用户名: 密码: 验证码:
基于镜面间隔和中心偏差测量的光学镜头辅助装调设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学镜头已经广泛应用于民用、工业检测、国防军事、航空航天等领域,很多应用场合对光学镜头的综合性能的要求越来越高,传统的光学镜头装调方法存在各种问题,已经不能满足高性能光学镜头的装调精度要求。为了提高光学镜头的装调精度,本文研制了光学镜头辅助装调设备,该设备集成了光学镜头的中心偏差测量和镜面间隔测量功能,在同一平台上进行光学镜头的装调,保证了装调过程中的参考轴的一致性,既能提高光学镜头的装调精度,又能提高光学镜头的装调效率。本文的主要研究工作如下:
     1.根据现有的光学镜头辅助装调设备的技术路线及发展趋势,研究了将光学镜头中心偏差和镜面间隔测量功能集成在一台设备上的技术方案,研究表明,一体化的光学镜头辅助装调设备的技术方案是可行的;
     2.通过比较光学镜头中心偏差的各种光路结构的优缺点,提出最佳的光路结构设计方案,采用调焦法和切换镜头法相结合的光路结构,能够既保证测量精度,又避免测量盲区;并对调焦法和切换镜头法相结合的光路进行设计,分析了光学系统的成像质量,分析结果表明,该设计方案能够满足使用要求,并在保证像质的基础上,对其公差进行合理分配;建立光线追迹模型,分析杂散光的影响,分析结果表明,杂散光对成像质量的影响很小;
     3.建立被测光学镜头的中心偏差计算模型,该模型能够计算被测光学镜头的各个镜面的球心像的位置和成像过程中的垂轴放大率,还能根据十字靶标中心的画圆直径和十字靶标成像过程中的垂轴放大率,计算被测镜面的中心偏差,该计算模型为主控软件提供了中心偏差测量的算法;
     4.研究非接触式的光学镜面间隔测量方法,采用了光学相干测量的方法来测量镜面间隔,以迈克尔逊干涉仪为基础,利用光纤来传导光束,便于测量设备的组装和应用;设计了测量臂中的光纤调焦镜头,能够使光斑聚焦点在一定范围内连续调焦,保证被测光学镜头中的各个镜面反射的光能量在光电探测器的动态范围内;建立了光学相干测量中的材料色散与相干信号之间的数学模型,利用该模型,能够根据采集到的相干信号和玻璃材料的色散,计算镜面的间隔;
     5.编写光学镜头辅助装调系统的主控软件,在镜面中心偏差测量模块中,研究了十字靶标中心提取算法和球心最佳轴拟合算法;在镜面间隔测量模块中,研究了干涉信号的寻峰算法;
     6.根据误差理论,对光学镜头辅助装调设备的测量精度进行分析,分析结果表明:光学镜片线偏心的测量总体误差是0.77μm,角偏差的测量总体误差是1.6″,镜面间隔测量总体误差是2.30μm;
     7.利用研制的光学镜头辅助装调设备,对已知参数的光学镜头进行中心偏差和镜面间隔测量,并进行了中心偏差和镜面间隔测量精度的检测实验,实验结果表明,该设备对于球面的线偏心测量精度优于1μm,对于平面的角偏心测量精度优于2.4″,镜面间隔的测量精度优于3μm。
Optical lenses have been widely used in civil, industrial inspection, nationaldefense and military, aerospace and other fields. Demands for the overallperformance of optical lenses are highly increased in many fields. Traditionalmethods now are unable to meet the precision requirements in assemblinghigh-performance optical lenses. The optical lenses assembling apparatus, mentionedin this paper, is designed to achieve high accuracy. Due to the integratedmeasurement of lens centering errors, lens centre thicknesses and airgap distances,the apparatus finishes the assembly work of the optical lenses on one table, whichensures the reference axes consistency and improves the precision and efficiency inthe optical lenses assembly.
     This paper’s main research work is as follow:
     1. Taking into consideration the current technology and the future developmenttrends of optical lenses assembling apparatus, the paper studies the technical solutionof one device combining the measurements of lens centering errors, lens centrethicknesses and airgap distances. Research shows technical solution of theintegration of optical lenses assembling apparatus is feasible.
