用户名: 密码: 验证码:
超导直线同步驱动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线驱动技术具有广泛的应用前景。目前,直线电机驱动系统面临的一个主要难题就是效率问题,主要归结于两个方面的原因,一是常规铜材料构成的线圈在大电流下产生的欧姆热损耗;二是常规(线圈)磁体产生电磁场的有效利用问题。而超导材料以及超导应用技术的研究和发展为解决此类问题带来了曙光。首先,超导材料的强载流能力(比铜导线高2-3个数量级以上)可以轻易产生常规磁体难以达到的高场强,从而大幅提高动子电枢受到的电磁推力,而且可以降低整套系统的体积和重量;其次,超导材料的零电阻特性又可以有效降低在大电流情况下的欧姆热损耗。因此,超导技术与直线电机技术的结合必将对直线驱动技术的研究和发展带来新的动力。
     论文首先对直流型和脉冲电流型这两种超导直线同步驱动系统的工作原理进行了理论分析。在对超导直线驱动系统工作原理的理论分析基础上,论文完成了直流型超导直线同步驱动系统的设计研究。利用PSIM、Quartus Ⅱ、Ansoft (Maxwell与Simplorer)等软件对电路部分、测控部分以及电枢的运动过程分别进行了功能仿真与分析,仿真结果表明设计结果符合预期,验证了系统设计的可行性。根据系统的设计结果,选择适当的各分系统所需的硬件组成,构建了由两级超导定子线圈构成的直流型低温超导直线驱动系统。通过实验数据以及实验数据与理论设计值之间的比较,说明了设计的正确性以及利用超导技术实现直线驱动技术的可行性。
     同时,论文对脉冲电流型超导直线驱动系统的各部分组成进行了分析与仿真计算,仿真结果表明脉冲型超导直线驱动系统的设计主要在于如何实现超导定子线圈的电流波形以及定子线圈与电枢之间的互感梯度这两个因素的最佳匹配关系,从而实现系统的最佳运行性能。系统运行参数的改变,可以实现不同的直线驱动功能。比如不同的触发位置,即可以实现不同步长的步进功能,又可以实现不同运行速度的直线加速功能。
     由于脉冲电流型超导直线驱动系统在工作过程中,超导定子线圈将承受短暂的脉冲大电流冲击,而且此电流值一般都会高于超导线圈的临界电流值。超导定子线圈在承受此类过电流脉冲冲击情况下是否仍能正常工作(不被损坏)关系到脉冲型超导直线驱动系统的安全可靠性。因此论文最后对超导线圈在过电流情况下的工作安全性能进行了研究。通过实验可以看出,高温超导带材绕制而成的超导线圈,虽然其临界电流小于实验中所需承受的脉冲电流峰值,但是超导线圈可以承受约为其临界电流6倍的脉冲电流冲击而不遭到损坏,并且在超过临界电流的脉冲电流冲击下其失超区域能够快速恢复至超导状态。高温超导线圈的过电流冲击能力体现了脉冲型高温超导直线驱动技术的可行性。
The linear drive motor has promising application in all sorts of machines that require linear motion. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself because of the resistance of the stator coil and low current density of the coil. The problem can be solved partly through the application of superconducting technology. Firstly, ohmic loss of the linear motor can be reduced largely because of zero resistance of superconductor. Secondary, the current density of the superconductor is about100-1000times than the copper. So the application of superconducting magnet in linear drive motor can produce higher magnetic field and higher thrust force, and also reduce the volume and weight of the linear motor system. Accordingly, the application of the superconducting technology will promote the fast development of linear drive technology.
     Firstly, the paper theoretically analyzes the principle of both DC current and pulsed current superconducting linear synchronous drive system. Based on the theoretical analysis of superconducting linear synchronous drive system principle, this paper completed the design research of DC superconducting linear synchronous drive system. By using PSIM, Quartus II, Ansoft and other simulation software, the circuit, control system and moving process of armature were simulated and analyzed respectively. According to the optimization of the system design results, a DC low temperature superconducting linear synchronous drive system consisting of two superconducting stator coil was established. Comparing the experimental results and the theoretical design values, the correctness of the design and the feasibility of superconducting linear drive technology were proved.
