用户名: 密码: 验证码:
螺旋离心泵内能量转换特性及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体物料的水力输送是固液两相流典型的工程应用,螺旋离心泵作为一类新型的杂质泵,在输送固液两相流体时具有突出的优越性,如高效、耐磨、抗堵塞等。其独特的螺旋型叶轮在输送固液两相流介质时的能量转化规律和非稳态流体动力学特性与传统离心泵叶轮必然有较大不同。螺旋离心泵已有的研究成果主要集中在对设计方法、外特性及内部流场结构方面的研究,而对螺旋离心泵内能量转换特性的研究相对比较少,尤其是对泵在输送固液两相流时叶轮和压水室内,不同区域能量传递、转化和耗散过程的研究更是缺乏。
     本文通过试验和数值计算相结合的方法,重点研究了螺旋离心泵内沿叶轮螺旋流道及压水室流向不同区域,在清水和固液两相流介质时能量转换的能力与影响因素,揭示了在输送清水和固液两相流介质时叶轮和螺旋型压水室内稳态和非稳态能量的时空分布规律及转换特性。并在此基础上,提出了基于两相流速比理论的叶轮型线方程和压水室水力设计方法。本文主要研究内容分为3个部分:
     1.螺旋离心泵在输送清水介质时叶轮和压水室内能量转换特性。
     分别从稳态和非稳态两个方面研究了叶轮输入功率、能量转换效率和能量损失的特点,结果表明,叶轮对流体做功主要表现为压力做功,而流体的粘性力做功只占较小的比重。给出了叶轮螺旋段、过渡段和离心段划分方法和依据,发现叶轮螺旋段是叶轮对流体做功和流体获得能量的关键区域。
     叶轮旋转时,流道内瞬时能量转换和损失一直在发生变化,且具有周期性规律。叶片的不对称及压水室和叶轮动静干涉作用,引起叶轮输入和输出功率、叶轮表面压力的周期性变化,也造成压水室内动静压能转换的不稳定。流量变化对于叶轮螺旋段能量转换效率的影响要大于离心段,离心段对叶轮输出功率的波动特性起决定作用。
     叶轮内能量损失的主要形式是湍流耗散和壁面摩擦损失,小流量时以湍流耗散损失为主,大流量时以摩擦损失为主;湍流耗散损失的主要区域在叶轮出口,摩擦损失的主要区域在叶轮离心段。压水室内的能量损失主要是隔舌处的冲击损失和湍流耗散损失,其值随流量增加呈几何倍数增长。
     2.螺旋离心泵在输送固液两相流时泵内的非稳态能量转换特性。
     采用欧拉(Eulerian)固液两相流模型分别对固相浓度和粒径变化对叶轮相对轴功率、截面湍流强度、效率、湍动能耗散率、动扬程系数以及压水室能量转换特性的影响进行了非稳态数值分析。结果表明,固相浓度增加时,泵扬程的平均值有所下降,但波动幅度加大。随粒径和固相浓度增加,叶轮输入相对轴功率波动幅度加大,泵效率的下降幅度也明显增加,但瞬时效率曲线的高效区范围变化不大,其位置是由叶轮、压水室形状和两者的相对位置共同决定的,而与输送介质几何物性参数的相关性不强。
     叶轮效率和叶轮流道截面上湍流强度表现出较强的周期性变化规律。固相浓度对湍流强度的影响要大于粒径变化的影响。随着固相浓度、粒径增加压水室各截面湍流动能耗散率均有增加的趋势,变化最强烈的截面都是靠近隔舌和喉部位置。叶轮螺旋段流道的螺旋推进作用使得颗粒直径和液体流速变化导致的湍流耗散率的变化被降低,固相体积分数和颗粒直径的变化对叶轮湍动能耗散的影响主要集中在离心段流道区域内。
     3.螺旋离心泵固液两相流水力设计方法
     根据螺旋离心泵在输送固液两相流时叶轮内能量转换特性及固相分布规律,利用固液两相流速比系数,基于轴向流速匹配的原则,得到了叶轮固液两相流叶片型线方程。同时基于叶轮和压水室能量转换相匹配原则给出了压水室水力设计方法,并对给出的设计方法进行了数值验证,改进后的模型在输送己知固相浓度两相流介质时泵效率较原模型提高了8.5%,证明了本文给出的设计方法达到了预期的效果。
Hydraulic transport of solid materials is typical application in engineering of solid-liquid two phase flow. As a new type of impurity pump, the screw centrifugal pump has the outstanding advantages, such as high efficiency, wear resistant, anti-clogging, etc. The law of energy conversion and unsteady hydrodynamic characteristics in unique spiral impeller must be greatly different with the traditional centrifugal pump impeller, when transporting solid-liquid two phase medium. The existing research results about the screw centrifugal pump are mainly concentrated on the design method, external characteristic, structure of flow field. The research of energy conversion characteristics in the screw centrifugal pump is relatively less, especially when transporting solid-liquid two phase medium, the current research of the energy transfer, transformation and dissipation process in impeller and casing, is lacking.