     2. By comparing the advantages and disadvantages of various optical structuresin measuring lens centering errors, the paper brings up an optimal optical structurewhich combines the focusing method and lens-switching method. The optimalstructure not only ensures the measurement precision but also avoids problems ofblind measuring area. The paper designs the optical structure and analyzes theimaging quality of the optical system. The results of the analysis demonstrate thatthe design can satisfy the requirements and ensures the image quality on the basis ofa reasonable allocation of the optical lenses tolerances. The ray tracing modelestablished in the paper also analyzes the effects of stray light on the imaging quality,which turns out to be little.
     3. The lens centering errors calculation model is established to calculate theimage position of every sphere center and the paraxial magnification in the imagingprocess. The model can also calculate centering errors of the lenses according to thediameter of trajectory by the moving of the center of the cross target and the paraxialmagnification. The model provides a method to calculate centering errors for themain control software.
     4. The paper brings up the method of optical coherent measurement, whichmeasures optical lens thicknesses and airgap distances without contacting the lenses.Based on the Michelson interferometer, it is easy to operate the apparatus whenoptical fiber is used to conduct light. In order to locate the reflection intensity fromall surfaces of lenses in the dynamic range of photoelectric detector, a lens in themeasurement arm is designed to change the focus position continuously in a range. Amathematical model between material dispersion and coherence signal is establishedto calculate lens centre thicknesses and airgap distances.
     5. The software of the optical lenses assembling apparatus is programmed. Inthe module of measurement of lens centering errors. The paper also researches thealgorithms to seek the coordinates of the cross target’s centre and to fit the optimalaxes of all sphere centres. In the module of measurement of lens thicknesses andairgap distances, an algorithm of seeking the peak of coherence signal is researched.
     6. The measurement accuracy of the apparatus is analyzed according to thetheory of errors. The results show that the total line centering errors of optical lensesis0.77μm, and that the total angle centering errors of optical lenses is1.6arc-seconds, and that the total errors of lens centre thicknesses and airgap distancesis2.30μm.
     7. Experiments are made to measure the lens centering errors, lens centrethicknesses and airgap distances of known lenses using the apparatus. During theseexperiments, the measurement accuracy can be obtained. The results show that themeasurement accuracy of line centering errors of sphere surface is better than1μm,and the measurement accuracy of angle centering errors of plane surface is betterthan2.4arc-seconds, and the measurement accuracy of lens centre thicknesses andairgap distances is better than3μm.
引文
[1]志能,光学系统.现代光学系统原理[M].北京理工大学出版社,1994.
    [2]韩昌元.高分辨力空间相机的光学系统研究[J].光学精密工程,2008,16(11):2164.
    [3]连礼泉,周桃庚,张鹏嵩,等.数码相机综合评测系统[J].应用光学,2012,33(4):756-760.
    [4]张韧剑,冯亚萍,江曼,等.结构简洁的光学变焦距手机镜头设计[J].应用光学,2011,32(1):27.
    [5]王峰.国内镜头市场的发展现状与未来[J].中国安防,2013(6):62-66.
    [6]顾成刚.高清监控镜头的实现源于光学技术的进步[J].中国公共安全,2013(8):98-101.
    [7] Lee S, Choi M, Lee E, et al. Zoom lens design using liquid lens for laparoscope[J]. Optics express,2013,21(2):1751-1761.
    [8] Lee H S, Jeon W T, Kim S W. Development of Plastic Lenses forHigh-Resolution Phone Camera by Injection-Compression Molding [J]. Transactionsof the Korean Society of Mechanical Engineers A,2013,37(1):39-46.
    [9] Lo Y C, Huang K T, Lee X H, et al. Optical design of a Butterfly lens for a streetlight based on a double-cluster LED[J]. Microelectronics Reliability,2012,52(5):889-893.
    [10] Roberts D A, Kundtz N, Smith D R. Optical lens compression viatransformation optics [J]. Optics express,2009,17(19):16535-16542.
    [11] Smith B W, Petersen J S. Influences of off-axes illumination on optical lensaberration [J]. Journal of Vacuum Science&Technology B,1998,16(6):3405-3410.
    [12]段欣涛,汪岳峰,周斌.一种数码相机几何畸变的检测方法[J].光学仪器,2011,33(1):15-18.
    [13]惠彬,刘雁杰,李景镇,等.800万像素折衍混合式手机镜头设计[J].红外技术,2013,35(4):223-226.
    [14]王亮.国内监控镜头市场的发展趋势[J].中国安防,2013(6):67-69.
    [15]徐大维,向阳,王健,等.折衍混合车载红外镜头无热化设计[J].红外技术,2011,33(8):460-464.
