用户名: 密码: 验证码:
强震和冲击荷载下球面网壳的动力失效分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于各种人为因素或地质灾害的影响,建筑物严重破坏的事故频繁发生。重要的大跨度网壳结构,例如地区标志性建筑,如果遭受特大地震、撞击等意外危害时发生破坏,不仅会造成生命财产的重大损失,甚至还会有深远的政治影响。结构设计的根本任务是保证结构安全而防止结构倒塌则是保证结构安全的底线。对有大量人群聚集的大跨度建筑结构进行倒塌分析,采取防止动力倒塌的措施,将逐步成为结构设计的一项重要内容。
     造成建筑物失效破坏的突发事故既可是自然界中的突发地震,也可是意外的冲击。本文以球面网壳为研究对象,具体包括单层网壳、双层网壳两种形式,以数值模拟和试验研究相结合的方法,分析了强震和冲击荷载下网壳结构的动力响应、失效模式,模拟了动力倒塌的过程,并揭示了倒塌机理,主要内容如下:
     (1)以结构倒塌的数值模拟为基础,选用显式动力非线性程序LS-DYNA作为数值模拟平台。对数值模拟的相关技术及其难点进行了分析,自编制前处理子程序,采用了钢材的弹塑性损伤本构模型。建立了基于IDA方法的球面网壳的动力倒塌的计算流程,提出了基于能量守恒的倒塌判断准则。
     (2)通过对单层球面网壳结构的动力分析,定义了强震下网壳结构的失效模式。研究了单层网壳结构在强震下的动力响应和失效特征,重点模拟了结构倒塌的全过程,从凹陷产生、扩展的角度揭示了倒塌机理。对影响网壳结构极限承载力的影响因素,如:矢跨比、屋面荷载、有无下部支承结构进行了分析。对荷载分布不对称下的网壳结构进行了动力倒塌分析。对空腹双层网壳进行了动力全过程分析。
     (3)提出了在网壳中增设开孔的双钢管约束屈曲支撑作为减震装置,对其耗能能力进行了分析。提出了在单层网壳、双层网壳中,约束屈曲支撑布置的方式,对其减震效果进行了分析。并对无约束屈曲支撑和有约束屈曲支撑的网壳的极限承载力进行了对比分析。结果表明,约束屈曲支撑具有较好的减震效果,并能提高网壳的极限承载力
     (4)通过缩尺模型振动台试验,对网壳结构在不对称荷载作用下的动力失效模式进行了验证。结果表明:荷载不均匀分布会降低强震下网壳结构的极限承载力。在设计过程中,应充分考虑不对称荷载对网壳动力稳定性的影响。
     (5)研究了如落石等这种质量较大、速度较小的冲击荷载,对冲击荷载进行了分析。建立了网壳结构冲击响应的计算模型,定义了网壳结构在这种荷载作用下的失效模式,分析了各失效模式对应的动力响应特点,对失效机理进行了研究。分析了当网壳同时遭受两点冲击、三点冲击的动力响应,对三点冲击下的网壳结构的整体倒塌机理进行了研究。结果表明:对于单点冲击,对应的失效模式为轻度损伤、局部凹陷、局部冲切破坏。当冲击质量和速度均较小时,冲击能量较小,冲击点处的杆件有轻微的损伤;当速度较大时,一般发生的是局部冲切破坏,当质量较大,速度适中时,才会发生局部凹陷。网壳结构在最不利两点冲击和三点冲击下的失效机理为;由于局部凹陷形成、扩展、联通,导致结构最后动力倒塌。
     (6)进行了缩尺模型的网壳结构的冲击试验,采用不同质量的冲击物对网壳结构的不同节点进行了冲击测试,分析了整体结构的动应力、动位移及加速度,和有限元结果进行了对比分析,研究了网壳结构的动力响应特点,验证了网壳结构在低速冲击下局部凹陷的失效模式。结果表明:冲击区域测点的响应明显大于非冲击区域的测点,主肋节点测点的响应大于其他测点的响应,说明冲击荷载产生的应力波主要沿冲击方向传播,沿环形传播的能量衰减的较快。不同冲击点产生的结构响应也不同,主肋靠近顶点的节点、中间部位的节点为不利加载点。
In recent years, because of the influence of various human factors or geological disasters, the accidents of buildings with serious damage occur frequently. If important large-span reticulated shells such as regional landmark buildings are damaged by some unintentional injuries such as great earthquakes and collision, it will not only cause great losses of life and property, but also have profound political influence. The fundamental task of structural design is to ensure the safety of structures, and preventing structural collapse is the baseline of ensuring structural safety. Making a collapse analysis and taking some measures to prevent dynamic collapse for long-span reticulated shells gathering large crowds will gradually become an important content of structure design.
