用户名: 密码: 验证码:
基于人工神经智能的船舶航迹保持控制及通航安全应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着造船业及航运领域的蓬勃发展,船舶也逐步趋于大型化、高速化及自动化,对船舶操控性的要求也越来越高,船舶自动舵的研发受到了空前的重视。船舶在海上航行时,由于航速、装载状态等的变化以及外界环境干扰的影响,致使船舶控制系统具有强不确定性、非线性及不稳定性。因此,研制控制性能优异、易于工程实现的非线性船舶航迹自动舵显得尤为重要。
     本文针对一类单输入单输出不确定非线性系统,基于Lyapunov稳定性理论,人工神经网络(Artificial Neural Networks, ANNs)逼近器、反步技术(Backstepping)、动态面控制技术(Dynamic Surface Control, DSC)和最少学习参数(Minimal Learning Paramaters, MLP)算法,提出了一种新的的自适应神经网络控制方法。将神经网络算法用于逼近控制系统中未知的不确定函数,所得到的闭环系统是半全局一致最终有界的。所提出的算法最显著的特点是:(1)在控制器的设计过程中,当采用反步(Backstepping)方法时,会引发“计算量膨胀”问题,本文引入了DSC技术,其较好地处理了设计过程中的“计算量膨胀”问题。(2)采用人工神经网络技术去逼近控制系统中的未知不确定函数时,针对自适应神经网络算法中易产生“维数灾难”的问题,本文引入了MLP算法解决了这个问题。将MLP与DSC结合,旨在同时解决“维数灾难”及“计算量膨胀”问题,克服控制器设计时可能存在的控制器奇异值问题,从而保证闭环系统的稳定性。
     另一方面,由于船舶运动呈现非线性、强不确定性及复杂性,将提出的单输入单输出非线性系统自适应神经网络控制算法应用到船舶直线航迹保持控制系统中,本文共设计了三种具有鲁棒性、自适应性、可靠性和实时性的船舶航迹保持控制算法;三种控制算法分别针对船舶航迹保持控制系统中的自适应学习参数进行了调整,Matlab仿真实验验证了控制器的控制性能。最后改变控制系统模型参数,并与传统的PD舵控制效果进行对比研究,验证本文提出的控制算法的鲁棒性、自适应性,同时具有计算量小,易于工程实现的特点。
     最后将船舶直线航迹自动控制技术应用于船舶通航安全模拟,将航迹自动控制模块嵌入船舶操纵模拟器,提出了一种基于自动船舶操纵模拟器的船舶通航安全模拟方法,将其应用于船舶在受限水域的通航安全评价研究,弥补了人工船舶操纵模拟器受人为因素影响的缺陷,极大改进了船舶操纵模拟器技术,为船舶安全操纵提供科学、客观的参考决策,进而开发出船舶在各种港口、航道及河道等限制水域内的通航安全智能评估方法,为限制水域内船舶的安全操纵提供客观、可行的参考策略;为船舶安全、快速通过限制水域提供指导,以切实提高船舶通航的安全性和效率;为航道整治及拟建和新建港航工程设施的通航安全论证和评估提供科学、有效的通航模拟和评估方法。
With the vigorous development of the shipbuilding and shipping area industry, the developments of ship also gradually become large-scale, high speed and automation, the requirement of ship handling is becoming more and more higher, research and development of ship autopilot has received the unprecedented attention. When the ship is navigating in the ocean, due to the change of speed and loading condition and also the influence of external environment disturbance, ship control system shows strong uncertainty, nonlinearity and instability. Therefore, the nonlinear ship-tracking autopilot which has the control performance of excellent and easy to realize project implementation is particularly important.
     Based on the control theories and methods, such as Lyapunov stability theory, Artificial Neural Networks, Backstepping technique, Dynamic Surface Control technology and Minimal Learning Paramaters algorithm, this paper proposes a new class of self-adaptive neural network control algorithm for the non-linear single input and output system. Artificial Neural networks is used to approach the unknown uncertain functions in the control system, and the closed-loop system can achieve semi-globally uniformly ultimately bounded. The most significant feature of the algorithm are:(1) This paper introduces DSC technology which can slove the problem of "explosion of complexity" caused by the traditional Backstepping technique during the process of the controller design.(2) When employing neutral networks to approximate the uncertain functions in the control system, sometimes it will cause the problem of "dimension curse" which will enlarge the designing workload. For this reason, MLP algorithm is introduced to cope with this problem. For the sake of solving the above-mentioned problems simultaneously, MLP algorithm and DSC method is combined. In this way it can not only use less parameters and reduce computational load, but also avoid the possible existing problem of controller singularity. In addition, the stability of the closed-loop system is guaranteed and the tracking error converges around zero.
