用户名: 密码: 验证码:
ZnO-TiO_2核壳结构的性能研究及其染料敏化太阳能电池应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池是一种新型的第三代太阳能电池,目前其光电转换效率已经达到12.3%。光生载流子的复合问题制约着转换效率的进一步提高。作为负载染料和传递光生电子的光阳极在染料敏化太阳能电池中扮演者重要的作用。近年来,利用ZnO和TiO2独特的物理化学性质,对光阳极结构设计提供了新的思路。本论文提出利用ZnO表面缺陷作为TiO2的形核中心,使其外延生长得到具有枝状TiO2结构的核壳复合结构光阳极,基于缺陷生长的壳层材料,可以在消除缺陷的同时,有利于电子通过TiO2传递到ZnO。通过元素掺杂进一步调整ZnO/TiO2的能带体系,减小界面转移阻抗并钝化表面缺陷,促进光生载流子的注入与传输。具体研究内容为:
     (1)通过溶胶凝胶法和磁控溅射法制备ZnO晶种层薄膜,作为减少ZnO纳米阵列晶格失配的基底,比较两种方法制备的薄膜微观形貌和结构的差异。优化溅射沉积的相关工艺参数,考察溅射功率、气体分压比和靶间距对ZnO晶种层晶粒的影响。通过正交实验法研究Al元素掺杂的ZnO纳米阵列的制备工艺,考察Al元素掺杂对ZnO晶种层薄膜导电性的影响。
     (2)通过化学水浴沉积工艺,在晶种层上合成ZnO和Al元素掺杂ZnO纳米阵列。改变生长液中的Zn源浓度、温度、时间和Al元素掺杂量,得到不同形貌的ZnO/Al:ZnO纳米阵列。探索制备垂直于底面有序生长ZnO纳米阵列和Al元素掺杂ZnO纳米阵列的最佳工艺参数,同时研究纳米阵列的形成机理。通过改进的连续水浴沉积工艺,优化纳米阵列的生长条件,促进ZnO纳米阵列的形核与生长。
     (3)通过磁控溅射工艺,在ZnO纳米棒阵列的表面沉积具有枝状分级结构的连续TiO2壳层,研究气体分压比、热处理温度和其他工艺因素对微观形貌和结构的影响。探索ZnO-TiO2核壳结构的形成机理。
     (4)基于上述各种纳米结构的光阳极,组装染料敏化太阳能电池。研究不同结构器件的光电转换效率,开路电压,短路电流和填充因子等相关性能参数。通过电化学阻抗技术研究核壳界面处的光生载流子传输性能。讨论核壳结构对抑制光生载流子复合的作用机理。
     通过对ZnO-TiO2核壳结构的研究得到如下结果:
     (1)溶胶凝胶法制备的ZnO晶种层随着热处理温度的增加,晶粒的结晶取向性显著增强。条纹状弯曲畴晶的形成与高度取向的纳米晶表面能降低有关。磁控溅射法制备的ZnO晶种层,晶粒尺寸受到靶间距、溅射功率、氧氩比的影响。通过优化溅射工艺确定最佳参数为靶间距50mm、溅射功率100W、氧氩比1:3。当退火热处理温度为400℃时,晶种层内应力最小。通过正交实验法确定A1元素掺杂ZnO晶种层的最佳参数为溅射温度200℃,溅射功率40W,氧流量20%,退火温度400℃。此条件下制备的Al:ZnO晶种层电学性能最好,少量A1元素掺杂可以提高光致发光强度。
     (2)ZnO纳米棒阵列受化学水浴沉积工艺中基底和生长液浓度等因素的影响。ZnO纳米棒对应纤锌矿结构,具有择优取向。热处理温度和时间的增加,促进了纳米棒垂直于基底均匀生长。生长液浓度增加,纳米棒直径增大,间隙减小。连续CBD法能够稳定生长液反应过程中的溶质浓度,有利于其定向有序生长。基于连续CBD法的DSSC组件转换效率达到0.31%。A1元素掺杂ZnO纳米阵列,当掺杂量为2%时具有最好的电学性能和发光性能。生长液浓度为O.01mol/L时制备的5%掺杂A1元素ZnO纳米阵列的DSSC组件效率达到0.42%。
     (3)直流反应磁控溅射制备的ZnO-TiO2核壳结构,当氧氩比为1:1时,纳米棒表面由一层粗糙晶粒组成的Ti02所包覆。当氧氩比为1:3时,Ti02在ZnO纳米棒的侧表面形核生长,受到气-固生长模式的影响最终形成枝状生长的金红石Ti02结构。基于ZnO-TiO2核壳结构光阳极的染料敏化电池,能够有效地促进载流子传输和抑制表面复合,效率达到0.94%。基于不同染料吸附量的光阳极结构DSSC组件,经过包覆的光阳极能够作为阻挡层钝化表面缺陷,抑制复合的发生,从而提高开路电压和填充因子,其光电转换效率相对于纯ZnO纳米阵列提高了132%。电化学阻抗谱证明包覆Ti02的纳米阵列能够有效地促进电子注入与传输,同时抑制电子的反向传输,防止复合现象的发生,最终提高DSSC组件的光电转换效率
Dye sensitized solar cells is a noval third generation solar cells. Its current maxium conversion efficiency has achieved12.3%. The recombinations of photo induced electron restrict the improvement of conversion efficiency. Photoanode plays a key role in DSSC as dye loader and electron transfer and transmission. Recently, research group use unique physics and chemical properties of ZnO and TiO2, developed new route for photoanode design. This paper introduced take advantage of surface defects of ZnO as nucleation centre, and epitaxial growth branched structure TiO2core-shell photoanode. The shell could growth from defects, and good for electron transfer from TiO2to ZnO. Element doping could adjust the energy band of ZnO/TiO2prompt electron transfer and transmission, passivating interface defects. The research content as follow:
     (1) Prepare ZnO seed layer with sol-gel method and magnetron sputtering, as substrate to overcome lattice mismatch. Compare the microstructure of different methods. Optimize magnetron sputtering parameter, about deposition power, O2/Ar ratio and spacing adjustment of ZnO seed layer. Investigate the properties of Al doping ZnO seed layer with orthogonal experimental design.