    [16]朱庆生,孟贵超,葛垚.基于增量主成份分析的在线视频镜头边界检测[J].计算机工程与科学,2012,34(1):94-97.
    [17]赵前程,黄东兆,杨天龙,等.机器视觉3D四轮定位仪关键技术[J].仪器仪表学报,2013,34(10):2184-2190.
    [18]孙丽存,孟伟东,李强,等.电子目镜显微镜景深的确定与测量[J].光学精密工程,2013,21(5):1151-1159.
    [19]刘健鹏,唐义,黄刚,等.改进型Czerny-Turner成像光谱仪光学系统设计方法[J].光学学报,2012,32(3):234-240.
    [20]范晋祥,岳艳军.军用红外成像系统新概念新体制的发展[J].红外与激光工程,2011,40(001):1-6.
    [21]巩岩,张巍.193nm光刻曝光系统的现状及发展[J]. Chinese Journal ofOptics and Applied Optics,2008,1(1).
    [22]陈基明,张连强,田晓东.电子内窥镜的使用和维护[J][J].中国医疗设备,2010,25(5):97-98.
    [23]李灿,宋淑梅,刘英,等.折反式眼底相机光学系统设计[J].光学精密工程,2012,20(8):1710-1717.
    [24]黄晨,王建军,高昕,等.国外红外天文望远镜发展现状[J].激光与红外,2013,43(3):235-239.
    [25]杨世海,王国民.天文光学望远镜摩擦驱动滑移动态检测与修正[J].光学精密工程,2013,21(8):2056-2063.
    [26]余达,刘金国,郭永飞,等.微光EMCCD超高速成像研究进展[J].科学通报,2013,58(36):3777-3784.
    [27]史红健,计宏伟,何小元.一种三维变形光学测量系统及微结构力学性能测试应用[J].光学学报,2011,31(3):127-132.
    [28]孙岩,张征宇,吕彬彬,等. T型尾翼颤振模型光学测量实验与弯扭特性解算[J].实验流体力学,2012,26(1):100-104.
    [29]王智,吴国栋.测绘相机立方镜与星敏立方镜转换矩阵的标定[J].光学精密工程,2012,20(1):96-101.
    [30]智喜洋,张伟,侯晴宇,等.影响测绘相机匹配精度的辐射指标量化[J].光学精密工程,2012,20(2):387-394.
    [31]刘明.航空侦察相机的发展分析[J].光机电信息,2012,28(11):32-37.
    [32]王平,张国玉,高玉军,等.可见与红外双波段航空侦察相机光机设计[J].机械工程学报,2012,48(14):11r16.
    [33]夏巧桥,汪鼎文,张立国,等.高速多通道遥感相机快视系统的实现[J].光学精密工程,2013,21(1):158-166.
    [34]卢振华,郭永飞,李洪法,等.利用LSF实现推扫式遥感相机的自动调焦[J].红外与激光工程,2012,41(7):1808-1814.
    [35]惠刚阳,杨海成,姜峰,等.潜望式瞄准镜中消像旋棱镜的装调工艺技术[J].应用光学,2013,34(4):700-705.
    [36]王超,姜湖海,朱瑞飞,等.共形光学导引头瞄视误差分析与修正[J].光学学报,2013(9):140-146.
    [37]李满良,吴钦章.光电经纬仪CCD曝光中心测量系统的设计[J].光学精密工程,2013,21(5):1304-1311.
    [38]柴敏,胡绍林,张伟.靶场光电经纬仪跟踪精度评估技术[J].飞行器测控学报,2013,32(5):403-407.
    [39] Liu K, Liu P L, Wu H, et al. Study on Tool-Path Generation for Ultra-PrecisionMachining of Optical Lens Array [J]. Key Engineering Materials,2012,516:595-599.
    [40] Zhang L F, Lu H M, Kitazono Y, et al. Actual Image Effect Creation Accordingto a Real Lens Imaging System [J]. Applied Mechanics and Materials,2012,103:673-678.
    [41] Kim Y, Shong K. The Characteristics of UV Strength According to CoronaDischarge From Polymer Insulators Using a UV Sensor and Optic Lens [J]. PowerDelivery, IEEE Transactions on,2011,26(3):1579-1584.
    [42]段学霆.共轴光学系统计算机辅助光轴一致性装调研究[D]:[硕士学位论文]北京:中国科学院研究生院,2006.