     On the other hand, the motion of ship shows nonlinearity, strong uncertainty and complexity, for these reason the proposed self-adaptive neural network control algorithm of the non-linear single input and output system in this paper is being applied to the ship liner-track keeping control system.Three kinds of linear-track keeping control algorithm with good robustness, self-adaptively, reliability and real-time are put forward finally.. The proposed three control algorithms are focused on adjusting the adaptive learning parameters in the ship, track keeping control system, so the number of the parameters in each subsystem are different. Matlab simulation results validate the effectiveness of the proposed algorithm. To further illustrate the performance of the proposed algorithm with tradition PD autopilot, change the parameters of ship's control system, through comparing the simulation results, we find that the proposed algorithm has the property of adaptive, robustness, simple, and easy to be implemented in applications.
     Finally, a new assessment technique for ship navigation safety in the constrained waters is proposed based on ship's linear-track keeping control technique. By embedding the linear-track keeping control module in the ship handling simulator (SHS), a traffic simulation method based on autoSHS for the safety of ship navigation is finally proposed. By applying this simulation method to the evaluation of the safety of the ship navigating in restricted water, the defect of handSHS which is affected by human factors can be make up, and the SHS technology can be improved greatly. A scientific and objective reference decision can also be gained due to the safety of the ship manipulating. Intelligent navigation safety assessment methods for ships in restricted waters, such as a variety of ports, channels and rivers will be developed further. Meanwhile, objective and feasible reference strategies will also be given for the safety of ship manipulation in restricted waters. What's more, safety and efficiency of the ship traffic will be improved practically by providing guidance how to behave safely and speedy; Scientific and effective navigation simulation and evaluation methods will be provided for navigation safety demonstration and evaluation of channel improvement projection and the new port facilities.
引文
[1]杨盐生,贾欣乐.不确定系统的鲁棒控制及应用.大连:大连海事大学出版社,2003.
    [2]任俊生.高速水翼船非线性运动建模及控制的研究:(博士学位论文).大连海事大学,2005.
    [3]张显库,贾欣乐.船舶运动与控制.北京:国防工业出版社,2006.
    [4]赵国良,席志红.船舶航迹控制系统的研究.中国造船,1991,04,82-88.
    [5]李铁山,杨盐生,洪碧光等.船舶航迹控制鲁棒自适应模糊设计.控制理论与应用.2007,24(3):445-448.
    [6]杜佳璐,王琳,姜传林.基于逆推方法的非线性船舶航迹跟踪控制.船舶工程.2010,1:41-51.
    [7]李长喜.不完全驱动船舶直线航迹控制系统的研究与设计: (硕士学位论文).杭州:浙江工业大学,2008.
    [8]M Breivik, T. I Fossen. Path Following of Straight Lines and Circles for Marine Surface Vessels. Proc. of the IFAC CAMS, Ancona: Italy,2004:65-70.
    [9]K. Y Pettersen, E Lefeber. Way-point Tracking Control of Ships. Proc. of 40th IEEE CDC, Orlando:USA,2001:940-945.
    [10]TS Li, YS Yang, YF Zheng. Input-output Linearization Design for Straight-line Tracking Control of Underactuated Ships. Systems Engineering and Electronics.2004, 26 (7):945-948.
    [11]J Ghommam, F Mnif, A Benali, et al. Nonsingular Serret-Frenet Based Path Following Control for an Underactuated Surface Vessel. Journal of Dynamic Systems, Measurement and Control.2009,131 (2):1-8.
    [12]李铁山,杨盐生,郑云峰.不完全驱动船舶航迹控制输入输出线性设计.系统工程与电子技术.2004,26(7):945-980.
    [13]韩冰,赵国良.基于微分平滑的欠驱动船舶航迹控制.哈尔滨工程大学学报.2004,25(6):709-727.
    [14]刘勇,卜仁祥,朱业求.基于Backstepping方法的船舶直线航迹控制.大连海事大学学报.2012,38(1):5-8.
    [15]TS Li, B Yu, BG Hong. A Novel Adaptive Fuzzy Design for Path Following for Underactuated Ships with Actuator Dynamics, ICIEA, Xi'an, CHINA,2009:2796-2800.
    [16]《公路水路交通运输“十二五”科技发展规划(征求意见稿)》,http: //www.tranbbs.com/news/cnnews/Planning/news_74324.shtml
    [17]李铁山.船舶直线航迹非线性设计方法: (博士学位论文).大连:大连海事大学,2005.
    [18]刘程.基于DSC-MLP的船舶航向自动舵自适应模糊设计: (硕士学位论文).大连:大连海事大学,2011.
