):16-29
    149. Scott R L, Shuttleworth W J, Keefer T O, Warrick A W.2000. Modeling multiyear observations of soilmoisture recharge in the semiarid American Southwest. Water Resources Research,2000,36:2233-2247
    150. Seneviratne S I, Corti T, Davin EL, Hirschi M, Jaeger E B, Lehner I, Orlowsky B, Teuling A J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews,2010,99:125-161
    151. Seyfried M. Spatial variability constraints to modeling soil water at different scales. Geoderma,1998,85:231-254
    152. Singh J S, Milchunas D G, Lauenroth W K. Soil water dynamics and vegetation patterns in a semiarid grassland. Plant Ecology,1998,134:77-89
    153. Soil Survey Staff. Soil taxonomy:a basic system of soil classification for making and interpreting soil surveys, second ed. US Government Printing Office, Washington, DC,1999
    154. Stewart J B, Engman E T, Feddes R A, Kerr Y (Eds.). Scaling up in Hydrology using Remote Sensing. Wiley, Chichester,1996,183-192
    155. Ter Braak C J F, Smilauer P. CANOCO Reference Manual and CanoDraw for Windows User's Guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen and Ceske Budejovice,2002
    156. Thomas D J, Cassel D K. Land forming Atlantic Coastal Plain soils:Crop yield relationships to soil physical and chemical properties. Journal of soil and water conservation,1979,30:20-24
    157. Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content:measurements in coaxial transmission lines. Water Resources Research, 1980,16 (3):574-582
    158. Top G C, Reynolds W D. Time domain reflectometry:a seminal technique for measuring mass and energy in soil. Soil and Tillage Research,1998,47:125-132
    159. Wang Y Q, Shao M A, Liu Z P. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma, 2013, 193-194:300-310
    160. Warrick A W, Zhang R, Moody M M, Myers D E. Kriging versus alternative interpolators: errors and sensitivity to model inputs. Birkhser Verlage, Basel, 1990, 157-164
    161. Western A W, Bloschl G, Gray son R B. Geostatistical characteristics of soil moisture patterns in the Tarrawarra catchment. Journal of Hydrology,1998,205: 20-37
    162. Western A W, Bloschl G. On the spatial scaling of soil moisture. Journal of Hydrology,1999,217:203-224
    163. Western A W, Grayson R B. The tarrawarra data set: soil moisture patterns, soil characteristics and hydrological flux measurements. Water Resource Research, 1998,34 (10):2765-2768
    164. Western A W, Grayson R B, Bloschl G, Willgoose G R, McMahon T A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research,1999,35:797-810
    165. Whitaker M P L. Small scale spatial variability of soil moisture and hydraulic conductivity in a semiarid rangeland soil in Arizona. Tucson:The University of Arizona,1993
    166. Yang L, Wei W, Chen L D, Jia F Y, Mo B R. Spatial variations of shallow and deep soil moisture in the semiarid Loess Plateau, China. Hydrology and Earth System Sciences,2012a,16:3199-3217
    167. Yang L, Wei W, Chen L D, Mo B R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. Journal of Hydrology, 2012b,475:111-112
    168. Zhao Y, Peth S, Hallett P, Wang X Y, Giese M, Gao Y Z, Horn, R. Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics. Ecohydrology,2011,4: 36-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700