     The accidents causing the damage of building are either the earthquakes in nature or emergency collisions. Taking the spherical reticulated shells, including two forms of single-layer and double-layer reticulated shells, as the objects, this paper makes an analysis of dynamic response and the failure mode under the great earthquake and impact load, simulates the process of dynamic collapse and reveals the collapse mechanism with the method of combining numerical modeling and experimental research. Major contents are as follows:
     (1) Based on the numerical modeling of structural collapse, nonlinear explicit dynamic program LS-DYNA is applied for the platform of numerical modeling. The related technologies and its difficulties of numerical modeling are analyzed and the elastoplastic damage constitutive model of steel was used by handling subroutine before self-documenting. The calculation process of dynamic collapse of spherical reticulated shells on the basis of IDA method is established and the judgment criteria of collapse based on the energy conservation have been proposed.
     (2) Based on the dynamic analysis of single-layer spherical reticulated shell, failure modes of reticulated shell under strong earthquake are defined. The paper studies the dynamic response and failure characteristics of single-layer reticulated shell under earthquake, mainly simulates the whole process of structural collapse and reveals the collapse mechanism from the perspective of production and extension of dent. In addition, the paper also analyzes the factors affecting the ultimate bearing capacity of reticulated shell such as rise-span ratio, roof load and supporting structure, makes a dynamic collapse analysis under unsymmetrical load distribution and makes an analysis of dynamic process of vierendeel double-layer reticulated shell.
     (3) The paper puts forward that adding perforating double-steel tube Buckling-Restrained Braces(BRBs) in the reticulated shell is an energy damping device and analyzes the energy dissipation. In addition, the paper puts forward the arrangement way of BRB on the single-layer and double-layer reticulated shell, analyzes the damping effects and makes a comparative analysis of the ultimate bearing capacity of reticulated shell with and without BRBs. The results show that the shell with BRBs has a good damping effect, and can improve the ultimate bearing capacity of the reticulated shell.
     (4) The paper verifies the failure mode of single-layer reticulated shell under unsymmetrical load distribution by scale model shaking table test. The results show that the unsymmetrical load distribution will reduce the ultimate bearing capacity of the reticulated shell. In the design process, we should fully consider unsymmetrical load impact on dynamic stability of the reticulated shell.
     (5) The paper studies the impact load with bigger quality and slower speed such as rockfall, analyzes the impact load, establishes the numerical model of reticulated shell under impact, defines the failure modes of reticulated Shell under impact, analyzes the dynamic response characteristics of every failure model and researches the failure mechanism. And the paper also analyzes the dynamic response when the reticulated shell is impacted by two nodes or three nodes and researches the dynamic collapsed mechanism of the reticulated shell under the impact of three nodes. The results show that as for the single node's impact, the failure mode is slightly damaged, local dent and local punching failure. When both of the quality and speed is small, the impact energy is small and the bar has a slight damage; only when the speed is bigger can local punching failure occur and only when the quality is bigger and the speed is moderate can local dent occur. The dynamic failure mechanism of shell under the impact of two nodes or three nodes is that the formation, extension and linking together of local dent finally lead to dynamic collapse.
     (6) The paper carries out the impact tests on the reticulated shell of scaled model, tests on different nodes of reticulated shell by the impacted body with different qualities, analyzes the dynamic stress, dynamic displacement and acceleration supporting, makes a comparative analysis on the FEM results, researches the dynamic response characteristics of reticulated shell and verifies the failure model of local dent of reticulated shell under the low-velocity impact. The results show that the response of impact area is significantly greater than other area and the response of main ribs node is greater than the other response, which proves that the stress wave produced by the impact spread along the direction of impact and the energy attenuation is faster when spreading along the circular. The response impact by different points is different, the vertex and middle ribs node is the most adverse impact point.
引文
[1]董石麟.空间结构的发展历史、创新、形式分类与实践应用[J].空间结构,2009,15(3):22-43.