    [19]夏洪胜.船舶航向保持的PID控制.福州大学学报.1993,21(5):217-221.
    [20]林永屹,陈晓琴,周涛.基于非线性PID的船舶航向自动舵设计.2009,29(6):46-49.
    [21]Amerongen JV. Adaptive Steering of Ship's-A Model Reference Approach. Automatica, 1984,20 (1):3-14.
    [22]JL Du, C Guo. Nonlinear Adaptive Design for Course-tracking Control of Ship Without a Priori Knowledge of Control Gain. Journal of Control Theory &Application.2005,22 (2):15-320.
    [23]XD Ye, JP Jiang. Adaptive Nonlinear Design Without a Priori Knowledge of Control Directions. Automatic Control, IEEE Trans.1998,43 (1):1617-1621.
    [24]李铁山,杨盐生,郑云峰等.模型参数不确定的不完全驱动船舶航迹控制自适应反演设计.大连海事大学学报:自然科学版,2003,29(S1):25-29.
    [25]徐建辉.混合智能在船舶航迹控制中的应用: (硕士学位论文).上海:上海海事大学,2006.
    [26]赵晴.船舶航迹智能控制算法的研究: (硕士学位论文).厦门:集美大学,2012.
    [27]苏会会.基于神经网络控制的船舶航迹自动舵技术: (硕士学位论文).哈尔滨:哈尔滨工程大学,2009.
    [28]徐海彬,鲍其莲,张炎华.PID自动舵的自整定专家系统.船舶工程.2004,26(3):60-63.
    [29]Enabze YM. Intelligent Controller Design for the Ship Steering Problem. IEE Proc, Control Theory Applications,1996,143 (1):17-24.
    [30]Bums RS. The Use of Artificial Neural Networks for the Intelligent Optimal Control of Surface Ships. IEEE J Oceanic Eng,1995,20 (1):65-72.
    [31]Parson M G, Clubb A C. An Assessment of Fuzzy Logic Vessel Path Control. IEEE J Oceanic Eng.1995,20 (4):276-284.
    [32]J. M. Godhavn. Nonlinear Tracking of Underactuated Surface Vessels. Proc. of the 35th Conference on Decision and Control, Kobe, Japan,1996,1:975-980.
    [33]K. Y. Pettersen and H. Nijmeijer. Tracking Control of an Underactuated Surface Vessel. Conference on Decision & Control Tampa, Florida USA,1998:4561-4566.
    [34]0. M. Aamo, M. Arcak, T. I. Fossen, etal. Global Output Tracking Control of a Class if Euler-Lagrange Systems. Proc.39th IEEE Conf. Decision and Control, Sydney, Australia,2000:2478-2483.
    [35]Y. FangA, E. Zergeroglu*, M. S. De Queirozt, and D. M. Dawson. Global Output Feedback Control of Dynamically Positioned Surface Vessels. An Adaptive Control Approach Proceedings of the American Control Conference, Arlington,2001:3109-3114.
    [36]T. I. Fossen. Nonlinear Output Feedback Control of Dynamically Positioned Ships Using Vectorial Observer Backstepping. IEEE Trans, on Control Systems Tech,1998, 6 (1):121-128.
    [37]Dong W, Guo Y. Nonlinear Tracking Control of Underactuated Surface Vessel. American Control Conf. Portland USA,2005:4351-4356.
    [38]J. Ghommam, F. Mnif, N. Derbel. Global Stabilisation and Tracking Control of Underactuated Surface Vessels. IET Control Theory Appl,2010,4:71-88.
    [39]K. D. Do, Z. P. Jiang, J. Pan. Underactuated Ship Global Tracking Under Relaxed Conditions. IEEE Trans. Autom. Control,2002,47 (9):1529-1536.
    [40]K. D. Do, Z. P. Jiang, J. Pan. Universal Controllers for Stabilization and Tracking of Underactuated Ships. Syst. Control Lett,2002,47:299-317.
    [41]Mario Emanuel Serrano. Trajectory Tracking of Underactuated Surface Vessels: A Linear Algebra Approach. IEEE Transactions on Control Systems Technology,2014, 22 (3),1103-1111.
    [42]Baris Bidikli, Enver Tatlicioglu and Erkan Zergeroglu. Observer Based Output Feedback Tracking Control of Dynamically Positioned Surface Vessels. American Control Conference (ACC), Washington, USA,2013,554-559.
    [43]K. D. Do, Z. P. Jiang, J. Pan. Robust Adaptive Path Following of Underactuated Ships. Automatica,2004,40:929-944.
    [44]K. D. Do, J. Pan. Global Robust Adaptive Path Following of Underactuated Ships. Automatica,2006,42:1713-1722.