    [43] Irie S, Watanabe T, Kinoshita H, et al. Development for the alignment procedureof three-aspherical mirror optics [J]. International Society for Optics and Photonics,2000:807-813.
    [44] Morrison E, Meers B J, Robertson D I, et al. Automatic alignment of opticalinterferometers [J]. Applied Optics,1994,33(22):5041-5049.
    [45] Tang Z, Zhang R, Shi F G. Effects of angular misalignments on fiber-opticalignment automation [J]. Optics Communications,2001,196(1):173-180.
    [46] Morrison E, Meers B J, Robertson D I, et al. Experimental demonstration of anautomatic alignment system for optical interferometers [J]. Applied optics,1994,33(22):5037-5040.
    [47]张斌,张晓辉,韩昌元.光学系统计算机辅助装调中的一种优化算法[J].光学精密工程,2000,8(3):273-277.
    [48]巩盾,田铁印,王红.利用Zernike系数对离轴三反射系统进行计算机辅助装调[J].光学精密工程,2010,18(8):1754-1759.
    [49]林妩媚.光学系统计算机辅助装调(CAA)机理的研究[J].光电工程,1999,26(1):49-52.
    [50]车驰骋,李英才,樊学武,等.基于矢量波像差理论的计算机辅助装调技术研究[J].光子学报,2008,37(8):1630-1634.
    [51]王丽萍.极紫外投影光刻光学系统[J]. Chinese Journal of Optics and AppliedOptics,2010,3(5).
    [52]雷江,蒋世磊,程刚.高精度光刻物镜的变形研究[J].光电工程,2005,32(2):12-14.
    [53]赵立新,张雨东,王建,等.球面投影光刻物镜的设计[J].光电工程,2009,36(1):93-97.
    [54] LI W, ZHOU J, LIN Q. Design of fold laser projection lithography lens [J].Opto-Electronic Engineering,2007,9-12.
    [55] Kawata H, Matsumura I, Yoshida H, et al. Fabrication of0.2m Fine PatternsUsing Optical Projection Lithography with an Oil Immersion Lens [J]. JAPANESEJOURNAL OF APPLIED PHYSICS PART1REGULAR PAPERS SHORT NOTESAND REVIEW PAPERS,1992,31:4174-4174.
    [56]段欣涛,汪岳峰,张强,等.数码相机整机成像均匀度的自动检测方法[J].光学仪器,2010,32(5):15-18.
    [57]陈舒,李浩,黄河.普通数码相机三种检校方法的量测精度评价[J].遥感信息,2012(5):73-76.
    [58]李同海,王海霞,赵新亮,等.像方远心航拍数码相机镜头设计[J].光电工程,2011,38(3):25-28.
    [59]云自修.中心偏检测仪器概况[J].西安工业学院学报,1984,5(7):65-71.
    [60]郭乐群.中心偏定义和测量方法[J].西安工业大学学报,1982,2-16.
    [61]谭宇.透镜的偏心差与中心偏[J].云光技术,1992(3):17-24.
    [62]黄获,鄢立.透镜中心偏测量中一种光轴拟合的新方法[J].光学仪器,2009,31(5):6-9.
    [63]董太和,王国强.透镜和光学系统的中心偏问题探讨[J].西安工业大学学报,1982,2-12.
    [64]李复新.透镜中心偏的定义及其相互关系[J].西安工业大学学报,1982,12-23.
    [65]曾付山.透镜组中心偏自动化测量的研究[D]:[硕士论文].武汉:华中科技大学,2007.
    [66]闫思思.透镜中心偏测量技术研究[D]:[硕士论文].西安:西安工业大学,2012.
    [67]周凤利,许照东,李辛,等.透镜定心技术的研究及应用[J].红外与激光工程,2006,12(2):135-138.
    [68]魏全忠.高性能光学系统定中心研究[D]:[硕士论文].成都:电子科技大学工程,2003.
    [69]屈桂花,刘军鹏,丑小全.红外镜头光学定心方法研究[J].西安工业大学学报,2009,28(6):605-607.
    [70]魏全忠,叶华寿,王肇勋.电视内调焦定心仪及其应用[J].光电工程,1998,25(6):106-110.
    [71]耿丽红,范天泉.高精度光学中心偏测量仪主要技术指标的检测[J].应用光学,1998,19(4):40-43.
    [72]周长新.高精度数字光电定心仪[J].光学学报,1987,7(8):738-745.
