用户名: 密码: 验证码:
商用车机械式自动变速器控制策略关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电控机械式自动变速器(AMT-Automated Mechanical Transmission)以其结构简单ǐ传动效率高ǐ性价比高ǐ成本低等诸多优点,已经成为当前世界上应用最为广泛的自动变速器,在我国商业车领域具有极为广阔的市场前景和良好的产业化基础
     经过产业界多年的不懈努力,国内AMT技术的基本功能已经比较成熟,但是在产品化方面与国外产品相比还有很大的差距,其主要原因是产品化的AMT系统必须具有智能化的特征,能够自动识别车况ǐ路况以及驾驶员意图等诸多影响因素,并自动适应之,使系统具有极高的稳定性ǐ可靠性以及自适应能力换挡控制ǐ起步控制ǐ挡位决策控制是AMT系统最关键的控制环节,目前这些控制环节在产品化过程中均存在不同程度的技术难点,需要进一步优化和完善
     本文结合一汽技术中心的商用车AMT项目实车开发过程中遇到的技术难题,深入研究了商用车AMT的换挡控制策略ǐ起步控制策略ǐ挡位决策控制策略等方面内容,并在实车上进行了验证
     全文主要工作内容如下:
     1结合实车开发过程中遇到的技术难题,以发动机ǐ离合器ǐ变速器一体化控制为基础,以换挡过程低冲击ǐ少磨损为控制目标,从系统固有特性入手,借鉴国外先进的控制理念,对换挡过程的控制策略进行了完善和修正针对换挡过程的三个阶段,创新性地提出了适用于整车需求的换挡过程控制策略,核心内容包括分离离合器控制策略ǐ挂挡控制策略和接合离合器控制策略,其中有同步器变速器挂挡控制策略提出了以变速器输入轴的角加速度作为控制目标对同步过程的换挡力进行控制;无同步器变速器挂挡策略提出了目标转速之下进行换挡的控制策略,提高了换挡成功率;接合离合器控制策略提出了发动机转速控制消除主从动盘转速差,离合器直接开环接合的控制策略,极大地的减少了排气阀的使用频率,延长了其使用寿命,同时降低了换挡过程离合器接合控制难度
     2针对气动离合器执行机构固有的过冲特性,通过深入的试验研究,提出了气动离合器执行机构精确位置控制的进气补偿控制策略,有效地提高了离合器执行机构位置控制的精度结合当前起步控制策略存在的不足,对发动机控制原则ǐ发动机转速点ǐ离合器接合量ǐ离合器接合速度等几个起步控制的关键因素进行了确定:以滑磨功最小为目标,利用积分第一中值定理对发动机恒转速起步控制原则进行了理论推导;综合考虑驾驶员起步需求ǐ发动机特性以及滑磨功等因素,对恒转速起步原则的发动机转速点进行了确定;基于起步过程动力学特性和离合器扭矩传递特性对离合器接合量进行了确定;以冲击度为约束条件,确定了离合器接合速度最后,以发动机和离合器一体化控制为基础,以驾驶员起步需求为前提,以起步品质要求为约束,提出了一个能够满足驾驶员起步扭矩需求ǐ符合起步品质要求的AMT起步控制策略,有效地缩短了起步时间,减少了起步滑磨,实现了起步过程的最优
     3以上坡工况换挡循环ǐ爬陡坡或大角度转向时连续降挡导致停车等实车开发过程中遇到的技术难题为切入点,发现了常规挡位决策控制策略存在的不足,进而分析了商用车AMT整车质量估算和行驶阻力估算的必要性;在不增加或少增加整车成本的基本要求下,提出了整车质量估算的两种方法:纵向动力学估算法和纵向加速度传感器法;并以此为基础,提出了基于驱动力和行驶阻力的挡位决策控制策略,有效地解决了常规挡位决策控制策略存在的问题,实现了轻载工况跃级升挡ǐ重载爬陡坡或大转向工况跃级降挡ǐ上坡工况无换挡循环等方面的挡位决策优化
     4为验证所提出的控制策略,针对AMT系统进行了多项台架试验和整车试验首先对气动离合器执行机构位置控制的进气补偿控制策略和无同步器AMT升挡控制策略进行了台架试验,通过台架试验曲线验证了控制策略的有效性;然后对AMT系统进行了不同工况下实车路试,通过不同油门开度的起步试验ǐ有同步器AMT样车升降挡试验ǐ无同步器AMT样车升降挡试验ǐ空载跃级升挡试验ǐ满载跃级降挡试验ǐ整车质量估算试验对文中提出的控制策略进行了充分的试验验证,试验结果表明,所研究的商用车AMT系统的控制策略关键技术解决了实车应用中的一些难题,达到了较为满意的效果
Automated Mechanical Transmission(AMT) is one of the most widely used automatedtransmissions, because it is characterized by simple construction ǐ high transmissionefficiencyǐhigh cost performance and low cost. Besides, the industrialization foundation ofcommercial vehicle AMT is very favorable, and the prospect of commercial vehicle AMT inbroad market is also expansive.