    [45]K. D. Do, J. Pan. Global Tracking Control of Underactuated Ships with Nonzero off-diagonal Terms in Their System Matrices. Automatica,2005,41:87-95.
    [46]H. Ashraf iuon, K. Muske. Sliding Mode Tracking Control of Surface Vessels. American Control Conference, Seattle, Washington, USA,2008,556-561.
    [47]H. Ashrafiuon, K. Muske, and L. McNinch, etal. Sliding Mode Tracking Control of Surface Vessels. IEEE Trans. Ind. Electron.2008,55 (11):4004-4012.
    [48]L. McNinch, H. Ashrafiuon, K. Muske. Optimal Specification of Sliding Mode Control Parameters for Unmanned Surface Vessel Systems. Proc. American Control Conference, USA,2009:2350-2355.
    [49]M. Asadi, H. Gholizade. Narm Adaptive Stochastic Sliding Mode Ship. Autopilot for Way-Point Tracking. ICEE, Mashhad,2013:1-6.
    [50]K. D. Do. Global Robust and Adaptive Output Feedback Dynamic Positioning of Surface Ships. IEEE International Conference on Robotics and Automation, Rome, Italy,2007:4271-4276.
    [51]A. Behal, D. M. Dawson, and W. E. Dixonet, etal. Tracking and Regulation Control of an Underactuated Surface Vessel with Nonintegrable Dynamics. IEEE Transactions on Automatic Control,2002,47 (3):495-500.
    [52]Yun Jip KIM. Vessel Tracking Vision System Using a Combination of Kalman Filter, Bayesian Classification and Adaptive Tracking Algorithm,2014:196-200.
    [53]张戎军,许汉珍.变结构控制在船舶操纵中的应用.控制与决策.1994,9(2):156-160.
    [54]张显库,蒋丹东,贾欣乐.PC104工控机在航迹自动舵中的应用.电子技术应用,1998,5:27-28.
    [55]张显库.H∞自动舵鲁棒性的海试验证.控制理论与控制应用,2000,1(17):147-149.
    [56]程启明.船舶航迹间接多模态控制方法研究.应用科学学报,2001,02:153-156.
    [57]李铁山,杨盐生,郑云峰.不完全驱动船舶非线性控制.交通运输工程学报,2003,04:39-43.
    [58]孟浩,王岩,刘志林等.基于终端滑模的欠驱动船舶航迹跟踪鲁棒控制.中国控制会议,西安,2013:4364-4368.
    [59]周岗,姚琼荟,陈永冰等.不完全驱动船舶直线航迹控制稳定性研究.自动化学报,2007,04:378-384.
    [60]陈雪丽,程启明.船舶航迹保持的神经网络控制器研究.河海大学学报:自然科学版,2001,05:70-73.
    [61]程启明,万德钧,陈熙源.船舶航迹自动舵的神经网络控制方法研究.仪器仪表学报,1999,04:371-375.
    [62]卜仁祥,刘正江,李铁山.船舶航迹迭代非线性滑模增量反馈控制算法.交通运输工程学报,2006,04:75-79.
    [63]徐铁,蔡奉君,胡勤友等.基于卡尔曼滤波算法船舶AIS轨迹估计研究.现代电子技术,2014,37(5):97-99.
    [64]朱齐丹,于瑞亭,夏桂华等.风浪流干扰及参数不确定欠驱动船舶航迹跟踪的滑模鲁棒控制.控制理论与应用,2012,07:959-964.
    [65]李荣辉.欠驱动水面船舶航迹跟踪自抗扰控制.大连海事大学学报,2013,39(2)5-8.
    [66]郭晨,汪洋,孙富春等.欠驱动水面船舶运动控制研究综述.控制与决策.2009,24(3):321-327.
    [67]卜仁祥.欠驱动水面船舶非线性反馈控制研究:(博士学位论文).大连:大连海事大学,2005.
    [68]曾薄文,朱齐丹,于瑞亭.欠驱动水面船舶的曲线航迹跟踪控制.哈尔滨工程大学学报.2011,32(10):1317-1322.
    [69]詹月林.船舶航迹间接多模态控制方法研究.工业仪表与自动化装置.2003,6:31-34.
    [70]J. A. Cuming and T. K. Jenssen. Risk Analysis of Shipping and Offshore Operation. The Journal of Navigation,1984,37:37-48.
    [71]秦庭荣,陈伟炯,郝育国等.综合安全评价(FSA)方法.中国安全科学学报,2005,15(4):88-92.
    [72]B. Judson. A Tanker Navigation Safety System. The Journal of Navigation,1997, 50 (1):97-108.