    [2]胡庆昌.建筑结构抗震减震与连续倒塌控制(第2版)[M].北京:中国建筑工业出版社,2008.
    [3]江晓峰,陈以一.大跨桁架体系的连续性倒塌分析与机理研究[J].工程力学,2010,27(1):76-83.
    [4]王磊.桁架结构体系的连续性倒塌试验与数值仿真研究[D].上海:同济大学,2010:73-107.
    [5]蔡建国,王蜂岚,冯健,等.新广州站索拱结构屋盖体系连续倒塌分析[J].建筑结构学报,2010,31(7):103-109.
    [6]Schmidt L C, Morgan P R, Clarkson J A. Space trusses with brittle type strut buckling[J]. Journal of Structural Division, ASCE,1976,102(7):1479-1492.
    [7]李时.大跨度钢结构的抗连续性倒塌设计[J].四川大学学报,2011,43(6):20-28.
    [8]张会,喻云龙,常银生.大跨空间网格结构连续性倒塌研究及实例分析[J].施工技术,2013,42(8):50-53.
    [9]余佳亮.无站台柱张弦桁架雨棚结构性能分析与倒塌模拟研究[D].浙江:浙江大学,2012:134-109.
    [10]王雯.钢柱四边支承的单层柱面网壳强震倒塌机理[D].北京:北京工业大学,2012.
    [11]Holzer S M.Static and dynamic stability of reticulated shells [C]//International Colloquium on Stability of Structures under Static and Dynamic loads. Washington D.C., USA:1977,27-39.
    [12]Zhang Yigang, Lan T T. Research on the dynamic characteristics and seismic response of space frames [J]. International Journal of Space Structures.2000,15(3&4):239-242.
    [13]Cao Zi, Zhang Yigang. A study on the seismic response of lattice shells[J]. International Journal of Space Structures,2000,15(3&4):243-247.
    [14]郭海山,沈世钊.单层球面网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24(3):1-9.
    [15]郭海山,王林安,沈世钊.水平阶跃荷载作用下单层球面网壳结构的动力稳定性[J].哈尔滨建筑大学学报,2002,35(5):17-22.
    [16]范峰,钱宏亮,邢估慧,等.强震作用下球面网壳动力强度破坏研究[J].哈尔滨工业大学学报,2004,36(6):722-725.
    [17]邢佶慧.网壳结构抗震性能研究[D].哈尔滨:哈尔滨工业大学,2004.
    [18]支旭东.网壳结构在强震下的失效机理[D].哈尔滨:哈尔滨工业大学,2006.
    [19]支旭东,范峰,沈世钊.材料损伤累积在网壳强震失效研究中的应用[J].哈尔滨工业大报,2008,40(2):169-173.
    [20]聂桂波.网壳结构构件空间滞回性能试验与精细化本构模型研究[D].哈尔滨:哈尔滨工业大学,2008.
    [21]聂桂波.网壳结构基于损伤累积本构强震失效机理及抗震性能评估[D].哈尔滨:哈尔滨工业大学,2012.
    [22]范峰,聂桂波,支旭东.三向荷载作用下圆钢管材料本构模型研究[J].建筑结构学报,2011,32(8):59-68.
    [23]聂桂波,范峰,支旭东.基于精细化本构的单层柱面网壳强震失效机理研究[J].土木工程学报,2012,45(S1):30-35.
    [24]范峰,聂桂波,支旭东,等.圆钢管空间滞回试验及材料本构模型[J].土木工程学报,2011,44(12):18-24.
    [25]丁阳,齐麟,李忠献.应用于单层网壳结构动力响应精细化模拟的杆件计算模型[J].建筑结构学报,2011,32(5):85-91.
    [26]沈世钊,支旭东.球面网壳在强震下的失效机理[J].土木工程学报,2005,38(1):11-20.
    [27]王晓可,范峰,支旭东,等.单层柱面网壳在强震下的破坏机理研究[J].土木工程学报,2006,39(11):26-32.
    [28]Fan Feng, Shen Shizhao. Study on the dynamic strength failure of reticulated domes under severe earthquakes [C]//Proceedings o f IASS Sym posium. Montpe llier, France: International Association for Shell and Spatial Structures,2004:140-141.
    [29]沈世钊,支旭东.球面网壳在强震下的失效机理[J].土木工程学,2005,38(1):11-20.