     By unremitting efforts of industrial circles for many years, fundamental function ofdomestic AMT technology is very mature, but the product of AMT still have large gap withoverseas product. Because the product of AMT must have intelligent feature, which canrecognize and adapt to vehicle conditionǐroad information and the driver's intentionautomatically, and which is highly steadyǐreliable and self-adaption. The control ofshiftingǐstarting and shift-decided are the key control elements of AMT system. During theprocess of product realization of AMT, there are different technical difficulties in thesecontrol elements, which need further optimize and improve.
     In this thesis, combining with technical difficulties which were met in developmentprocess of commercial vehicle AMT of the technical center of FAW, in-depth research ismade on control strategy of shiftingǐcontrol strategy of startingǐcontrol strategy of and shiftdecision-making system of commercial vehicle AMT, and the research results are verified inthe vehicle.
     In this paper, the main contents are as follows:
     1Combining with technical difficulties which were met in development process ofvehicle, according to the inherent characteristic of the system, aiming for Low Impact andless wear and tear in shifting process, based on integrated control of engineǐclutch andtransmission, referencing abroad advanced control concepts, the control strategy of shifting process is corrected and perfected. Aiming to three stage of shifting process, the controlstrategy of shifting process which is fitted vehicle requirement is proposed Innovatively,which is including control strategy of disengaging clutchǐcontrol strategy of shifting andcontrol strategy of engaging clutch. And the control strategy of shifting with synchronizerproposes that shifting force can be controlled by controlling the angular acceleration of theinput-shaft, the control strategy of shifting without synchronizer proposes that the shiftingaction is executed under the target speed, which improves shifting success rate, the controlstrategy of engaging clutch proposes that revolving speed difference of clutch is eliminatedby controlling engine speed, the clutch is engaged directly and open-loop, which can reduceutilization of exhaust valves, and prolong the working life of exhaust valves, and cut downthe control difficulty of engaging clutch in shifting process.
     2According to the inherent overshoot characteristic of the clutch actuator, the controlstrategy of Intake compensation which is applied to precise position control of clutchactuator is proposed, which improve the accuracy of position control of clutch actuator.Combining with the shortage of the current control strategy of starting, some key controlfactor of starting control is determined, such as control principles of engineǐspeed of engineǐengagement position of clutchǐengagement speed of clutch and so on. In order to minimizethe slipping frictional power, the control principles of engine constant speed in startingprocess is derived theoretically by using the first integral mean value theorem. Consideringthe starting requirement of driverǐcharacteristic of engine and the slipping frictional power,the engine speed point of the engine constant speed control principles is determined.According to dynamics characteristic of starting process and torque transmissioncharacteristics of clutch, engagement position of clutch is determined. With the constraintcondition of jerk, engagement speed of clutch is determined. Finally, based on integratedcontrol of engine and clutch, considering starting requirement of driver and constraintrequirement of jerk, an optimal control strategy of starting is proposed, which can satisfystarting requirement of driver and starting quality, and can finish the starting process quicklywith minimal slipping frictional power.