    [73]B. Cardi. Integrating Ship Maneuverability with Safety. SNAME Transactions, 1994,102:447-674.
    [76]井上欣三.操船的安全评价に关すゐ基础的研究—潜在操船水域の推定—.日本航海学会论文集,1988,79:133-140.
    [79]井上欣三,原洁,增田惠司等.操船者の危险感基づく操船环境と交通环境の同时评价法.日本航海学会论文集,1997,97:191-199.
    [80]原洁,长泽明,中村绅也.海上交通状况に关する操船者の主观的危险度评价.日本
    航海学会论文集,1990,83:71-80.
    [82]C. C. Glandorp, J. F. Kemp, E. M. Goodwin, et al. Quantification of Navigational Risk in European Waters. The Journal of Navigation,1986,39:90-96.
    [83]文华.海运安全评价研究:(博士学位论文).武汉:武汉理工大学,2003.
    [84]Y. Itoh, M. Numano, K. Tanaka, et al. Study on a Method of Safety Assessment by Using a Simulator for a High-speed Vessel. Papers of Ship Research Institute, 1998,35 (4):23-64.
    [85]肖英杰.运用船舶航海模拟器对洋山深水港进港航道宽度和深度的研究:(博士学位论文).上海:上海海运学院,2002.
    [86]钱华忠.船舶操纵模拟器在港航设计论证上的应用研究与设计:(博士学位论文).上海:上海海运学院,2002.
    [87]张秀凤,洪碧光,金一丞.船舶操纵模拟器在船舶通航安全评估中的应用.中国航海,2003,(03):24-26.
    [88]K. Hiroaki. Use of Simulators in Assessment, Learning and Teaching of Mariners. WMU Journal of Maritime Affairs,2005,4(1):10-18.
    [89]Y. Arai, T. Minamiya and S. Okuda. Perception of Ship's Movement in Docking Maneuvering Using Ship-Handling Simulator. Korean Institute of Navigation and Port Research, Korea Shipowners'Association, KSS Line LTP.2006.
    [90]牟军敏,邹早建,黄立文等.长江通航安全研究的船舶操纵仿真系统.武汉理工大学学报(交通科学与工程版),2006,30(04):633-636.
    [91]张寿桂,翁跃宗,熊振南.港口航道和码头通航安全评估.大连海事大学学报,2006,(04):43-47.
    [92]焦战立.应用船舶模拟技术进行通航安全论证.中国水运,2007,08:39-41.
    [93]赵春波.航海模拟器仿真研究在港航工程评估中的应用.中国水运(理论版),2007,(04):9-10.
    [94]熊振南,翁跃宗,周世波.船舶操纵模拟器在港口通航安全评估中的应用.集美大学学报(自然科学版),2008,13(1):57-62.
    [95]彭国均,翁跃宗,熊振南等.基于船舶操纵模拟器的船舶通航安全评估.船舶工程,2008,6:67-69.
    [96]徐元,邓健,严庆新.基于航海模拟器仿真的码头工程通航评估.船海工程,2008,(03):84-86.
    [97]T. Okazaki, J. Kayano, et al. A Study on Berth Maneuvering Using Ship Handling Simulator. IEEE International Conference on Systems, Man and Cybernetics,2009, 654-659.
    [98]T. Okazaki, K. Murai, N. Mitomo, et al. A Study on Navigator' s Mental Workload in Ship Handling Simulator. IEEE Int. Conference on Systems, Man and Cybernetics.2007: 3644-3649.
    [99]程启明等.一种新型神经网络控制器及在自动舵上的应用.控制与决策,1999,14(2):125-129.
    [100]金宏章,王科俊,粱超.具有横摇补偿控制的潜艇航向变结构控制,中国造船,2001,42(2):75-81.
    [101]刘胜,方亮,葛亚明等.船舶航向GA-PID自适应控制研究.系统仿真学报,2007,19(16):3783-3786.
    [102]J. Cheng, J. Q. YI and D. B. Zhao. A new Fuzzy Autopilot for Way-point Tracking Control of Ships. IEEE International Conference on Fuzzy Systems,2006:451-456.
    [103]X. F. Wang, Z. J. Zou, and T. S. Li. Path Following Control of Underactuated Ships Based on Unscented Kalman Filter. Journal of Shanghai Jiaotong University (Science),2010,15 (1):108-113.
    [104]罗伟林,邹早建.基于最小二乘支持向量机的船舶操纵运动建模.系统仿真学报,2008,20(13):3381-3384.
    [105]Luo W. L. and Zou Z. J. Parametric Identification of Ship Maneuvering Models by Using Support Vector Machines. Journal of Ship Research,2009,53 (1):19-30.