     Meanwhile, this paper analyses and simulates the subsystems of pulsed-current superconducting linear driving system. The simulation results show that the critical problem of the optimal design is how to match between current waveform of stator coil and mutual-inductance grads to achieve the best performance. Different system parameters can realize different linear driving functions. For example, different trigger positions can realize stepping function with different steps, and straight line motion with different running speed.
     The high temperature superconducting (HTS) stator coils of pulsed current superconducting linear driving system should experience a pulsed current which is higher than the critical current of HTS tapes. The superconducting stator coil which withstands such an impact of current pulse (without damage) is related to the safety and reliability of the pulsed current superconducting linear driving system. So over-current testing of the HTS coil is performed in the last part of the paper. Experimental results show that the HTS superconducting coil can withstand a short over-current pulse which is6times than the critical current of HTS tapes without being damaged electromechanically, and the quench area can revert to superconducting state quickly after the current decayed. The over-current impact ability of HTS coil proves the feasibility of pulsed current HTS linear driving technology.
引文
[1]Sawada, K., Outlook of the superconducting maglev[J]. Proceedings of the IEEE,2009,97(11):1881-1885
    [2]王银顺.超导电力技术基础[M].北京:科学出版社.2011
    [3]范则阳.超导磁储能系统在舰船电力系统中的应用研究[D].华中科技大学硕士学位论文.2004
    [4]王家素,王素玉.超导技术应用[M].成都:成都科技大学出版社.1995
    [5]林良真,张金龙,李传义等.超导电性及其应用[M].北京:工业大学出版社.2001
    [6]章立源,张金龙,崔广雯.超导物理学[M].北京:电子工业出版社.1995
    [7]金建勋,郑陆海.高温超导材料与技术的发展及应用[J].电子科技大学学报,2006,35(4):612-623
    [8]吴志荣.国内外超导材料开发进展[J].中国金属通报,2010,(35):40-41
    [9]钱廷欣,周雅伟,赵晓鹏.新型超导材料的研究进展[J].材料导报,2006,20(2):98-101
    [10]林德华,佟存柱,张杰等.超导理论与应用研究的最新进展[J].重庆大学学报,2002,25(8):142-144
    [11]冯瑞华,姜山.超导材料的发展与研究现状[J].低温与超导,2007,35(6):520-522
    [12]蔡传兵,刘志勇,鲁玉明.实用超导材料的发展演变及其前景展望[J].中国材料进展,2011,30(3):1-8
    [13]赵喜平.磁共振成像系统原理及其应用[M].北京:科学出版社.2000
    [14]易汉平,张劲松,刘庆等.实用Bi系高温超导带材[J].中国有色金属学报,2004,14(S.1):341-346
    [15]马衍伟,肖立业.第2代高温超导YBCO涂层导体的发展及其应用[J].科学通报,2005,50(1):1-5
    [16]姚文新.超导材料与技术国外发展现状与趋势[J].新材料产业,2003(12):25-28
    [17]Ayai N, Hayashi K, Yasuda K. Development of Bi-2223 superconducting wires for AC applications[J]. IEEE Trans on Appl Super.2005,15(2):2510-2513
    [18]Amdt T J, Aubele A, Krauth H, et al. Progress in the preparation of technical HTS-tapes of type B-2223/Ag-alloy of industrial Lengths[J]. IEEE Trans on Appl Super.2005,15(2):2503-2506
    [19]袁集华.铌钛(NbTi)和铌锡(Nb3Sn)超导体的制造和应用[C].北京:钢铁研究总院.2000
    [20]王金星.超导磁体[M].北京:原子能出版社.1985
    [21]周羽生.高温超导脉冲功率应用电磁特性的基础研究[D].华中科技大学博士学位论文.2006.