    [73]高志荣.高精度中心偏测量仪的设计和使用[J][J].光电工程,1983,10(3):40-48.
    [74]蒋廷槐.关于透镜装配的一些设想[J].光电工程,1977(2):81-84.
    [75]李金铎.内调焦光学系统特性分析[J].航空精密制造技术,1986(3):25-29.
    [76]董太和,王国强.透镜及光组的中心偏问题探讨[J].光学仪器,1980(4):1-6.
    [77]王肇勋. ZX—3型内调焦对心器研制工作报告[J].西安工业大学学报,1984(2):11-23.
    [78]王肇勋.整组物镜各面偏心差的测量[J].光学工程,1980(1),1-11.
    [79]薛敏勤.新型反射式激光定心仪探讨[J].光学技术,1987(2):26-28.
    [80]马元龙.关于测定光学系统的偏心问题[J].光学机械,1977(2):42-49.
    [81] Hopkins H H, Tiziani H J. A theoretical and experimental study of lens centringerrors and their influence on optical image quality [J]. British Journal of AppliedPhysics,1966,17(1):33-54.
    [82] A de Castro A, Rosales P, Marcos S. Tilt and decentration of intraocular lensesin vivo from Purkinje and Scheimpflug imaging: validation study [J]. Journal ofCataract&Refractive Surgery,2007,33(3):418-429.
    [83] Harned R D, Harned N J. Optical system alignment system and method withhigh accuracy and simple operation: U.S. Patent7,224,469[P].2007-5-29.
    [84]王肇勋. ZX-3型内调焦对心器的研制及应用[J].长春理工大学学报,1988(3):75-78.
    [85]张景文,王肇勋.高精度航空摄影镜头的胶合和定心[J].光学技术,1998(3):76-77.
    [86]王肇勋.光学系统偏心测量原理及应用[J].光学技术,1998(3):67-69.
    [87] Wolf W. Die folgenden Angaben sind den vom Anmelder eingereichtenUnterlagen entnommen [J]. DE,102(36):523.
    [88] Markus M. Die folgenden angaben sind den vom anmelder eingereichtenunterlagen entnommen:10042455[P].2002.
    [89]汪晓春,杨博文,何冬慧.一种基于迈克尔逊干涉仪测量透明液体折射率的方法[J].光学仪器,2012,34(5):1-4.
    [90]胡永明,陈哲.全保偏光纤迈克尔逊干涉仪[J].中国激光,1997,24(10):891-894.
    [91] Wilhelm R, Courteville A, Garcia F. Dimensional metrology for the fabricationof imaging optics using a high accuracy low coherence interferometer [C].OpticalMetrology. International Society for Optics and Photonics,2005:469-480.
    [92] Schmitt J M. Optical coherence tomography (OCT): a review [J]. SelectedTopics in Quantum Electronics, IEEE Journal of,1999,5(4):1205-1215.
    [93]全国光学和光子学标准化技术委员会. GB/T7242-2010透镜的中心偏差[S].中国国家标准化管理委员会,2010.
    [94]梁雨.全光纤高速时域OCT系统研制[D]:[硕士论文].天津:天津大学,2010.
    [95]王佳佳. OCT扫描方法及装置的研究[D]:[硕士论文].天津:天津大学,2008.
    [96]黄剑玲,郑雪梅.一种改进的基于Canny算子的图像边缘提取算法[J].计算机工程与应用,2009,44(25):170-172.
    [97]陈杰,王振华,窦丽华.一种尺度自适应Canny边缘检测方法[J].光电工程,2008,35(2):79-84.
    [98]孙丰荣,刘积仁.快速霍夫变换算法[J].计算机学报,2001,24(10):1102-1109.
    [99]曾接贤,张桂梅,储珺,等.霍夫变换与最小二乘法相结合的直线拟合[J].南昌航空工业学院学报(自然科学版),2003,17(4):9-13.
    [100]许海涛,高彩霞.直线拟合算法[J].电脑知识与技术,2009,5(4):864-867.
    [101]李增兵,张晓帆,李瑞华,等.直线拟合快速实现的一种新算法[J].计算机测量与控制,2007,14(11):1524-1525.
    [102] Courteville A, Wilhelm R, Delaveau M, et al. Contact-free on-axes metrologyfor the fabrication and testing of complex optical systems[C].Optical Systems Design2005. International Society for Optics and Photonics,2005:596510-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700