     (2) Prepare ZnO and Al:ZnO nano array on seed layer by chemical bath deposition. Adjust Zinc concentration of solution, temperature, duration and Al doping content. Explore the optimized parameter and nano array growth mechanism. With continuous chemical bath deposition method, optimize the nano array, prompt the nucleation and growth of ZnO nanorod.
     (3) Branched continuous TiO2shell structure were obtain from magnetron sputtering. Investigate O2/Ar ratio, heat treatment temperature, and microstructure. Discuss the shell formation mechanism.
     (4) Prepare DSSC module with different photoanode. Study the conversion efficiency, open circuit voltage, short circuit current, and fill factor. Investigate interface transfer and transmission of photo induced electron with electrochemical impediance spectrum. Discuss the mechanism of core-shell structure for inhibition recombination.
     The results have achieved from experiment and analysis as follow:
     (1) The ZnO seed layer prepared by sol-gel mothod has strong crystal orientation with increasement of heat treatment temperature. The formation of stipe grain has strong correlation with the decrease of surface energy of nanocrystalline. The optimized parameter of ZnO seed layer prepared by magnetron sputtering is spacing50mm, sputtering power100W, O2/Ar ratio1:3. The internal stress of seed layer reached minimum when temperature is400℃. The optimized parameter of Al:ZnO seed layer is200℃,40W, oxygen flux20%, and treatment temperature is400℃. Under these condition, Al:ZnO layer has best conductivity and photoluminescence.
     (2) Preferred orientation ZnO nano array with wurtzite structure was affect by substrate and concentration. The increasement of temperature and duration could prompt growth of ZnO nanorod perpendicular substrate. The diameter of nanorod increased with concentration elevated. Continuous chemical bath deposition could maintain concentration in solution, to the benefit of directional growth of nanorod. The conversion efficiency of DSSC modules based c-CBD method reached0.31%. Doping conten2%of Al:ZnO have optimized electrical properties and photoluminescence. When concentration is0.01mol/L, the module of5%Al doping ZnO nanoarray has reached0.42%.
     (3) ZnO-TiO2core-shell structure prepared by magnetron sputtering with different O2/Ar ratio varied from1:1to1:3. The formation of shell was affected by gas-solid growth pattern, and finally achieved TiO2shell with rutile structure. Core-shell strucre could effectively prompt electron transmission and inhibite recombination. The conversion efficiency reached0.94%. Core-shell structure with different dye load content has132%efficiency compared with ZnO nano array. Chemical impediance spectrum reveals TiO2shell could effectively accelerate electron transter and transmission, inhibite reverse transmission and recombination.
引文
[1]M.A. Green., Third generation photovoltaics:solar cells for 2020 and beyond [J]. Physica E,2002,14:65-70.
    [2]O'Rgan B., Gratzel M., A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(24):737-740.
    [3]A. Yella, H. Lee, H. Tsao, et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency [J], Science,2011,11: 629-634.
    [4]Martin C, Ziotek M, Marchena M, et al. Interfacial Electron Transfer Dynamics in a Solar Cell Organic Dye Anchored to Semiconductor Particle and Aluminum-Doped Mesoporous Materials[J]. The Journal of Physical Chemistry C,2011,115(46): 23183-23191.
    [5]Ramakrishna G, Jose D A, Kumar D K, et al. Strongly coupled ruthenium-polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles[J]. The Journal of Physical Chemistry B,2005,109(32):15445-15453.
    [6]Bessho T, Zakeeruddin S M, Yeh C Y, et al. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins[J]. Angewandte Chemie International Edition,2010,49(37):6646-6649.
    [7]Lee K M, Hsu Y C, Ikegami M, et al. Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells[J]. Journal of Power Sources,2011,196(4): 2416-2421.