    [22]国家自然科学基金委员会工程与材料科学部.电气科学与工程(学科发展战略研究报告)[M].北京:科学出版社.2006
    [23]中国科学技术协会,中国电机工程学会编.动力与电气工程学科发展报告(2009-2010)[M].北京:中国科学技术出版社.2010
    [24]Tanaka S. The superconductor industry in the 21st century[J]. ISTEC journal.2000,13(4):9-12
    [25]马衍伟,肖立业.第二代高温超导YBCO涂层导体的发展[J].科学通报,2004,50(1):1-5
    [26]Nagamatsu J, Nkagawa N, et al. Superconductivity at 39K in magnesium diboride[J]. Nature,2001, 410(1):63-64
    [27]Musenich R, Fabbrecatore P, Ferdeghini S, et al. Behavior of MgB2 react and wind coils above 10K[J]. IEEE Trans, on Applied Superconductivity.2005,15(2):1452-156
    [28]K. Yasukkhi. Superconducting magnet development in Japan[J]. IEEE Trans. on Magnetics.1983,19(3): 179-188
    [29]G.R. Slemon, R.A. Turton, P.E. Burke. A linear synchronous motor for high-speed ground transport [J]. IEEE Trans. on Magnetics.1974,10(3):435-438
    [30]G.R. Slemon. The canadian maglev project on high-speed interurban transprotation[J]. IEEE Trans. on Magnetics.1975,11(5):1478-1473
    [31]D.L. Atherton, A.R. Eastham. Canadian developments in superconducting maglev and linear synchronous motors[J]. Cryogenics.1975.15(7):395-402
    [32]D.L. Atherton, A.R. Eastham. Superconducting maglev and LSM development in Canada[J]. IEEE Trans, on Magnetics.1975,11(2):627-632
    [33]D.L. Atherton, J.A. Cunningham, et al. Design, analysis and test results for a superconducting linear synchronous motor[J]. PROC. IEE,1977,124(4):363-372
    [34]D.L. Atherton, A.R. Eastham, et al. Superconducting linear synchronous motor tests[J]. IEEE Trans. on Magnetics.1977,13(1):776-779
    [35]Y. Iwasa, W.S. Brown, C.B. Wallace. An operational 1/25-scale magneplane system with superconducting coils[J]. IEEE Transactions on Magnetics.1975,11(5):1490-1492
    [36]J.H. Rakels, J.L. Mahtani, R.G Rhodes. The circular form of the linear superconducting machine for marine propulsion[J]. IEEE Transactions on Magnetics.1981,17(1):127-129
    [37]O. Tsukamoto, Y. Tanaka, S. Sato. Development of superconducting linear induction motor for steel making processes[J]. IEEE Transactions on Magnetics.1991,27(2):2248-2251
    [38]O. Tsukamoto, N. Amemiya, K. Yamagishi. Development of prototype superconducting linear induction motor for steel making processes[J]. IEEE Trans. on Applied Superconductivity.1995,5(2):976-979
    [39]苏晓声.日本进行高温超导磁浮列车现场试验[J].铁道知识.2006,(3):19
    [40]Muramatsu R, Sadakata S, Tsuda M. Trial Production and Experiments of Linear Actuator with HTS Bulk Secondary[J]. IEEE Transactions on Applied Superconductivity.2001,11(1):1976-1979
    [41]Shungo Sadakata, Hiroshi Ueda, Makoto Tsuda, et al. Trial Production and Experiment of Linear Actuator with Double-Sided Primary and HTS Bulk Secondary[J]. IEEE Transactions on Applied Superconductivity.2002,12(1):824-827
    [42]Atsushi Takahashi, Hiroshi Ueda, Atsushi Ishiyama. Trial Production and Experiment of Linear Synchronous Actuator With Field-Cooled HTS Bulk Secondary[J]. IEEE Transactions on Applied Superconductivity.2003,13(2):2251-2254