     3The shortage of the current shift decision-making control strategy is caught sight bysome technical difficulties which is met in development process of vehicle, such as shiftcycle in uphill working conditionǐcontinuous downshift until stop in steep climb or largeangle steering working condition, the necessity of vehicle mass estimation and runningresistance estimation for the commercial vehicle is analysed. Then two methods of vehiclemass estimation is proposed without or with increasing little vehicle cost, which islongitudinal dynamics estimation method and longitudinal acceleration sensor method, andaccording to these, the shift decision-making control strategy based on driving force andrunning resistance, which can eliminate the shortage of current shift decision-making controlstrategy and optimize shift decision-making control strategy, and made efforts for realizingintelligent shift finally.
     4The key control strategy is verified by bench test and vehicle test. The bench test isconsisted of the precise position control strategy of Intake compensation for clutch actuatorand the control strategy of up-shift and down-shift of AMT system without synchronizer.The vehicle test includes three parts which are vehicle starting test with different enginepedalǐvehicle shifting test of AMT with synchronizerǐvehicle shifting test of AMT withoutsynchronizerǐjumping upshift test of no-load vehicleǐ jumping downshift test of fullyloaded vehicle and vehicle mass estimation. The test results show that the control strategy ofthe AMT system of commercial vehicle is satisfactory.
引文
[1]王云成.重型商用车不分离离合器AMT关键技术研究[D].长春:吉林大学,2010.
    [2]郭彦颖.重型卡车AMT系统关键技术的研究[D].长春:吉林大学,2010.
    [3]赵璐.商用车AMT控制策略及试验研究[D].长春:吉林大学,2012.
    [4]刘斌.气动AMT离合器控制技术研究[D].长春:吉林大学,2013.
    [5]孔慧芳.电控机械式自动变速器中传动与控制的关键技术研究[D].合肥:合肥工业大学,2008.
    [6]王洪亮,刘海鸥.重型车辆AMT换挡过程控制方法研究[J].汽车工程,200(906):540-544.
    [7]孙斌.电控气动换挡系统中换挡力控制策略的研究[D].大连:大连理工大学,2010.
    [8]姜凤翔.电控机械式自动变速汽车起步控制与磨损补偿[D].重庆:重庆大学,2004.
    [9]余志生.汽车理论[M].北京:机械工业出版社,1999.
    [10]叶明.基于机械自动变速的轻度混合动力传动系统综合控制研究[D].重庆:重庆大学,2009年.
    [11]雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程,2000,22(4):266-269.
    [12]苏玉刚.汽车AMT的系统设计和智能控制技术研究[D].重庆:重庆大学,2004.
    [13]王洪亮,刘海鸥.重型越野车在陡坡上的起步控制技术研究[J].北京理工大学学报,2013,33(03):260-265.
    [14]蒋海波.重型商用车AMT动力传动系统综合控制策略研究[D].重庆:重庆大学,2008.
    [15]刘振军.基于人—车—路环境下的汽车电控机械自动变速智能控制研究[D].重庆:重庆大学,2005.
    [16]吕欢欢.基于模糊修正的AT车辆坡道换挡策略研究[D].长春:吉林大学,2013.
    [17]邓阳庆.基于用户使用条件的重型自卸车燃油经济性研究[D].长春:吉林大学,2009.
    [18]闫勋成.AMT综合控制技术研究[D].长春:吉林大学,2005年.
    [19]张辉.重型车电控机械式自动变速器执行机构的研究与开发[D].重庆:重庆大学,2007.
    [20]张学锋.基于目标油门开度预测的AMT汽车起步控制[D].重庆:重庆大学,2012.
    [21]王斐.摩擦系数对AMT起步的影响研究[D].重庆:重庆大学,2013.
    [22]王磊.重型商用车气动式离合器起步控制研究[D].长春:吉林大学,2009.
    [23]李冬冬.汽车起步阶段AMT离合器模糊控制方法研究[D].秦皇岛:燕山大学,2013.
    [24]黄英,万国强,崔涛,李刚.AMT换挡过程发动机控制策略研究[J].农业机械学报,2012,34(03):245-248.
    [25]余猛进.重型车AMT离合器起步过程综合控制研究[D].重庆:重庆大学,2009.
    [26]颜克志. AMT离合器接合规律研究及其稳定性分析[D].西安:西北工业大学,2007.