    [8]Nguyen H M, Mane R S, Ganesh T, et al. Aggregation-free ZnO nanocrystals coupled HMP-2 dye of higher extinction coefficient for enhancing energy conversion efficiency [J]. The Journal of Physical Chemistry C,2009,113(21):9206-9209.
    [9]Tian Z, Huang M, Zhao B, et al. Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells[J]. Dyes and Pigments, 2010, 87(3): 181-187.
    [10]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society,1993,115(14):6382-6390.
    [Ⅱ]Nazeeruddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J]. Journal of the American Chemical Society,2001,123(8):1613-1624.
    [12]Sauvage F, Decoppet J D, Zhang M, et al. Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells[J]. Journal of the American Chemical Society,2011,133(24):9304-9310.
    [13]Kumara G R A, Kaneko S, Okuya M, et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a Cul crystal growth inhibitor[J]. Langmuir, 2002,18(26):10493-10495.
    [14]Murakoshi K, Kogure R, Wada Y, et al. Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole[J]. Solar Energy Materials and Solar Cells, 1998,55(1):113-125.
    [15]Kang J, Li W, Wang X, et al. Gel polymer electrolytes based on a novel quaternary ammonium salt for dye-sensitized solar cells[J]. Journal of applied electrochemistry, 2004,34(3):301-304.
    [16]Wang M, Lin Y, Zhou X, et al. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells[J]. Materials Chemistry and Physics,2008,107(1):61-66.
    [17]Ren Y, Zhang Z, Gao E, et al. A dye-sensitized nanoporous TiO2 photoelectrochemical cell with novel gel network polymer electrolyte[J]. Journal of applied electrochemistry,2001,31(4):445-447.
    [18]Li P J,Wu J H,Lin J M,et al. Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode[J].Electrochim.Acta,2008, 53:4161-4166
    [19]Gao F,Humphry-Baker R,Gratzel M,et al.Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells[J].J.Am.Chem.Soc,2008,130(32): 10720-10728
    [20]Guai G H,Song Q L,Guo C X,et al.Graphene-Pt/ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell[J].Solar Energy,2012,86:2041-2048
    [21]Chen H Y,Liao J Y,Lei B X,et al.Highly catalytic carbon nanotube/Pt nanohybrid-based transparent counter electrode for efficient dye-sensitized solar cells[J].Chem.Asian J.2012,7:1795-1802
    [22]Syrrokostas G,Siokou A,Leftheriotis G,et al.Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells[J].Solar Energy Materials & Solar Cells,2012, 103:119-127
    [23]Im J S,Lee S K,Yun J,et al.CNT-Pt counter electrode prepared using a polyol process to achieve high performance in dye-sensitised solar cells[J].Journal of Industrial and Engineering Chemistry,2012,18:1023-1028
    [24]Kay A,Gratzel M.Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder[J].Sol Energ Mater Sol Cells, 1996,44(1):99-117
    [25]Murakami T N,Ito S,Wang Q,et al.Highly efficient dye-sensitized solar cells based on carbon black counter electrodes[J].J Electrochem Soc,2006,153(12):A2255-A2261
    [26]Suzuki K,Yamaguchi M,Kumagai M,et al.Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells[J].Chem Lett,2003,32(1):28-29
    [27]Anwar H,George A E,Hill I G.Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells[J].Solar Energy,2013,88:129-136
    [28]Munkhbayar B,Nine M J,Jeoun J,et al.Synthesis of a grapheneetungsten composite with improved dispersibility of graphene in an ethanol solution and its use as a counter electrode for dye-sensitised solar cells[J]. Journal of Power Sources,2013,230:207-217
    [29]Choi H J,Gong H H,Park J Y,et al.Characteristics of dye-sensitized solar cells with surface-modified multi-walled carbon nanotubes as counter electrodes[J].J Mater Sci, 2013,48:906-912
    [30]范乐庆,无季怀,黄昀昉,等.阴极修饰对染料敏化 TiO2 太阳能电池性能的改进[J]. 电 子元件与材料, 2003, 22(5):1-3