    [30]杨飚,支旭东,范峰,等.短程线网壳结构强震作用下的动力强度破坏[J].哈尔滨工业大学学报,2008,40(12):1878-1882.
    [31]杨飚,支旭东,范峰,等.施威德勒网壳结构的动力强度破坏[J].东北大学学报,2007,28(1):125-128.
    [32]支旭东,范峰,沈世钊,等.凯威特型单层球面网壳在强震下的失效研究[J].工程力学,2008,25(9):7-12.
    [33]苑宏宇,叶继红,沈世钊.单层球面网壳在简单动荷载作用下的失效研究[J].工程抗震与加固改造,2006,28(4):10-17.
    [34]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报,2007,40(8):29-34.
    [35]支旭东,吴金妹,范峰,等.考虑材料损伤累积单层柱面网壳在强震下的失效研究[J].计算力学学报,2008,25(6):770-775.
    [36]史义博,支旭东,范峰,等.单层球面网壳在强震作用下的损伤模型[J].哈尔滨工业大学学报,2008,40(12):1874-1877.
    [37]支旭东,范峰,樊钦鑫,等.正交正放单层鞍型网壳在强震下的失效研究[J].土木工程学报,2011,44(11):34-42.
    [38]邢佶慧,栗荣刚,吕晓寅,等.单层鞍形网壳强动力荷载作用下的破坏模式[J].空间结构,2010,16(1):19-23.
    [39]王晓可,范峰,支旭东等.单层柱面网壳在强震下的破坏机理研究[J].土木工程学报,2006,39(11):26-32.
    [40]Fan Feng, Shen Shizhao. Study on the dynamic strength failure of reticulated domes under severe earthquakes[C]//International Association for Shell and Spatial Structures. Montpellier, France:2004,140-141.
    [41]Zhi Xudong, Fan Feng, Shen Shizhao. Failure mechanism of single layer reticulated domes subjected to earthquakes [J]. Journal of the International Association for Shell and Spatial Structures,2007,48(1):29-44.
    [42]Zhi Xudong, Fan Feng, Shen Shizhao, et al. Single-layer saddle-curve earthquake dynamic strength failure famage accumulation[C]//Proceedings of the International Association for Shell and Spatial Structures Symposium. Valencia, Spain:2009, 345-354.
    [43]Shen Shizhao, Zhi Xudong. Failure mechanism of reticular shells subjected to dynamic actions[C]//Proceedings of the fourth International Conference on Advances in Steel Structures.Shanghai,2005:69-82.
    [44]范峰,沈世钊.单层球壳模拟地震振动台试验及结构减振试验研究[J].哈尔滨建筑大学学报,2000,33(3):18-22.
    [45]梁海彤.双层柱面网壳减震控制理论和振动台试验研究[D].北京:北京工业大学,2003.
    [46]梁海彤,吴金志,张毅刚.替换阻尼杆件的双层柱面网壳被动控制振动台试验研究 [J].地震工程与工程振动,2003,23(4):178-182.
    [47]邢估慧,柳旭东,范锋,等.单层柱面网壳结构地震模拟振动台试验研究[J].建筑结构学报,2004,25(6):1-8.
    [48]张良兰.大跨度单层椭球面网壳的抗震性能试验研究[D].上海:同济大学,2007.
    [49]杨丰源.单层球面网壳动力失稳振动台试验研究[D].哈尔滨:哈尔滨工业大学,2013.
    [50]聂桂波,范峰,支旭东,等.单层球面网壳结构失效机理振动台试验[J].土木工程学报,2013,46(10):17-25.
    [51]叶继红,潘锐.单层球壳模型结构振动台试验研究[J].建筑结构学报,2013,34(4):81-90.
    [52]王多智.冲击荷载下网壳结构的失效机理研究[D].哈尔滨工业大学,2010.
    [53]Karagiozova D, Jones N. Dynamic buckling of elastic-plastic square tubes under axial Impact [J]. International Journal of Impact Engineering,2004,30(2):167-192.
    [54]Nagel G M, Thambiratnam D P. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading [J]. International Journal of Impact Engineering,2006,32(10):1595-1620.
    [55]刘锋,吕西林.冲击载荷作用下框架结构的非线性动力响应[J].振动工程学报,2008,21(2):107-114.
    [56]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):8-10.
    [57]Kim H S, Kim J, An D W. Development of integrated system for progressive collapse analysis of building structures considering dynamic effects [J]. Advances in Engineering Software,2009,40(1):1-8.