    [106]刘勇.欠驱动船舶直线航迹控制:(硕士学位论文).大连:大连海事大学,2011.
    [107]张桂臣,任光.船舶航迹复合预测控制模型.交通运输工程学报,2007,7(6):41-45.
    [108]Li T S, Yang Y S, and Hu J Q, etal. Robust Adaptive Fuzzy Tracking Control for a Class of Perturbed Uncertain Nonlinear Systems with UVCGF. International Journal of Wavelets, Multiresolution and Information Processing,2007,5(1): 227-231.
    [109]Yang Y S, Feng G and Ren J S. A Combined Backstepping and Small-gain Approach to Robust Adaptive Fuzzy Control for Strict-feedback Nonlinear Systems. IEEE Transactions On Systems, Man and Cybernetics-Part A:Systems and Humans,2004,34 (3):406-420.
    [110]Yang Y S and Wang X F. Adaptive H Infinity Tracking Control for a Class of Uncertain Nonlinear Systems Using Radial-basis-function Neural Networks. NEUROCOMPUTING,2007,70 (4-6):932-941.
    [111]T. A. Burton. A Liapunov Functional for a Singular Integral Equation, Nonlinear Anal. Theory Methods Appl,2010,73:3873-3882.
    [112]T. A. Burton. Liapunov Functionals for Integral Equations. Trafford Publishing, Victoria, B. C. Canada,2008,08-1365.
    [113]Shaher Momani, Samir Hadid. Lyapunov Stability Solutions of Fractional Integrodifferential Equations. International Journal of Mathematics and Mathematical Sciences,2004,47:2503-2507.
    [114]Long-ge Zhang, Jun-min Li, Guo-pei Chen. Extension of Lyapunov Second Method by Fractional Calculus. Pure and Applied Mathematics,2005,3:1008-5513.
    [115]贾欣乐,张显库.船舶运动智能控制与∞鲁棒控制.大连:大连海事大学出版社,2002.
    [116]杨盐生.不确定系统的鲁棒控制及其在船舶运动控制中的应用:(博士学位论文).大连:大连海事大学,2000.
    [117]Y. Li, Y. Chen, I. Podlubny. Stability of Fractional-order Nonlinear Dynamic Systems:Lyapunov direct method and generalized Mittag Leffler stability. Comput Math Appl,2010,59:1810-1821.
    [118]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000.
    [119]韩立群.人工神经网络教程.北京:北京邮电大学出版社,2006.
    [120]尹建川.径向基函数神经网络及其在船舶运动控制中的应用研究:(博士学位论文).大连海事大学,2007.
    [121]M. J. D. Powell, Radial Basis Functions for Multivariable Interpolation. Clarendon Press, New York, USA.1987:143-167.
    [122]Broomhead D S, Lowe D. Multivariable Functional Interpolation and Adaptive Networks. Complex Systems,1988,2:269-303.
    [123]Sandberg I W. Structure Theorems for Nonlinear Systems. Multidimensional Systems and Signal Processing,1991,2:267-286.
    [124]Poggio T, Girosi F. Networks for Approximation and Learning. Proceedings of the IEEE,1990,78 (9):1481-1497.
    [125]徐宗本,张讲社,郑亚林.计算智能中的仿生学:理论与算法.北京:科学出版社,2003.
    [126]阮晓刚.神经计算科学.北京:国防工业出版社,2006.
    [127]Han M, Xi J H. Efficient Clustering of Radial Basis Perception Neural Network for Pattern Recognition, Pattern Recognition,2004,37 (10):2059-2067.
    [128]Diao Y X, Pasino K M. Stable Adaptive Control of Feedback Linearizable Time-varying non-linear Systems with Application to Fault-tolerant Engine Control, International Journal of Control,2004,77 (17):1463-1481.
    [129]Cowper M R, Mulgrew B, Unsworth C P. Nonlinear Prediction of Chaotic Signals Using a Normalized Radial Basis Function Network, Signal Processing,2002,82(5) 775-789.
    [130]Guo W, Han M. Generalized Predictive Controller Based on RBF Neural Network for a Class of Nonlinear System, Proc.2006 American Control Conference, Minneapolis, USA,2006:1569-1574.
    [131]Chen S, Billings S A, Grant P M. Nonlinear System Identification Using Neural Networks, International Journal of Control,1990,51 (6):1191-1214.
    [132]Hwang K, Tan S, Tsai M. Reinforcement Learning to Adaptive Control of Nonlinear Systems, IEEE Trans, on Systems, Man, And Cybernetics,2003,33 (3):514-521.
    [133]Pottmann M, Seborg S E. A Nonlinear Predictive Control Strategy Based on Radial Basis Function Models. Computers Chemical Engineering,1997,21 (9):965-980.