    [31]Xia J B,Yuan C C,Yanagida S.Novel counter electrode V2O5/Al for solid dye-sensitized solar cells[J].ACS Appl Mater Interfaces,2010,2:2136-2139
    [32]Yun S N,Wang L,Guo W,et al.Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells[J].Electrochem Commun,2012,24:69-73
    [33]Wu M X,Wang Y D,Ma T L,et al.Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes[J].Physical Chemistry Chemical Physics,2011,13(43):19298-19301
    [34]Park S H,Shin K H,Kim J Y,et al.The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2012,245:1-8
    [35]Lee K M,Chiu W H,Wei H Y,et al.Effects of mesoscopic poly(3,4-ethylenedio xythiophene) films as counter electrodes for dye-sensitized solar cells[J].Thin Solid Films,2010,518(6):1716-1721
    [36]Yum J H,Baranoff E,Gratzel M.et al.A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials[J]. Nat Commun,2012,3:631-636
    [37]Wu M X,Ma T L,Wang L,et al.In situ synthesized economical tungsten dioxide imbedded in mesoporous carbon for dye-sensitized solar cells As counter electrode catalyst[J].J Phys Chem C,2011,115:22598-22602
    [38]Lin X,Wu M X,Wang Y D,et al.Novel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells[J].Chem Commun,2011,47:11489-11491
    [39]Yue G T,Lin J Y,Wu J H,et al.A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells[J]. Electrochimica Acta, 2012,85:162-168
    [40]Gong F,Wang H,Xu X,et al.In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells[J].J Am Chem Soc,2012,134:10953-10958
    [41]Al-Mamun M, Kim J Y, Sung Y E, et al.Pt and TCO free hybrid bilayer silver nanowire-graphene counter electrode for dye-sensitized solar cells[J].Chemical Physics Letters,2013,561-562:115-119
    [42]Xu S J.Liu G W,Li J,et al.lncorporating conductor paste in a low-temperature fabrication process for large mesoporous carbon counter electrode in dye-sensitized solar cells[J].Electrochimica Acta,2012,76:504-511
    [43]Gong F,Li Z Q,Wang H,et al.Enhanced electrocatalytic performance of graphene via incorporation of SiO2 nanoparticles for dye-sensitized solar cells [J].J Mater Chem,2012,22(33):17321-17327
    [44]叶报喜,李作鹏,马祥元,等.电聚合PANI作为低成本离子液体型DSSC对电极[J].太阳能学报,2011,32(6):826-830
    [45]Kaniyoor A,Ramaprabhu S.Enhanced efficiency in dye sensitized solar cells with nanostructured Pt decorated multiwalled carbon nanotube based counter electrode[J]. Electrochimica Acta,2012,72:199-206
    [46]Bu C H,Tai Q D,Liu Y M,et al.A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell[J].Journal of Power Sources,2013,221:78-83
    [47]徐顺建,罗玉峰,李水根,等.低温制备介孔碳对电极构建的染料敏化太阳电池优化研究[J].无机材料学报,2012,27(1):83-88
    [48]储玲玲,高玉荣,马廷丽,等.附着性能优异的碳对电极的制备及其在染料敏化太阳能电池中的应用[J].物理化学学报,2012,28(7):1739-1744
    [49]巩翠翠,胡志强,苏岩,等.染料敏化太阳能电池改性PEDOT:PSS对电极的制备[J].微细加工技术,2008,6:58-60
    [50]Paul G S,Kim J H,Kim M S,et al.Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells[J].ACS Applied Materials & Interfaces,2012,4:375-381
    [51]Yang Y Y,Zhang Q X,Wang T Z,et al.Novel tandem structure employing mesh-structured CU2S counter electrode for enhanced performance of quantum dot-sensitized solar cells[J].Electrochimica Acta,2013,88:44-50
    [52]Fan B H,Mei X G,Sun K,et al.Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells[J].Appl.Phys.Lett.,2008,93:143103-143105
    [53]Lin L Y,Nien P C,Lee C P,et al.Low-temperature flexible photoanode and net-like Pt counter electrode for improving the performance of dye-sensitized solar cells[J]. J.Phys.Chem.C,2010,114(49):21808-21815
    [54]Han J,Kim H,Kim D Y,et al. Water-soluble polyelectrolyte grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells[J].ACSNano,2010,4(6):3503-3509
    [55]Al-Mamun M, Kim J Y, Sung Y E, et al. Pt and TCO free hybrid bilayer silver nanowire-graphene counter electrode for dye-sensitized solar cells[J]. ChemicalPhysics Letters,2013,561:115-119.