    [43]Sato A, Ueda H, Ishiyama A. Operational Characteristics of Linear Synchronous Actuator With Field-Cooled HTS Bulk Secondary[J]. IEEE Transactions on Applied Superconductivity.2005,15(2): 2234-2237
    [44]Yoshida K, Matsumoto H. Propulsion and Guidance Simulation of a High-Temperature Superconducting Bulk Ropeless Linear Elevator[J]. IEEE Transactions on Applied Superconductivity. 2004,40(2):615-618
    [45]Yoshida K, Matsumoto H, Eguchi M. Optimal design of thrust force in vertical-type HTS bulk LRM [C]. Physica C.2005,426-431:839-847
    [46]Yoshida K, Matsumoto H. Propulsion and guidance simulation of HTS bulk linear synchronous motor taking into account E-J characteristic[J]. Physica C,2003,392-396:690-695
    [47]Kim W S, Jung S Y, Choi H Y. Development of a Superconducting Linear Synchronous Motor[J]. IEEE Transactions on Applied Superconductivity.2002,12(1):842-845
    [48]B. Oswald, K. J. Best, T. Maier. Conceptual design of a SC HTS linear motor[J]. Superconductor Science & Technology.2004,17(5):S445-S449
    [49]B. Oswald, K. J. Best, M. Soell, et al. HTS Motor Program at OSWALD, Present Status[J]. IEEE Transactions on Applied Superconductivity.2007,17(2):1583-1586
    [50]P. T. Putman, K. Salama. Optimization of Energy Conversion in Monolithic Superconducting Magnets[J]. IEEE Transactiions on Applied Superconductivity.2003,13(2):2146-2148
    [51]P. T. Putman, K. Salama. A model for calculating magnetic forces between monolithic YBa2Cu3O7-5 magnets[J]. IEEE Transactions on Applied Superconductivity,2002.12(2):1818-1822
    [52]P. T. Putman, Y. X. Zhou, H. Fang, et al. Application of melt-textured YBCO to electromagnetic launchers [J]. Superconductor Science and Technology.2005,18:s6-s9
    [53]Stumberger G, Aydemir M T. Design of a Linear Bulk Superconductor Magnet Synchronous Motor for Electromagnetic Aircraft Launch Systems[J]. IEEE Transactions on Applied Superconductivity.2004, 14(1):54-62
    [54]P. Tenca, G. Stumberger, T. A. Lipo. Analysis and Modeling of Future Electrical Propulsion and Launch Systems at the University of Wisconsin -Madison[C].2005 IEEE Electric Ship Technologies Symposium.2005:12-19
    [55]Pina, J.M., Ventim Neves, M., McCulloch, M.D., Rodrigues, A.L., Design of a linear synchronous motor with high temperature superconductor materials in the armature and in the field excitacion system[C]. J. Phys:Conf. Series.2006,43(1):804-808
    [56]Pina, J.M., Ventim Neves, M., Rodrigues, A.L., Case Study in the Design of HTS Machines:an All Superconducting Linear Synchronous Motor[C]. In:International Conference on Power Engineering, Energy and Electrical Drives.2007:185-190
    [57]Pina, J., Goncalves, A., Pereira, P., et al. A test rig for thrust force measurement of an all HTS linear synchronous motor[C]. J. Phys:Conf. Series.2008,97(1):1-7
    [58]Joao Murta Pina, Mario Ventim Neves, Alfredo Alvarez, Amadeu Leao Rodrigues. Numerical Design Methodology for an All Superconducting Linear Synchronous Motor [C]. International Federation for Information Processing 2011,349:553-562