    [134]Canete J F, Cerezo A G, Moral I. G. Direct Control with Radial Basis Function Networks: Stability Analysis and Applications. Journal of Systems Architecture, 1998,44 (4):583-596.
    [135]Wei. Li, Jun. Ning, and Zhengjiang Liu, etal. Adaptive Neural Networks Control on Ship's Linear-Path Following. Lecture Notes in Computer Science,2012:418-427.
    [136]Yang Y S, Zhou C J and Li T S. Small Gain Method for Adaptive Robust Fuzzy Control of a Class of Nonlinear Systems. IEEE International Symposium on Intelligent Control. Houston, Texas, USA,2003:40-45.
    [137]TS Li, BG Hong, GY Shi. DSC-Backstepping Based Robust Adaptive NN Control for Strict-feedback Nonlinear Systems via Small Gain Theorem. Int. J. Systems. Control and Communications,2008,1 (1):124-144.
    [138]W. Lin, C. QIAN. Adaptive Control of Nonlinear Parameterized Systems. The Smooth Feedback Cade, IEEE Trans. Autom. Control.2002,47 (8):1249-1266.
    [139]杨新爱.不确定非线性级联系统的输出反馈控制:(博士学位论文).曲阜师范大学,2011.04.
    [140]杨盐生.船舶运动控制研究.交通运输工程学报,2003,2:34-39.
    [141]Sastry S S, Isidori A. Adaptive Control of Linearization Systems. IEEE Trans. on Automatic Control,1989,34:1123-1131.
    [142]Isidori A. Nonliear Control Systems. Berlin:Springer-Verlay,1995.
    [143]A. R Teel, R. R. Kadiyala, and P. V. Kokotovic, etal. Indirect Techniques for Adaptive Input-output Linearization of Nonlinear Systems. International Journal of Control,1991,53:193-222.
    [144]K. Nam, A. Arapostations. A Model-reference Adaptive Control Scheme for Pure-feedback Nonlinear Systems. IEEE Transactions on Automatic Control,1988, 33:803-811.
    [145]D. G. Taylor, P. V. Kokotovic, and R. Marino, etal. Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics. IEEE Transactions on Automatic Control, 1989,34:405-412.
    [146]I. Kanellakopoulos, P. V. Kokotovic, R. Marino. Robustness of Adaptive Nonlinear Control Under an Extended Matching Condition. In Proceedings of IFAC Symposium on Nonlinear Control Systems and Design, Capri, Italy,1989:192-197.
    [147]Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems. IEEE Trans, on Automatic Control, 1991,36:1241-1253.
    [148]Krstic M, Kanellakopoulos I and Kokotovic P V. Adaptive Nonlinear Control Without Oveparametrization. Systems and Control Letters,1992,19:177-185.
    [149]Kanellakopoulos I. Passive Adaptive Control of Nonlinear Systems. Int. J. of Adaptive Control and Signal Processing,1993,7:339-352.
    [150]D. Seto, A. M. Annaswamy, J. Baillieul. Adaptive Control of Nonlinear Systems With a Triangular Structure. IEEE Transactions on Automatic Control,1994,39: 1411-428.
    [151]M. M. Polycarpou, P. A. Ioannou. A Robust Adaptive Nonlinear Control Design. Automatica,1996,32:423-427.
    [152]B. Yao, M. Tomizuka. Adaptive Robust Control of SISO Nonlinear Systems in a Semi-strict Feedback Form. Automatica,1997,33:893-900.
    [l53]Yip P P, Hedrick J K. Adaptive Dynamic Surface Control:a Simplified Algorithm for Adaptive Backstepping Control of Nonlinear Systems. Control,1998,71 (5) 959-979.
    [154]Li T S, Wang D, Feng G, et al. A DSC Approach to Robust Adaptive NN Tracking Control for Strict-Feedback Nonlinear Systems. IEEE Transactions on Cybernetics, 2010,40(3):915-927.
    [155]D. Wang and J. Huang. Neural Network-Based Adaptive Dynamic Surface Control for a Class of Uncertain Nonlinear Systems in Strict-Feedback Form. IEEE Trans, on Neural Networks,2005,16 (1):195-202.
    [156]Swaroop D, Gerdes J C, Yip P P, etal. Dynamic Surface Control of Nonlinear Systems. The American Control Conference, Albuquerque, NM, USA,1997,5:3028-3034.
    [157]Swaroop D, Hedrick J K, Yip P P, etal. Dynamic Surface Control for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control.2000,45(10):1893-1899.
    [158]胡宴才.船舶航向自动舵自适应模糊设计:(硕士学位论文).大连海事大学,2013.