    [56]陈小焱,王璟,丁雨田.直流磁控溅射制备ZAO透明导电薄膜及性能研究[J].功能材料,2013,44(1):139-142
    [57]Kang J H,Oh Y J,Paek S M,et al.Electrochromic device of PEDOT-PANI hybrid system for fast response and high optical contrast [J]. Solar Energy Materials and SolarCells.2009,93(12):2040-2044
    [58]Kim S H.Choi H S,Dao V D,et al.Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode[J].J.Phys.Chem.C,2011,115:25529-25534
    [59]Lee Y L.Chen C L,Chong L W,et al.A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells[J]. Electrochemistry Communications,2010,12:1662-1665
    [60]Yang C C,Zhang H Q,Zheng Y R.DSSC with a novel Pt counter electrodes using pulsed electroplating techniques[J].Current Applied Physics,2011,11:S147-S153
    [61]马换梅,田建华,廖文明,等.染料敏化太阳能电池Pt/NiP/ITO对电极的制备和性能[J].硅酸盐学报,2012,40(10):1519-1523
    [62]Lee W J,Ramasamy E,Lee D Y,et al.Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes[J].ACS Applied Materials & Interfaces,2009,1(6):1145-1149
    [63]Zhu G,Pan L K,Lu T,et al.Electrophoretic deposition of carbon nanotubes films as counter electrodes of dye-sensitized solar cells[J].Electrochimica Acta,2011,56: 10288-10291
    [64]李晓雪,张君,图布新,等.纳米结构聚苯胺和聚吡咯电活性的对比研究[J].显微与测量,2011,8(3):66-69
    [65]Lin W J,Hsu C T,Tsai Y C.Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode[J].Journal of Colloid and Interface Science,2011,358:562-566
    [66]Chou C S,Huang C L,Yang R Y,et al.The effect of SWCNT with the functional group deposited on the counter electrode on the dye-sensitized solar cell[J].Advanced Powder Technology,2010,21:542-550
    [67]Jiang W.Yin L,Liu H Z,et al.Nanograss-structured counter electrode for dye-sensitized solar cells[J]. Journal of Power Sources,2012,218:405-411
    [68]王永祯,李智辉,蔡晓岚.MWCNT/Fe—Co/PANI复合材料的制备及其电催化性能[J].炭素,2012,2:32-37
    [69]张莉,李琛.氧等离子体改性的聚苯胺/碳纳米管电化学性能[J].无机化学学报,2012,28(4):698-702
    [70]Wu M M,Lin X,Hagfeldt A,et al.A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells[J].Chem Commun,2011,47:4535-4537
    [71]Yun D J,Ra H,Rhee S W.Concentration effect of multiwalled carbon nanotube and poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) conjugated film on the catalytic activity for counter electrode in dye sensitized solar cells[J].Renewable Energy,2013,50:692-700
    [72]Kung C W,Chen H W,Lin C Y,et al.CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell[J].ACS Nano,2012,6:7016-7025
    [73]Chen J K,MengF Q,Gui X C,et al.The application of a three dimensional CNT-sponge as the counter electrode for dye-sensitized solar cells[J].Carbon,2012,50:5618-5630
    [74]Durr M,Schmid A,Obermaier M,et al.Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers[J].Nat Mater.,2005,4:607-611
    [75]Jeon S S,Kim C,Ko J,et al.Pt nanoparticles supported on polypyrrole nanospheres as a catalytic counter electrode for dye-sensitized solar cells[J].J Phys Chem C,2011,115:22035-22039
    [76]Sun B,Hao Y Z,Guo F,et al.Fabrication of poly(3-hexylthiophene)/CdS/ZnO core-shell nanotube array for semiconductor-sensitized solar cell[J]J.Phys.Chem.C, 2012,116:1395-1400
    [77]Esquivel K,Arriaga L G,Rodriguez F J,et al.Development of a TiO2modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment[J].Water Res.,2009,43(14):3593-3603
    [78]Toivola M,Ferenets M,Lund P,et al.Photovoltaic fiber[J].Thin Solid Films,2009, 517(8):2799-2802
    [79]Zou D C,Wang D,Chu Z Z,et al.Fiber-shaped flexible solar cells[J].Coord.Chem. Rev.,2010,254(9-10):1169-1178
    [80]Bajpai R,Roy S,Koratkar N,et al.NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell[J].Carbon,2013,56: 56-63
    [81]A.J. Frank, N. Kopidakis, J. Lagemaat., Electrons in nano-structured TiO2 solar cells: transport, recombination and photovoltaic properties [J]. Coordination Chemistry Reviews,2004,248(13):1165-79.
    [82]T.Y. Peng, A. Hasegawa, J.R. Qiu, et al., Fabrication of Titania Tubules with High Surface Area and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method [J]. Chem. Mater,2003,15:2011-2016.
    [83]胡林华,戴松元,王孔嘉.纳米Ti02多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响[J].物理学报,2005,54(4):1914-1918.
    [84]陈猛,白雪冬,闻立时.In203:Sn和ZnO:Al透明导电薄膜的结构及其导电机制[J].半导体学报,2000,21(4):394-398.
    [85]M.N.Islam, T.B.Ghosh, K.L.Chopra, et al. XPS and X-Ray diffraction studies Al doped zinc oxide transparent conducting films [J]. Thin Solid Films,1996,280(1-2): 20-25.
    [86]S.Ghosh, A.Sarkar, S.Chaudhuri, et al. Grain boundary scattering in aluminium-doped ZnO films [J]. Thin Solid Films,1991,205(1):64-68.
    [87]B.E.Semelius, K.F.Berggren, Z.C.Jin, et al. Band-gap tailoring of ZnO by means of heavy Al doping [J].Physical review.B,1988,37(17):10244-10248.
    [88]S.Zafar, C.S.Ferekides, D.L.Morel. Characterization and analysis of ZnO:Al deposited by reactive magnetron sputtering [J].Journal of Vacuum Science,1995,13(04): 2177-2182.
    [89]R.Wendt. Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system [J]. Journal of Applied Physics.1997,82(05):2115-2122.
    [90]K.C.Park, D.Y.Ma, K.H.Kim. The physical properties of Al-doped ZnO films prepared by RF magnetron sputtering [J].1997,305(1-2):201-209.