    [27]赵熙俊,刘海鸥,陈慧岩.基于同步器的自动机械变速器挂挡过程控制研究[J].兵工学报,2010,31(05):534-540.
    [28]王阳,席军强,赵熙俊,陈慧岩.气压驱动式自动换挡执行机构优化设计[J].农业机械学报,2010,41(01):23-28.
    [29]杨晶晶,米林,谭伟,秦甲磊.基于压力控制的AMT合器起步控制研究[J].机床与液压,2013,41(23):49-52.
    [30]裴栋.不分离离合器AMT综合控制研究[D].长春:吉林大学,2009.
    [31]王升山.离合器不分离AMT换挡过程中发动机控制[D].长春:吉林大学,2006.
    [32]孙冬野,陈然,秦大同.AMT汽车起步过程节气门目标控制量的确定[J].汽车工程,2009,31(11):1020-1024
    [33]郑磊.解放载货车机械式自动变速器控制技术研究[D].长春:吉林大学,2005年.
    [34] Luigi Glielmo, Luigi Iannelli, Vladimiro Vacca, FrancescoVasca.Gearshift Control for Automated Manual Transmissions[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS,VOL.11,NO.1,FEBRUARY200617-26.
    [35]杨俊英.重型商用车AMT换挡转速同步控制技术研究[D].长春:吉林大学,2007.
    [36]王建忠,卢新田,杨立功,赵璐.一种新型的双离合器自动变速系统:中国,CN201580247U.2010-09-15.
    [37] Osman K A, Higginson A M.Optimised vehicle velocity control andshift-point selection using neural networks Intelligent[J].EngineeringSystem Through Artificial Neural Networks,1998,(8):710-712.
    [38]王建忠,卢新田,杨立功,赵璐.一种新型的双离合器自动变速系统:中国,CN102080721A.2011-06-01.
    [39] Steplan Rinderknecht, Rolf Najork. Technology And Market Trends ofinnovative Transmission System[M],2004.
    [40]申水文,葛安林.基于二参数换挡规律的模糊换挡技术[J].汽车技术,1998,(1):10-12.
    [41] M. Pl ger, J. Sauer, M. Büdenbender and J. Held,F. Costanzo, M. DeManes, G. Di Mare, F. Ferrara and A. Montieri. Testing Networked ECUsin a Virtual Car Environment[C]. SAE2004-01-1725.
    [42] ZhaoLu,ZhouYunShan,ZhengLei. Modeling and Simulation of AMT ClutchActuator Based on SimulationX.2009International Conference onComputational Intelligence and Software Engineering (CiSE2009).WuHan,China.
    [43] Jae-Bok Song, Kyung-Seok Byun.Throttle Actuator Control System forVehicle Traction Control[J].Mechatronics9,1999:111-114.
    [44] WangJianZhong, ChuLiang, LuXinTian. Research and Design of Pneumatic AMTActuator.2011Applied Mechanics and Materials,(Volumes52-54),318,International Conference on Mechanical Engineering (ICME2011). Phuket,Thailand.
    [45]赵璐,周云山,邓阳庆,闫涛.基于CRUISE的DCT整车动力传动系匹配仿真研究[J].汽车技术,2011(01):10-11.
    [46]王健.换挡质量综合评价系统的研究[D].长春:吉林大学,2007年.
    [47] P.R.Page. A Microprocessor Based Controller for a Dry Plate Clutch andConstant Mesh Gearbox[C]. SAE paper850536.
    [48]黄建明.机械式自动变速器的控制策略研究[D].重庆:重庆大学,2004年.
    [49]何仁,刘文光,黄大星.不同道路负荷的AMT车辆起步过程离合器控制策略[J].江苏大学学报(自然科学版),2009,30(5):459-462
    [50]谢先平,王旭东,吴晓刚,余腾伟.车辆起步过程发动机恒转速自适应模糊控制研究[J].系统仿真学报,2008,20(16):4382-4386
    [51]关志伟,杨玲,施继红,等.基于MATLAB语言的发动机万有特性研究[J].吉林农业大学学报2003,25(3):341—342.