    [59]T. Hirayama, K. Uwada, and S. Kawabata, Static Characteristics of a Double-sided Linear Switched Reluctance Motor with High-temperature Superconducting Excitation Winding[C], Proceedings:15th International Conference on Electrical Machines and Systems,2012
    [60]赵凌志,彭燕,沙次文等.超导直线电机水下电磁发射系统及其性能分析.2004年全国直线电机学术年会论文集[C].2004:62-65
    [61]沙次文,彭燕,戴银明等.大推力超导直线电机[J].直线电机与自动化.2002:128-136
    [62]Yan Peng, Lingzhi Zhao, Ran Li, et al. Design Study on a Large Force Superconducting Linear Driver[J], IEEE Transactions on Applied Superconductivity.2007,17(2):1537-1540
    [63]Yang, W., Wang, Y, Zhang, P., Liu, Y, Potential Development of Linear Motors for Unmanned Air Vehicles[J]. IEEE Transactions on Applied Superconductivity.2010,20(3):1856-1859
    [64]W. J. Yang, Z. Wen, Y. Duan, et al. Construction and Performance of HTS Maglev Launch Assist Test Vehicle[J]. IEEE Transactions on Applied Superconductivity.2006,16(2):1108-1111
    [65]Jin Jian-xun, Zheng Lu-hai. High Temperature Superconducting Linear Motor Technology [J]. Journal of University of Electronic Science and Technology of China.2009,38(5):579-586
    [66]Luhai Zheng, Jianxun Jin. Design and Electromagnetic Analysis of a HTS Linear Synchronous Motor[C]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices.2009,25-27:5-10
    [67]Luhai Zheng, Jianxun Jin. Investigation of HTS Bulk Magnet Linear Synchronous Motors[C]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices.2009,25-27:17-21
    [68]Jianxun Jin, Youguang Guo, Wei Xu, et al. Design and Analysis of a Linear Induction Motor for a Prototype HTS Maglev Transportation System[C]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices.2009,25-27:81-84
    [69]金建勋,郑陆海.高温超导直线电动机技术[J].电子科技大学学报.2009,38(5):579-588
    [70]金建勋,郑陆海.混合型高温超导直线磁浮同步电动机.中国专利.2010
    [71]金建勋,郑陆海.采用高温超导块材磁体的直线悬浮推进系统.中国专利.2010
    [72]Youguang Guo, Jianxun Jin, Jianguo Zhu, et al. Performance Analysis of a Linear Synchronous Motor with HTS Bulk Magnets[C]. XIX International Conference on Electrical Machines-ICEM 2010
    [73]金建勋,郑陆海.复合在轨充磁功能的高温超导磁悬浮直线推进系统.中国专利.2011
    [74]郑陆海.复合磁悬浮的高温超导直线同步电动机[D].电子科技大学博士学位论文.2011
    [75]Jianxun Jin, Luhai Zheng, Youguang Guo, et al. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension[J]. Physica C.2011,471:520-527
    [76]Jian Xun Jin, Lu Hai Zheng. Driving models of high temperature superconducting linear synchronous motors and characteristic analysis[J]. Superconductor science and technology.2011,24:1-9
    [77]Jianxun Jin, Luhai Zheng, Wei Xu, et al. Influence of external traveling-wave magnetic field on trapped field of a high temperature superconducting bulk magnet used in a linear synchronous motor[J]. Journal of applied physics.2011,109:113913-1
    [78]Luhai Zheng and Jianxun Jin. Studying the force characteristics of a high temperature superconducting linear synchronous motor[J]. Journal of applied physics.2011,110:043915-1
    [79]Jianxun Jin, Luhai Zheng, Wei Xu, et al. Thrust characteristics of a double-sided high temperature superconducting linear synchronous motor with a high temperature superconducting magnetic suspension system[J]. Journal of applied physics.2011,109:073916-1