    [58]Astaneh-Asl A. Progressive prevention in new and existing buildings[C]//Proceedings of the 9th Arab Structural Engineering Conference. Abu Dhabi:UAE University Publication,2003:1001-1008.
    [59]Tan S. Cable-based retrofit of steel building floors to prevent progressive collapse [D]. Berkeley:University of California in Berkeley,2003.
    [60]Wierzbicki T, Teng X. How the airplane wing cut through the exterior columns of the World Trade Center [J]. International Journal of Impact Engineering,2003, 28(6):601-625.
    [61]Lynna K M, Isobe D. Structural collapse analysis of framed structures under impact loads using ASI-gauss finite element method [J]. International Journal of Impact Rngineering,2007,34(9):1500-1516.
    [62]Isobe D, Toi Y. Analysis of structurally discontinuous reinforced concrete building frames using the ASI technique [J]. Computers and Structures,2000,76(4):471-481.
    [63]Isobe D, Tsuda M. Seismic collapse analysis of reinforced concrete framed structures using the finite element method [J]. Earthquake Engineering and Structural Dynamics, 2003,32(13):2027-2046.
    [64]Toi Y, Isobe D. Finite element analysis of quasi-Static and dynamic collapse behaviors of framed structures by the adaptively shifted integration technique [J]. Computers and Structures,1996,58(5):947-955.
    [65]李海旺,郭可,魏剑伟,等.撞击载荷作用下单层球面网壳动力响应模型实验研究[J].爆炸与冲击,2006,26(1):39-45.
    [66]郭可.单层球面网壳在冲击载荷作用下的动力响应分析[D].太原:太原理工大学,2004.
    [67]史俊亮.K8型单层网壳在撞击荷载作用下的动力响应研究[D].太原:太原理工大学,2005.
    [68]谭双林.单层球面网壳在冲击荷载下的动力响应与失效模式研究[D].哈尔滨:哈尔 滨工业大学,2009.
    [69]田永红.冲击荷载下短程线型和肋环斜杆型球面网壳的失效模式[D].哈尔滨:哈尔滨工业大学,2010.
    [70]范峰,王多智,支旭东等.K8型单层球面网壳抗冲击荷载性能研究[J].工程力学,2009,26(6):75-81.
    [71]王多智,支旭东,范峰等.冲击荷载下K8单层球面网壳的破坏类型[J].工程力学,2008,25(S2):144-149.
    [72]范峰,王多智,支旭东等.冲击荷载下凯威特型球面网壳的失效模式及其判别方法[J].土木工程学报,2010,43(5):56-62.
    [73]Fan Feng, Wang Duozhi, Zhi Xudong, et al. Failure modes for single-layer reticulated domes under impact loads [J]. Transactions of Tianjin University,2008,14(S1): 545-550.
    [74]王多智,范峰,支旭东等.冲击荷载下单层球面网壳的失效机理[J].爆炸与冲击,2010,30(2):169-177.
    [75]Wang Duozhi, Zhi Xudong, FAN Feng, et al. Failure Process and Energy Transmission for Single-Layer Reticulated Domes Under Impact Loads[J]. Transactions of Tianjin University,2008,14(S1):551-557.
    [76]王多智,范峰,支旭东等.考虑重力效应的单层球面网壳抗冲击荷载性能[J].哈尔滨工业大学学报,2009,41(8):19-23.
    [77]王多智,范峰,支旭东等.基于杆件破坏形式的冲击荷载下单层球面网壳失效机理分析[J].振动与冲击,2009,28(10):54-59+225.
    [78]王多智,范峰,支旭东等.冲击荷载下单层凯威特型球面网壳防护方法及建议[J].振动与冲击,2012,31(8):136-142.
    [79]Krauthammer T, Hall R L, Woodson S C, et al. Development of progressive collapse analysis procedure and condition assessment for structures[EB/OL]. Washington D. C: NIBS,2002. http://www. Nibs. Org.
    [80]Izzuddin B A. Conceptual issues in geometrically nonlinear analysis of 3D framed structures [J]. Computer Methods inApplied Mechanics and Engineering,2001, 191(8-10):1029-1053.
    [81]Teh L H, Clarke M J. Corotational and lagrangian formulations for elastic three dimensional beam finite elements [J]. Journal of Constructional Steel Research,1998, 48(2):123-144.