     In this paper, through test and numerical calculation method, the energy conversion ability and the influence factors are mainly studied along different regions in the screw centrifugal pump impeller spiral flow channel and casing, when transporting the water and the solid-liquid two phase medium. The steady and unsteady energy distribution and conversion characteristics of space and time are revealed in impeller spiral channel and casing. And on this basis, the hydraulic design method of the impeller and the casing is put forward based on the theory of two phase flow rate ratio. The main research content is divided into three parts:
     1. The characteristics of energy conversion in impeller and casing with screw centrifugal pump transporting water.
     From two aspects of steady and unsteady, the impeller input power, the characteristics of the energy conversion, efficiency and energy loss are studied respectively. The results show that the impeller mainly do power work on fluid through pressure, and the fluid viscous forces work power account for only a small proportion. The method and basis to segment spiral part, transitional part and centrifugal impeller part are given, meanwhile the results show that the spiral part of impeller is critical area of fluid gain energy.
     As impeller rotating, the instantaneous energy conversion and loss in the impeller continue to change, and has periodic trends. Asymmetry of the blade, the impeller and casing interference effect cause periodic change of the input and output power, impeller surface pressure, also causes instability mutual conversion between the static pressure and dynamic pressure. For flow rate changing, the energy conversion efficiency of impeller spiral part is greater change than the impeller centrifugal part, and the centrifugal part decides the fluctuation characteristics of impeller output power.
     The main form of energy loss in the impeller is turbulence dissipation loss and wall friction loss. As small flow rate, the loss is given priority to with turbulent dissipation loss, and as large flow rate, the loss is given priority to with friction loss. The main area of the turbulent dissipation loss is in the impeller outlet, and the main area of the friction loss is in the centrifugal part of impeller. The energy loss in casing is mainly impact losses of tongue and turbulent dissipation losses, and its value increase with geometric ratio when flow rate increase.
     2. The characteristics of unsteady energy conversion in impeller and casing with screw centrifugal pump transporting solid-liquid two phase medium.
     Using Eulerian solid-liquid two phase flow model, it has carried on the unsteady numerical analysis for impeller shaft power, turbulence intensity of cross section, efficiency, turbulent kinetic energy dissipation rate, dynamic pressure coefficient and the influence of casing energy conversion characteristic when the solid phase concentration and particle size change respectively.
     The results show that the pump average head will fell, but the fluctuation increased when the solid phase concentration increases. As the increase of particle size and solid phase concentration, the impeller input relative shaft power fluctuations increase, and the efficiency of the pump declines significantly. And the range of high efficient on instantaneous efficiency curve is a little change, its location is made up of impeller, casing shape and relative position of two, but not the physical parameters of the medium
     The impeller efficiency and turbulence intensity on the impeller flow channel section shows strong periodic change rule. Solid phase concentration on the influence of turbulence intensity is greater than the influence of particle size change. As solid phase concentration and particle size increased, each section of turbulent kinetic energy dissipation rate in casing are increasing trend, especially turbulent kinetic energy dissipation rate of sections close to the position of the tongue are dramatic change. The spiral propulsion function of spiral part of impeller flow channel makes effect of the particle diameter and fluid velocity change on turbulence dissipation rate is reduced, the change of the solid phase volume fraction and particle diameter on the influence of the turbulent kinetic energy dissipation are mainly concentrated in the centrifugal impeller part.