    [80]Jian Xun Jin, Lu Hai Zheng, You Guang Guo, and Jian Guo Zhu, Performance Characteristics of an HTS Linear Synchronous Motor With HTS Bulk Magnet Secondary[J]. IEEE Transactions on Industry Applications.2011,47(6):2469-2477
    [81]Jian Xun Jin, Lu Hai Zheng, You Guang Guo, et al. High-Temperature Superconducting Linear Synchronous Motors Integrated With HTS Magnetic Levitation Components[J]. IEEE Transactions on Applied Superconductivity.2012,22(5):5202617
    [82]Luhai Zheng, Jianxun Jin, Yuoguang Guo, et al. Performance Analysis of an HTS Magnetic Suspension and Propulsion System With a Double-Sided HTS Linear Synchronous Motor[J]. IEEE Trans, on Magnetics.2012,48(2):655-658
    [83]郭明珠,方进,李永亮等.基于ANSYS的高温超导直线感应电机仿真分析[J].超导技术.2008,36(3):23-28
    [84]郭明珠,方进,李永亮等.新型高温超导直线感应电机的设计及有限元分析[J].稀有金属材料与工程.2008,37(4):389-394
    [85]郭明珠.高温超导直线感应电动机及其控制系统的研究[D].北京交通大学硕士学位论文.2008
    [86]方进.轨道交通用高温超导直线电机驱动装置.中国专利.2009
    [87]许智斌.直线电机的计算机辅助设计及研究[D].北京交通大学硕士学位论文.2009
    [88]方进,郑琼林,张威等.节能型轨道交通用高温超导直线电机驱动装置.中国专利.2010
    [89]盛龙,方进,张威等.轨道交通用高温超导直线感应电机电磁分析[J].超导技术.2010,38(8): 32-37
    [90]赵佳,张威,方进等.高温超导直线感应电机的设计和电磁分析[C].第四届中国高校电力电子与电力传动学术年会.2010:62-65
    [91]Jia Zhao, Wei Zhang, Jin Fang, et al. Design of HTS Linear Induction Motor Using GA and the Finite Element Method[C].5th IEEE Conference on Industrial Electronics and Applicationsis,2010:527-531
    [92]Jia Zhao, Trillion Q. Zheng, Wei Zhang, et al. Design and Electromagnetic Analysis of a Prototype HTS Linear Induction Motor[C].5th IEEE Conference on Industrial Electronics and Applicationsis,2010: 3276-3279
    [93]J. Zhao, T.Q. Zheng, W. Zhang, et al. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor[J]. Physica C.2011,471:1474-1478
    [94]赵佳,张威,方进等.高温超导直线感应电机的电磁优化设计[J].北京交通大学学报.2011,35(2):123-127
    [95]盛龙.高温超导直线感应电机电磁分析[D].北京交通大学硕士学位论文.2011
    [96]赵佳,郑琼林,张威等.高温超导直线感应电机的优化设计[J].电工技术学报.2011,26(6):33-38
    [97]赵佳.高温超导直线感应电机设计研究[D].北京交通大学博士学位论文.2011
    [98]方进,郑琼林,张威等.分离冷却型轨道交通用高温超导直线电机驱动装置.中国专利.2011
    [99]方进,李栋,逯文佳.无铁芯型轨道交通用高温超导直线电机驱动装置.中国专利.2011
    [100]赵佳,张威,方进等.结构参数对高温超导直线感应电机电磁性能的影响[J].中国电机工程学报.2011,31(3):97-103
    [101]Jing Li, Suyu Wang, Jiasu Wang, et al. Experimental Study of the Electromagnetic Forces of a HTS Bulk Magnet Subjected to Sinusoidal Traveling Magnetic Field[J], IEEE Transactions on Applied Superconductivity.2010,99:1-4
    [102]李婧.扁平型三相绕组上方高温超导磁体力学性能研究[D].西南交通大学博士学位论文.2011
    [103]晏飞翔,李婧,郑石均等.一种用于同步直线电机的高温超导动子.中国专利.2011
    [104]郑石钧.小型高温超导直线同步电机样机的设计与测试[D].西南交通大学硕士学位论文.2011
    [105]Fei Yen, Shijun Zheng, Xin Chen, et al. Superconducting Excitation System of a Small Scale Linear Synchronous Motor[J], IEEE Transactions on Applied Superconductivity.2012,22(3):5201103
    [106]S. J. Zheng, F. Yen, J. Li, et al. Performance of a Small-Scale High Temperature Superconducting Linear Synchronous Motor Prototype[J]. IEEE Transactions on Applied Superconductivity.2012,22(2): 5200104
    [107]Jing Li, Fei Yen, Shijun Zheng, et al. Normal Force Analysis on a High Temperature Superconducting Linear Synchronous Motor[J], IEEE Transactions on Applied Superconductivity.2012,22(3):5200304
    [108]王莹,肖峰.电炮原理[M].北京:国防工业出版社.1995.