    [52]李志强.电控机械式自动变速汽车换挡智能控制[D].重庆:重庆大学,2003年.
    [53]朱振宇,许纯新,智国平.工程车辆自动变速智能控制系统开发与试验研究[J].机械工程学报,2004,40(10):99-100.
    [54]罗君赟,吴光强,吴小清.自动变速汽车智能换挡控制系统研究[J].汽车研究与开发,2005(11):30.
    [55]王旭东,谢先平,吴晓刚,余腾伟.自动离合器起步模糊控制[J].农业机械学报,2008,39(12):18-22
    [56] Sang Rok, Zeungnam Bien. An iterative learning control method withapplication for the robot manipulator[J]. Automatic,1988,4(5):833-865.
    [57]杨志刚.汽车自动变速系统智能控制方法研究[D].重庆:重庆大学,2003年.
    [58] Y Obyama,M Obsuga,T Nogi,T Minowa.A totally integrated electroniccontrol system for the engine and transmission[J]. Vehicle SystemDynamics,2009,10:40-41.
    [59]骞大闯,徐荣政,张峰岭,武金银,吴斌.基于模糊闭环的AMT车辆离合器起步控制研究[J].公路与汽运,2013,4(07):14-18.
    [60]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社,2001.
    [61]周学建,等.车辆自动变速器系统换挡规律的研究现状和展望[J].农业机械学报,2003,34(3):139-140.
    [62] Christan Bader. Powertrain Electronics-Progress on the Use andDevelopment of the Computer Aided Gearshift Systems[C]. SAE Paper901160.
    [63]汤霞光,侯朝桢.基于定量反馈理论的AMT离合器接合控制研究[J].北京理工大学学报,2002,22(1):94-95.
    [64] Ghazi Zadeh,A.Fahim,A1997Neural network and fuzzy logic applicationsto vehicle systems:literature survey[J],Int.J.of Vehicle Design,18.No.2, p.134-190.
    [65]戴群亮,赵丁选.基于BP神经网络优化算法的工程车辆挡位判断的训练及仿真[J].机械工程学报,2002,38(11):125-126,180.
    [66] Akira Watanabe. Microcomputer Mechanical Clutch and TransmissionControl[C]. SAE Paper840055.
    [67]牛秦玉,张国胜,方宗德,颜克志,李俭波.电控机械式自动变速器换挡规律仿真模型的研究[J].机械科学与技术,2007,26(3):352-353.
    [68] LuigiGlielmo, LuigiIannelli, VladimiroVacca, Francesco Vasca.SpeedControl for Automated Manual Transmission with Dry Clutch[C].43rd IEEEConference on Decision and Control,December14-17,2004,WeA09.6:1710-1713.
    [69]汤霞清,侯朝桢.基于定量反馈理论的AMT离合器接合控制研究[J].北京理工大学学报,2002,22(1):95-96.
    [70]胡明辉,王斐,谢红军,叶明.摩擦系数对AMT起步的影响分析[J].重庆大学学报,2013,36(05):8-12.
    [71]韦巍.智能控制技术的研究现状和展望[J].机电工程,2000,17(6):4.
    [72] Burkhard Pollak.Electro-Mechanical Actuators Shifting TransmissionsInto Gear[C].LuK.SYMPOSIUM,2002:178-181.
    [73]万晓凤,雷继棠,易其军,贾进学,张燕飞,丁卯.基于车速反馈的AMT离合器起步接合控制[J].工程设计学报,2013,20(10):441-445.
    [74]薛殿伦,李笛,钟鑫,刘恺.不同车辆载荷的AMT车辆起步过程离合器控制[J].机械传动,2013,27(10):126-128.
    [75] Wei Yanding.Research on convergent speed of iterative learningcontrol[J].Control Theory and Applications,2001,18(2):315—316(inChinese)
    [76]王洪亮,刘海鸥.AMT车辆离合器自动控制策略优化[J].南京理工大学学报,2013,37(5):729-734.
    [77]倪洪飞,钟军斌,孙玉刚.基于扭矩控制的AMT换挡控制策略研究[J].汽车科技,2010,3(5):51-54.
    [78]王阳,席军强,陈慧岩.AMT换挡冲击产生机理与对策研究[J].汽车工程,2009,31(3):253-257.