    [82]Chan S L, Gu J X. Exact tangent stiffiaess for imperfect beamolmnn members [J]. Journal of Structural Engineering,2000,126(9):1094-1102.
    [83]Sebastian P M, Victor H C. Free vibration of thin-walled composite beams with static initial stresses and deformations [J]. Engineering Structures,2007,29(3):372-382.
    [84]Chert H H, Lin W Y, Hsiao K M. Co-rotational finite element formulation for thin-walled beams with generic open section [J]. Computer Methods in Applied Mechanics and Engineering,2006,195(19):2334-2370.
    [85]Takanashi K, Ohi K, Chen Y Y. Collapse simulation of steel frames with local buckling[C]//Proceedings of 10th World Conference on Earthquake Engineering. Madrid, Spain,1992.
    [86]陈以一,周锋,陈城.宽肢薄腹H形截面钢柱的滞回性能[J].世界地震工程,2002,18(4):23-29.
    [87]Lawrence K L. ANSYS Tutorial:Release 9.0[M]. Schroff Development Corporation, 2005.
    [88]ABAQUS, Inc. ABAQUS release 6.5 documentation[M].
    [89]Hallquist J O. LS-DYNA theory manual[M]. Livermore Software Technology Corporation,2006.
    [90]陈惠发著,周绥平译.钢框架稳定设计[M].上海:上海世界图书出版公司,1999.
    [91]王伟,陈以一,赵宪忠.钢管节点性能化设计的研究现状与关键问题[J].土木工程学报,2007,40(11):1-8.
    [92]Anderson T L. Fracture Mechanics:Fundamentals and applications [M]. New Yook: CRC Press,2005.
    [93]Meschke G, Borst R D. Computational modelling of concrete structures[M]. London: Taylor&Francis,2006.
    [94]Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics [M]. Oxford:Blackwell Publishing,2007.
    [95]Bank L C, Yin J S. Failure of web-flange junction in postbuckled pultruded I-beams [J]. Journal of Composites for Construction,1999,3(4):177-184.
    [96]Komori K. Simulation of shearing by node separation method[J]. Computers and Structures,2001,79 (2):197-207.
    [97]邱峰,丁桦.具有单元分裂功能的间断有限元方法[J].力学与实践,2006,28(6):54-59.
    [98]Resnyansky A D. DYNA-modelling of the high-velocity impact problems with a splite-lement algorithm [J]. International Journal of Impact Engineering,2002,27(7): 709-727.
    [99]李传民,王向丽,闫华军,等.DEFORM 5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [100]Gao S B, Usami T, GE H B. Ductility evaluation of steel bridge piers with tubes sections [J]. Journal of Structural Mechanism, ASCE,1998,124(3):260-267.
    [101]Kumar S, Usami T. Damage evaluation in steel box columns by cyclic loading tests[J]. Journal of Structure Engineering, ASCE,1996,122(6):626-634.
    [102]Kumar S, Usami T. A note on the evaluation of damage in steel structures under cyclic loading [J]. Journal of Structure Engineering, ASCE,1994,40A,177-188.
    [103]聂桂波.网壳结构基于损伤累积本构强震失效机理及抗震性能评估[D].哈尔滨:哈尔滨工业大学,2012.
    [104]黄兴淮,徐赵东,杨明飞.多维地震下大跨网格结构倒塌分析与抗倒塌措施[J].东南大学学报,2012,42(1):109-113.
    [105]张毅刚,周海涛,吴金志.强震下单层网壳连续倒塌机理[J].北京工业大学学报,2013,39(4):562-569.
    [106]刘明辉.网壳结构的缺陷敏感性分析及其改善[D].上海:同济大学,2009.
    [107]聂桂波,范峰,支旭东,等.单层球面网壳结构失效机理振动台试验[J].土木工程学报,2013,46(10):17-25.
    [108]叶继红,潘锐.单层球壳模型结构振动台试验研究[J].建筑结构学报,2013,34(4):81-90.
    [109]周馄.新型网壳结构减震体系动力响应分析及试验研究[D].兰州:兰州理工大学,2013.
    [110]向欣.边坡落石运动的特性及碰撞冲击作用研究[D].武汉:中国地质大学,2010.
    [111]苏俊杰.带屋面板K6单层球面网壳抗冲击性能试验研究[D].哈尔滨:哈尔滨工业大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700