    [91]J.H.Hu, R.G.Gordon. Textured Aluminium-doped zinc oxide thin films from atmospheric pressure chemical vapor deposition [J]. Journal of Applied Physics, 1992,71(02):880-885.
    [92]黄佳木,董建华,张兴元.工艺参数对RF磁控溅射沉积铝掺杂氧化锌薄膜特性的影响[J].材料科学与工程学报,2003,21(2):174-177.
    [93]王涛,刁训刚,舒远杰,等.磁控溅射低温制备ZnO:Al透明导电薄膜的正交试验[J].功能材料,2007,3(38):369-372.
    [94]黄稳,余洲,张勇,等.AZO薄膜制备工艺及其性能研究[J].材料导报,2012,26(1): 35-38.
    [95]姜海青,王连星,赵世民,等.溶胶-凝胶法制备A13+离子掺杂型ZnO薄膜与评价[J].功能材料,2000,31(3):278-280.
    [96]范志新.AZO透明导电薄膜的特性、制备与应用[J].真空,2000,(5):10-13.
    [97]韦新颖,祁康成,林祖伦,等.ZAO基底水热法制备ZnO纳米阵列及其形貌特征[J].半导体光电,2010,31(4):570-574.
    [98]刘扬林,段学臣.水热法制备高定向掺铝氧化锌纳米棒阵列[J].表面技术,2009,38(3):33-36.
    [99]杨蓉,王维波,肖绪瑞,等.联吡啶钌络合物敏化钠晶多孔Ti02薄膜电极光电性能研究[J].科学通报,1997,42(24):2622-2625.
    [100]张东社,刘尧,王维波,等.纳晶多孔TiO2薄膜电极的化学处理[J].科学通报,2000,45(9):929-932.
    [101]S.C.Hao, J.H.Wu, L.Q.Fan, et al. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell [J].Solar Energy, 2004,76(6):745-750.
    [102]Y.Q.Wang, Y.Z.Hao, H.M.Cheng, et al. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode [J].J Mater Sci,1999,34(12): 2773-2779.
    [103]Y.Q.Wang, H.M.Cheng, Y.Z.Hao, et al. Preparation, characterization and photoelectron-chemical behaviors of Fe(III)-doped TiO2 nanoparticles[J]. Journal of Materials Science,1999,34(15):3721-3729.
    [104]Y.Q.Wang, H.M.Cao, Y.H.Huang, et al. The photoelectrochemistry of Nd3+-doped TiO2 nanocrystalline electrodes [J].J Mater Sci Lett,1999,18(2):127-129.
    [105]Nanoparticle technology handbook[M]. Elsevier,2007.
    [106]Li C, Luo Y, Guo X, et al. Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells[J]. Journal of Solid State Chemistry,2012,196:504-510.
    [107]Li H, Tripp C P. Spectroscopic identification and dynamics of adsorbed cetyltrimethylammonium bromide structures on TiO2 surfaces[J]. Langmuir,2002, 18(24):9441-9446.
    [108]Byun H Y, Vittal R, Kim D Y, et al. Beneficial role of cetyltrimethylammonium bromide in the enhancement of photovoltaic properties of dye-sensitized rutile TiO2 solar cells[J]. Langmuir,2004,20(16):6853-6857.
    [109]Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. Journal of the Electrochemical Society,2003,150(8): G488-G493.
    [110]Zaban A, Aruna S T, Tirosh S, et al. The effect of the preparation condition of TiO2 colloids on their surface structures[J]. The Journal of Physical Chemistry B,2000, 104(17):4130-4133.
    [111]Ahmed S, Du Pasquier A, Asefa T, et al. Improving microstructured TiO2 photoanodes for dye sensitized solar cells by simple surface treatment[J]. Advanced Energy Materials,2011,1(5):879-887.
    [112]Szeifert J M, Fattakhova-Rohlfing D, Rathousky J, et al. Multilayered High Surface Area "Brick and Mortar" Mesoporous Titania Films as Efficient Anodes in Dye-Sensitized Solar Cells[J]. Chemistry of Materials,2012,24(4):659-663.
    [113]Lee K M, Hsu C Y, Chiu W H, et al. Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction[J]. Solar Energy Materials and Solar Cells,2009,93(11):2003-2007.
    [114]Wang H E, Zheng L X, Liu C P, et al. Rapid microwave synthesis of porous TiO2 spheres and their applications in dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2011,115(21):10419-10425.
    [115]Zhang Q, Dandeneau C S, Zhou X, et al. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Advanced Materials,2009,21(41):4087-4108.
    [116]Greene L E, Yuhas B D, Law M, et al. Solution-grown zinc oxide nanowires[J]. Inorganic chemistry,2006,45(19):7535-7543.
    [117]Sohn J I, Choi S S, Morris S M, et al. Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor[J]. Nano letters,2010,10(11):4316-4320.
    [118]Yoshida T, Zhang J, Komatsu D, et al. Electrodeposition of inorganic/organic hybrid thin films[J]. Advanced Functional Materials,2009,19(1):17-43.