    [159]GeSS, Wang J. Direct Adaptive NN Control for a Class of Nonlinear Systems. IEEE Trans, on Neural Networks,2002,13 (1):214-221.
    [160]Ge S S and Wang J. Robust Adaptive Neural Control for a Class of Perturbed Strict Feedback nonlinear Systems. IEEE Trans, on Neural Networks,2002,13 (6) 1409-1419.
    [161]Ge S S, Hong F, and Lee T H. Adaptive Neural Control of Nonlinear Time-delay Systems with Unknown Virtual Control Coefficients. IEEE Trans, on Systems, Man and Cybernetics-Part B: Cybernetics,2004,34 (1):499-516.
    [162]Zhang T, Ge SS, Hang CC. Stable Adaptive Control for a Class on Nonlinear Systems Using a Modified Lyapunov Function.IEEE Trans, on Automatic Control,2000,45(1): 129-132.
    [163]Yang Y S. Model Reference Adaptive Robust Fuzzy Control for Ship Steering Autopilot with Uncertain Nonlinear Systems. Applied Soft Computing Journal.2003, 3 (4):305-316.
    [164]Yang Y S, Zhou CJ and JiaX L. Robust Adaptive Fuzzy Control and Its Application to Ship Roll Stabilization. INFORMATION SCIENCES,2002,142 (1-4):177-194.
    [165]Y. S. Yang, T. S. Li, and X. F. Wang. Robust Adaptive Neural Network Control for Strict-feedback Nonlinear Systems via Small-gain Approaches. Lecture Notes in Computer Science,2006:888-897.
    [166]Yang Y S and Ren J S. Adaptive Fuzzy Robust Tracking Controller Design via Small Gain Approach and Its Application. IEEE Trans, on Fuzzy Systems,2003,11 (6):783-795.
    [167]T. S. Li, Z. J. Zou, and X. M. Zhou. Adaptive NN Control for a Class of Strict-feedback Nonlinear Systems. Proceedings of the 2008 American Control Conference, Washington, USA,2008:81-86.
    [168]Wei Li, Jun Ning. DSC Approach to Robust Adaptive NN Tracking Control for Ship's Linear-Tracking. Asia Navigation Conference,2013:414-421.
    [169]Wei Li, Jun Ning, Zheng jiang Liu. Application-oriented Adaptive Neural Networks Design for Ship's Linear-tracking Control. ISNN,2013:170-177.
    [170]Zhou J, Er M J, Zhou Y. Adaptive neural Network Control of Uncertain Nonlinear Systems in the Presence of Input Saturation. The 9th International Conference on Control, Automation, Robotics and Vision,2006:1-5.
    [171]贾欣乐.船舶转向控制器的研究.大连海事大学学报.1998,24(1):23-28.
    [172]T. I. Fossen, J. P. Strand. Nonlinear Ship Control. Tutorial Session at IFAC CAMS98, Fukuoka, Japan,1998:1-75.
    [173]贾欣乐,杨盐生.船舶运动数学模型.大连:大连海事大学出版社,1997.
    [174]张显库,金一丞.控制系统建模与数字仿真.大连:大连海事大学出版社,2004.
    [175]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模.大连:人连海事大学出版社,1999.
    [176]吴秀恒主编,施生达主审.船舶操纵性与耐波性.北京:人民交通出版社,1999.
    [177]小瀬,贵岛.MMG报告-Ⅳ拘束操纵性试验の方法及び试验装置.日本造船学会誌,1977,579:404-413.
    [178]藤野,葛西,小林.MSS报告Ⅰ低速·浅水域操纵运动数学モデルの检讨.日本造船学会誌,1989,717:122-129.
    [182]邵世明,赵连恩,朱念昌.船舶阻力.北京:国防工业出版社,1995.
    [183]Inoue S, Hirano M, Kijima K, et al. A Practical Calculation Method. International Shipbuilding Progress,1981 (28):207-222.
    [184]日本造船学会.船舶操纵性能の推定专集,日本造船学会志,1985,668.
    [188]汤忠谷,施立人.水面船舶的空气动力,武汉水运工程学院论文选,1981-1983:40-45.
    [189]张秀凤,洪碧光,金一丞.船舶操纵模拟器在船舶通航安全评估中的应用.中国航海,2003,03:26-28.
    [190]尹勇,张秀凤,张显库.船舶自动舵和自动避碰算法仿真测试平台的研究.系统仿真学报,2007,01:56-58.
    [191]Wei Li, Zheng-jiang LIU, Tie-shan LI, Qiang LI. Ship-Track Control Based Traffic Safety Assessment of Ships in the Constrained Waters. Towards Sustainable Transportation Systems, ICCTP 2011:1339-1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700