     3. Screw centrifugal pump solid-liquid two phase hydraulic design methods.
     According to the rule of energy conversion and distribution within the screw centrifugal pump and impeller when transporting solid-liquid two phase medium, and based on the solid liquid two phase flow rate ratio coefficient and the axial velocity matching, the solid liquid two phase flow impeller parameter equation is worked out. And on basis of energy conversion characteristic matching between the casing and impeller, the area of NO.8calculation method is given, Then through numerical analysis, the results show that the pump efficiency increased by8.5%than that of the original model When transporting given volume fraction of solid-liquid two phase flow,therefore proved the design method in this paper to achieve the desired effect.
引文
[1]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011:408-412.
    [2]M. Stahle, D. Jackson.The development of a screw centrifugal pump for handling delicate solids[J]. World Pump,1982(185):335-341.
    [3]Matsui Yoshio, Miyae Shin-ichi, Kiwata Takahiro. Complete characteristics and suction performance of screw-type[J]. World Pump,1983(182):235-241.
    [6]Yasushi Tatebayashi,Kazuhiro Tanaka,Toshio Kobayashi,et al.Pump Performance Prediction with Tip Clearance in Screw-Type Centrifugal Pump[C] ,2003,31(10):582-589.
    [7]Yasushi Tatebayashi,Kazuhiro Tanaka,Toshio Kobayashi. Pump performance improvement by restraining back flow in screw-type centrifugal pump[C]. ASME(American Society of Mechanical Engineers) Fluids Engineering Division Summer Conference(FEDSM2005) Houston, TX(US),2005, vol.1 pt.B;:1593-1600.
    [8]Tatebayashi, Yasushi,Tanaka.Influence of Meridian shape on screw-type centrifugal pump performance[C].Proceedings of the 2002 ASME Joint U.S.-European Fluids Engineering onference:769-776.
    [9]郭乃龙,关醒凡,高良润.表面油流法显示螺旋离心泵内部流动的研究[J].农业机械学报,997.28(3):29-34.
    [10]Hai Han, Kazuhiro Tanaka, Nobuyuki Taniguchi,et al. Numerical analysis of turbulent flow in a screw-type centrifugal pump coupled with the volute casing[J].日本機械学会 論文集.B 编,2000,66(645):1272-1278.
    [11]李仁年,王秋红,刘成胜.求解螺旋离心泵内部流动的数值模型[J].兰州理工大学学报,2006,32(1).57-60.
    [12]李仁年,刘成胜,王秋红.影响螺旋离心泵扬程的因素分析[J].兰州理工大学学报,2005,31(1):53-56.
    [13]刘成胜,李仁年.螺旋离心泵的外特性试验与流场数值分析[J].火箭推进,2005,31(5):18-24.
    [14]李仁年,韩伟,李琪飞等.间隙对螺旋离心泵性能影响的预测及试验[J].农业机械学报,2007,38(6):79-81.
    [15]陈仰吾,陈琳,王晓春.螺旋式离心泵的试验研究[J].流体机械,1997,25(2):45-47.
    [16]郭天恩,孙西欢,周玉珍.80LLW螺旋离心泵结构特性试验研究[J].流体机械,1994,22(12):4-7.
    [17]李仁年,李兵,韩伟.螺旋离心泵工作特性理论分析[J].农业机械学报,2005,36(6):51-53.
    [18]何希杰,劳学苏,螺旋式离心泵的原理与设计方法[J].水泵技术,1997,2:6-13.
    [19]Tatebayashi Y, Tanaka K, Kobayashi, T[C].8th Asian International Conference on Fluid Machinery, Yichang(CN),2005:885-891
    [20]李仁年,陈冰,韩伟等.变螺距螺旋离心泵叶片型线参数方程的分析[J].排灌机械,2007,25(6):1-3.