    [119]Hosono E, Fujihara S, Kimura T, et al. Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films[J]. Journal of colloid and interface science,2004,272(2):391-398.
    [120]Xu L, Guo Y, Liao Q, et al. Morphological control of ZnO nanostructures by electrodeposition[J]. The Journal of Physical Chemistry B,2005,109(28): 13519-13522.
    [121]Michaelis E, Wohrle D, Rathousky J, et al. Electrodeposition of porous zinc oxide electrodes in the presence of sodium laurylsulfate[J]. Thin solid films,2006,497(1): 163-169.
    [122]Chen Z, Tang Y, Zhang L, et al. Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells[J]. Electrochimica Acta,2006, 51(26):5870-5875.
    [123]Wang X, Zhang R Q, Lee S T, et al. Unusual size dependence of the optical emission gap in small hydrogenated silicon nanoparticles[J]. Applied physics letters,2007, 90(12):123116.
    [124]Kang S H, Kim H S, Kim J Y, et al. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells[J]. Nanotechnology,2009,20(35):355307.
    [125]Jiu J, Isoda S, Wang F, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film[J]. The Journal of Physical Chemistry B,2006,110(5):2087-2092.
    [126]Hwang K J, Jung S H, Park D W, et al. Heterogeneous ruthenium dye adsorption on nano-structured TiO2 films for dye-sensitized solar cells[J]. Current Applied Physics, 2010,10(2):S184-S187.
    [127]Cakir A C, Erten-Ela S. Comparison between synthesis techniques to obtain ZnO nanorods and its effect on dye sensitized solar cells[J]. Advanced Powder Technology, 2012,23(5):655-660.
    [128]Chen W, Zhang H, Hsing I M, et al. A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination[J]. Electrochemistry Communications,2009,11(5):1057-1060.
    [129]Ameen S, Akhtar M S, Kim Y S, et al. Influence of seed layer treatment on low temperature grown ZnO nanotubes:Performances in dye sensitized solar cells[J]. Electrochimica Acta,2011,56(3):1111-1116.
    [130]Wanit M, Yeo J, Hong S J, et al. ZnO nano-tree growth study for high efficiency solar cell[J]. Energy Procedia,2012,14:1093-1098.
    [131]Wu X, Wang L, Luo F, et al. BaCO3 modification of TiO2 electrodes in quasi-solid-state dye-sensitized solar cells:Performance improvement and possible mechanism[J]. The Journal of Physical Chemistry C,2007,111(22):8075-8079.
    [132]Palomares E, Clifford J N, Haque S A, et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers[J]. Journal of the American Chemical Society,2003,125(2):475-482.
    [133]Zaban A, Chen S G, Chappel S, et al. Bilayer nanoporous electrodes for dye sensitized solar cells[J]. Chem. Commun.,2000 (22):2231-2232.
    [134]Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals:improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide[J]. Chemistry of Materials,2002,14(7):2930-2935.
    [135]A. Irannejad, K. Janghorban, O.K. Tan, et al. Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO-TiO2 core-shell nanorod electrodes. [J] ElectrochimicaActa,2011,58:19-24.
    [136]Prabakar K, Son M, Kim W Y, et al. TiO 2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells[J]. Materials Chemistry and Physics,2011, 125(1):12-14.
    [137]Manthina V, Correa Baena J P, Liu G, et al. ZnO-TiO2 Nanocomposite Films for High Light Harvesting Efficiency and Fast Electron Transport in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2012,116(45):23864-23870.
    [138]Wang Z S, Huang C H, Huang Y Y, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode[J]. Chemistry of Materials, 2001,13(2):678-682.
    [139]Chou C S, Chou F C, Kang J Y. Preparation of ZnO-coated TiO 2 electrodes using dip coating and their applications in dye-sensitized solar cells[J]. Powder Technology,2012,215:38-45.
    [140]Yu H, Xue B, Liu P, et al. High-performance nanoporous TiO2/La2O3 hybrid photoanode for dye-sensitized solar cells[J]. ACS applied materials & interfaces, 2012,4(3):1289-1294.
    [141]Liu L, Chen Y, Guo T, et al. Chemical Conversion Synthesis of ZnS Shell on ZnO Nanowire Arrays:Morphology Evolution and Its Effect on Dye-Sensitized Solar Cell[J]. ACS applied materials & interfaces,2011,4(1):17-23.
    [142]Knez M, Nielsch K, Niinisto L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition[J]. Advanced Materials, 2007, 19(21): 3425-3438.
    [143]Park K, Zhang Q, Garcia B B, et al. Effect of Annealing Temperature on TiO2-ZnO Core-Shell Aggregate Photoelectrodes of Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2011,115(11):4927-4934.
    [144]Law M, Greene L E, Radenovic A, et al. ZnO-A12O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells[J]. The Journal of Physical Chemistry B,2006, 110(45):22652-22663.
    [145]NREL, Best Research Cell Efficiency Records, http://www.nrel.gov/ncpv,2013-5-14
    [146]Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature,2013,499(7458): 316-319.