    [109]M. Cowan, E. C. Cnare, B. W. Duggin, et al. The Reconnection Gun[J]. IEEE Trans, on Mag.,1986, 22(1):1429-1434.
    [110]Ronald J. Kaye, Edwin L. Brawley, Billy W. Duggin, et al. Design and Performance of A Multi-stage Cylindrical Reconnection Launcher[J].1991,27(1):596-600.
    [111]M.M.Widner. WARP-10:A numerical simulation model for the cylindrical reconnection launcher[J]. IEEE Trans, on Mag.,1991,27(1):634-638.
    [112]Ronald J. Kaye, Eugene C. Cnare, M. Cowan. Design and Performance of Sandia's Contactless Coilgun for 50mm Projectiles[J]. IEEE Trans, on Mag.,1993,29(1):680-685.
    [113]Ronald J. Kaye, Isaac R. Shokair, and Richard W. Wavrik. Design and Evaluation of Coils for a 50 mm Diameter Induction Coilgun Launcher[J]. IEEE Trans, on Mag.,1995,31(1):478-483.
    [114]Ronald J. Kaye. Operational requirements and issues for coilgun electromagnetic launchers[J]. IEEE Trans. Mag.,2005,45(1):194-199.
    [115]Z. Zabar, X. N. Lu, L. Birenbaum, et al. A 500m/s Linear Induction Launcher[C].8th IEEE Pulsed Power Conference, San Diego, CA,1991
    [116]Balikci A, Zabar Z, Birenbaum L, et al. On the design of coilguns for super-velocity launchers [J]. IEEE Trans on Mag,2007,43(1):107-110.
    [117]J. M. Schroeder, J. H. Gully, and M. D. Driga. Eelectromagnetic launchers For Space Applications[J].IEEE Trans. Magn.,1989,25(1):504-507.
    [118]J. H. Chang, E. B. Becker, and M. D. Driga. Coaxial electromagnetic launcher calculations using FE-BE method and hybrid potentials[J]. IEEE Trans, on Mag.,1993,29(1):655-660.
    [119]D. A. Bresie and S. K. Ingram. Coilgun technology At The Center For Electromechanics, The University Of Texas At Austin[J]. IEEE Trans, on Mag.,1993,29(1):649-654.
    [120]D. A. Bresie, J. L. Bacon, S. K. Ingram, et al. SPEAR Coilgun[J]. IEEE Trans. Magn.,1995,31(1): 467-472.
    [121]I. R. McNab. A Research Program to Study Airborne Launch to Space[J]. IEEE Trans. Magn.,2007, 43(1):486-490.
    [122]Katsumi Masugata. Hyper Velocity Acceleration by a Pulsed Coilgun Using Traveling Magnetic Field[J]. IEEE Trans. Magn.,1997,33(6):4434-4438.
    [123]J. Nett and L. Gernandt. Inductive Acceleration of Moving Projectiles and Synchronization between the Driving Field and the Projectile Motion[J]. IEEE Trans. Magn.,1995,31(1):499-503.
    [124]赵纯.三级重接式电磁发射系统的仿真与实验研究[D].大连理工大学硕士学位论文.2006.
    [125]高顺受,孙承纬,陈英石等.60mm口径电磁感应线圈炮的实验研究[J].高压物理学报.1996,10(3):190-198.
    [126]B. N. Turman, B. M. Marder, G. J. Rohwein, et al. The Pulsed Linear Induction Motor Concept for High-Speed Trains. Sandia National Laboratories, SANDIA REPORT,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700