    [21]李仁年,苏吉鑫,韩伟等.螺旋离心泵叶轮叶片型线方程[J].排灌机械工程学报,2007,25(3):7-11.
    [22]Tatebayashi Yasushi, Tanaka Kazuhiro, Kobayashi Toshio, Thrust prediction in screw-type centrifugal pump[C].4the ASME/JSME Joint Fluids Engineering Conference,2003:621-626.
    [23]马芹梅,曹新智,吴承福.高效螺旋离心泵的设计与实验研究[J].农业装备技术,2010,36(6):24-25.
    [24]张海录,郭睿智.煤粒在螺旋离心泵内运动数值模拟分析[J].制造业信息化,2011,(10):65-67.
    [25]周建佳,袁寿其,袁建平等.间隙对螺旋泵性能与径向力影响的数值模拟[J].中国农村水利水电,2011,(33):106-109.
    [26]张金凤,徐宇平,袁寿其.双叶片螺旋离心泵非定常压力脉动数值分析[J].农业机械学报,2011,42(12):102-106.
    [27]李仁年,权辉,韩伟等.变螺距叶片对螺旋离心泵轴向力的影响[J].机械工程学报,2011,147(14):158-163.
    [28]敏政,朱登魁,戴雪兵等.基于速度系数法和型线方程相结合的螺旋离心泵叶轮设计方法[J].兰州理工大学学报,2012,38(4):48-50.
    [29]袁寿其,周建佳,袁建平.带小叶片螺旋离心泵压力脉动特性分析[J].农业机械工程学报,2012,43(3):83-87.
    [30]李彤,周建佳,袁寿其.基于流场计算的螺旋离心泵叶轮静力学分析[J].流体机械,2013,41(12):22-26.
    [31]权辉,李仁年,苏清苗等.基于型线的螺旋离心泵叶轮做功能力研究[J].机械工程学报,2013,49(10):156-161.
    [32]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011:408-412.
    [33]J. Kilander, A. Rasmuson. Energy dissipation and macro instabilities in a stirred square tank investigated using an LE PIV approach and LDA measurements[J]. Chemical Engineering Science,2005,60 (24):6844-6856.
    [34]Sharp K. V., Adrian R. J. PIV study of small-scale flow structure around a rushton turbine.American Institute of Chemical Engineers Journal.2001,47(16):766-778.
    [35]Fiseher M., Thoma D.. Investigation of the Flow Condition in a Centrifugal pump[J]. Trans. ASME,1957(1):821-839.
    [36]Lennemann E., Howard J. H. G.. Unsteady Flow Phenomena in Rotating Centrifugal Impeller Passage[J]. Trans. ASME, J. of Eng. for power,1970,92:65-72
    [37]Adler D., Levy Y.. A Laser-Doppler Investigation of the Flow inside a Back swept, Closed, Centrifugal Impeller[J]. J. of Mech. Eng. Sci.,1979,21(1):1-9.
    [38]Acosta A. J., Bowerman R. D.. An Experimental Study of Centrifugal Pump Impellers[J]. Trans. ASME, J. of Fluids Eng.,1957,79:1821-1839.
    [39]Miner S. M., Beaudion R. J., Flack R. D.. Laser Veloeimeter Measurements Flow Pump[J]. Trans. ASME, J. of Turbomachinery,1989(1):205-212.
    [40]Stoffel B., Ludwig G., Weiss K.. Experimental Investigations on the Structure of Part-Load Recirculations in Centrifugal Pump Impellers and the Role of Different Influence[C]. Proc.of 16th IAHR Symp.,1992:445-454.
    [41]Moore J.. A Wake and an Eddy in a Rotating Radial Flow passage Part I:Experimental Observations[J]. Trans. ASME, J. of Eng. For power,1973,95:205-212.
    [42]Chu S., Dong R. S., Katz J.. Relationship Between Unsteady Flow, Pressure Fluetuations and Noise in a Centrifugal Pump Part A:Use of PDV Data to Compute the Pressure Field[J]. Trans. ASME, J. of Turbomachinery,1995,117:24-29.