    [147]Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009, 131(17):6050-6051.
    [148]Im J H, Lee C R, Lee J W, et al.6.5%efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale,2011,3(10):4088-4093.
    [149]Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398.
    [150]Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific reports,2012,2.
    [151]Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nature communications,2013,4.
    [152]Ku Z, Rong Y, Xu M, et al. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode[J]. Scientific reports,2013, 3.
    [153]Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2013.
    [154]Kim H S, Mora-Sero I, Gonzalez-Pedro V, et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells[J]. Nature communications,2013,4.
    [155]Zhao Y, Nardes A M, Zhu K. Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells:Charge Transport, Recombination, and Diffusion Length[J]. The Journal of Physical Chemistry Letters,2014.
    [156]Moehl T, Gratzel M, Moser J E. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J].2014.
    [157]Xing G, Mathews N, Sun S, et al. Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3Pbl3[J]. Science,2013,342(6156):344-347.
    [158]Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science,2013, 342(6156):341-344.
    [159]Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science,2014.
    [160]Manseki K, Ikeya T, Tamura A, et al. Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells[J]. RSC Advances,2014,4:9652-9655.
    [161]Ball J M, Lee M M, Hey A, et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J]. Energy & Environmental Science,2013,6(6): 1739-1743.
    [162]Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano letters,2013.
    [163]You J, Hong Z, Yang Y, et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility[J]. ACS nano,2014.
    [164]Kim H S, Lee J W, Yantara N, et al. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer[J]. Nano letters,2013,13(6):2412-2417.
    [165]Dualeh A, Tetreault N, Moehl T, et al. Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells[J]. Advanced Functional Materials,2014.
    [166]Eperon G E, Burlakov V M, Docampo P, et al. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar CellsfJ]. Advanced Functional Materials,2014,24(1):151-157.
    [167]Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature communications,2013,4.
    [168]Niu G, Li W, Meng F, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A,2014,2(3):705-710.
    [169]余火根,余家国,郭瑞.溶胶凝胶薄膜的制备和应用.[J].材料导报,2003,17(6):31-33
    [170]赵娟,靳正国,刘晓新.晶种面织构对溶液化学法生长ZnO纳米棒的影响.[J].无机化学学报,2005,21(11):1643-1648
    [171]王涛,刁训刚,舒远杰,等.磁控溅射低温制备ZnO:Al透明导电薄膜的正交试验[J].功能材料,2007,3(38):369-372.
    [172]徐迪.掺铝氧化锌薄膜及纳米棒阵列的制备与表征[D].中南大学,2008.
    [173]Chen Liang-Yih, Yin Yu-Tung. Facile Continuous Flow Injection Process for High Quality Long ZnO Nanowire Arrays Synthesis[J], Cryst. growth des,2012,12: 1055-1059.
    [174]WANG X J, LEI Q S, XU W, ZHOU W L, YU J. Preparation of ZnO: Al thin film on transparent TPT substrate at room temperature by RF magnetron sputtering technique [J]. Materials letter,2009,63(16):1371-1373.
    [175]张跃.一维氧化锌纳米材料[M].北京:科学出版社,2009:376.
    [176]Frank A.J, Kopidakis N, Lagemaat J. Electrons in nano-structured TiO2 solar cells: transport, recombination and photovoltaic properties [J]. Coordination Chemistry Reviews,2004,248(13):1165-79.
    [177]Peng T.Y., Hasegawa A., Qiu J.R., et al., Fabrication of titania tubules with high surface area and well-developed meso-structural walls by surfactant-mediated templating method [J]. Chem. Mater,2003,15:2011-2016.
    [178]Anders H, Graztel M., Light induced redox reactions in nanocrystalline systems. [J], Chem. Rev.,1995,95:49-68.
    [179]Horiuchi H, Katoh R, Hara K, et al. Electron injection efficiency from excited N3 into
    nanocrystalline ZnO films:effect of (N3-Zn2+) aggregate formation [J] J Phys Chem. B,2003,107(11):2570-2574.
    [180]Diamant Y., Chappel S., Chen S. G., et al., Core-shell nanoporous electrode for dye sensitized solar cells:the effect of shell characteristics on the electronic properties of the electrode [J], Coord. Chem. Rev.,2004,248:1271-1276.
    [181]Yan X., Zou C, Gao X.. ZnO/TiO2 core-brush nanostructure: processing, microstructure and enhanced photocatalytic activity [J], J. Mater. Chem.,2012,22, 5629-5640.
    [182]Wang Q, Moser J E, Gratzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells[J]. J Phys Chem B,2005,109:14945-14953.
    [183]He C, Zheng Z, Tang H ,et al. Electrochemical impedance spectroscopy characterization of electron transport and recombination in ZnO nano rod dye-sensitized solar cells[J].J Phys Chem C,2009,4:10322-10326.
    [184]Bisquert J. Theory of the impedance of electron diffusion and recombination in a thin layer [J]. J Phys Chem B,2002,106:325-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700