    [79]杨志刚,曹长修,苏玉刚.道路坡度识别方法的技术实现[J].重庆交通学院学报,2002,21(3):112-115.
    [80]冯源,余卓平,熊璐.基于分段递推最小二乘估计的汽车质量辨识试验[J].同济大学学报(自然科学版),2012,40(11):1691-1697.
    [81]金辉,李磊,李斌虎,陈慧岩.基于加速度区间判断的坡道识别方法[J].中国公路学报,2010,23(1):122-126.
    [82] Quan Zheng,Krishnaswamy Srinivasan,Giorgio Rizzoni.Transmission shiftcontroller design based on a dynamic model of transmission response[J].Control Engineering Practice,1999:1009-1014.
    [83]钱立军.自动变速器控制的道路坡度计算方法研究[J].拖拉机与农用运输车,2004,4(12):5-7.
    [84]李远方.重型车质量辨识及道路坡度状态估计方法研究[D].长春:吉林大学,2011.
    [85]张强.全线控电动汽车状态估计与牵引力控制[D].长春:吉林大学,2012.
    [86] YasuoHojo, Kunihiro, Iwatsuki, et al.Toyota5-Speed AutomaticTransmissionwith Application of Modern control Theory[J].传动技术,2001,(2):24-25.
    [87] Yoshiaki Danno.Powertrain Control by DBW System-Strategy andModeling[C].SAE890760.
    [88]罗国鹏.基于道路工况和载荷状态识别的混合动力客车控制策略[D].北京:清华大学,2012.
    [89] Hiroshi Yamaguchi.Automatic Transmission Shift Schedule Control UsingFuzzy Logic[C].SAE paper930674.
    [90]韦巍.智能控制技术[M].北京:机械工业出版社,2000.
    [91]黄建明,曹长修,苏玉刚.汽车起步过程的离合器控制[J].重庆大学学报(自然科学版),2005,28(3):92-93.
    [92] H.D.Lee, S.K. Sul, H.S.Cho, et al. Advanced Gear-Shifting and ClutchingStrategy for a Parallel-Hybrid Vehicle[C].IEEE IndustryApplicationMagazine,2000,(11/12):27-30.
    [93]葛安林,姜家吉,武文治,等.机械式自动变速器及其动态模拟研究[J].汽车工程,1990,12(3):36-42.
    [94]程东升,顾力强.基于反馈线性化的汽车AMT离合器滑模控制[J].汽车工程,2002,24(5):384-387.
    [95]雷晓东.电控机械自动变速系统换挡控制策略研究[D].重庆:重庆大学,2005年.
    [96]陈俐,张建武.自动离合器的自适应最优控制[J].上海交通大学学报,2000,34(10):1313-1314.
    [97] Haiou Liu,Huiyan Chen,Huarong Ding.Adaptive clutch engaging processcontrol for automatic mechanical transmission[J].Journal of BeijingInstitute of Technology,2005,14(2):171-173.
    [98]谢先平.汽车自动离合器接合过程控制策略研究[D].哈尔滨:哈尔滨理工大学,2008年.
    [99]曹桂军.电控机械式自动变速器传动系综合控制的研究[D].长春:吉林大学,2004年.
    [100]王小龙.AMT离合器的综合控制与仿真[D].云南:昆明理工大学,2005年.
    [101]李萍.商用车机械式自动变速系统离合器控制技术研究[D].长春:吉林大学,2005年.
    [102]刘文光.商用汽车电控机械自动变速器智能控制技术研究[D].镇江:江苏大学,2010年.
    [103]颜克志.AMT离合器结合规律研究及其稳定性分析[D].西安:西北工业大学,2007年.
    [104]陈士安,何仁,陆森林.AMT车辆运行状态参数识别的新方法[J].轻型汽车技术,2003(02):18-19.
    [105]金辉,葛安林,秦贵和,雷雨龙.基于纵向动力学的坡道识别方法研究[J].机械工程学报,2002(01):82-84.
    [106]张建国.基于神经网络的AMT换挡品质评价方法研究[D].长春:吉林大学,2007年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700