    [43]Chu S., Dong R. S., Katz J.. Relationship Between Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump Part B:Effects of Blade-Tongue Interactions[J]. Trans. ASME, J. of Turbomachinery,1995,117:30-35.
    [44]Johnson M. W., Moore J.. The Influence of Flow Rate on the wake in a Centrifugal Impeller[J]. Trans. ASME, J. of Eng. for power,1983,105:33-39.
    [45]Bwalya A. C., Johnson M. W.. Experimental Measurements in a Centrifugal Pump Impeller[J]. Trans. ASME, J. of Fluid Eng.,1996,118:692-697.
    [46]Dong R. S., Chu S., Katz J.. Quantitative Visualization of the Flow within the Volute of aCentrifugal Pump Part A:Technique[J]. Trans. ASME, J. of Turbomachinery,1992, 114:390-395.
    [47]Dong R. S., Chu S., Katz J.. Quantitative Visualization of the Flow within the Volute of aCentrifugal Pump Part B:Results and Analysis[J]. Trans. ASME, J. of Turbomachinery,1992,114:396-403.
    [48]Dong R. S., Chu S., Katz J.. Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump[J]. Trans. ASME, J. of Turbomachinery,1997,119:506-515.
    [49]Wernet M.P.. Development of Digital Particle Imaging Velocimetry for Use in Turbomachinery [J]. Experiments in Fluids,2000,28:97-115.
    [50]Peter Hergt, Stephan Meschkat, Bernd Stoffel. The Flow and Head Distribution within the Volute of a Centrifugal Pump in Comparison with the Characteristics of the Impeller without Casing[J]. Journal of Computational and Applied Mechanics,2004(2): 275-285.
    [51]Manish Sinha. Rotor-Stator Interactions, Turbulence Modeling and Rotating Stall in Centrifugal Pump with Diffuser Vanes[D]. Baltimore:Johns Hopkins University,1999.
    [52]Paone. N., Riethmuller. M. L. and Van den Braembussche. R. A. Experimental Investigation of the Flow in the Vaneless Diffuser of a Centrifugal Pump by Particle Image Displacement Velocimetry[J]. Exp. Fluids,1989(7):371-378.
    [53]Fowler H. S.. The Distribution and stability of Flow in a Rotating passage[J]. Trans. ASME, J. of Eng. for Power,1968,90:229-236.
    [54]李文广,薛敦松,朱宏武.离心泵压水室内部高粘油时均流动的LDV测量[J].工程热物理学报,1997,18(1):61-64.
    [55]李文广.离心泵叶轮内部清水流动试验研究[J].水利学报,1998,29(11):29-32.
    [56]李文广.离心泵输送粘性油时叶轮内部流动测量[J].机械工程学报,2000,36(6):33-36.
    [57]杨华,刘超,汤方平,等.采用PIV研究离心泵转轮内部瞬态流场[J].水动力研究与进展,2002,17(10):547-552.
    [58]Tang Fangping. PIV for Propeller Pumps Applications[C]. proc.2nd ISFMFE, China Science&Technology Press,2000:128-134.
    [59]薛敦松,李振林.非设计工况下离心泵叶轮内的流动[J].工程热物理学报,1992,18(4).
    [60]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63.
    [61]黄建德.离心泵进口回流的发生机理及预估[J].上海交通大学学报,1998,32(7):5-9.
    [62]黄建德.离心泵叶轮参数对进口回流的影响[J].工程热物理学报,1998,19(4):449-453.
    [63]黄建德,丁力,周建华,等.离心泵空泡脉动主动控制的研究[J].上海交通大学学报,1998,32(7):10-13.
    [64]Lakshminarayana B. An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery-The 1990 Freeman Scholar Lecture[J]. Journal of fluids Engineering,1991,113:315-352.
    [65]侯树强,王灿星,林建忠.叶轮机械内部流场数值模拟研究综述[J].流体机械,2005,33(5):30-35.
    [66]Wu Chung-Hua. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, and Mixed-Flow Types[J]. Trans. ASME,1952, 74(1):363-380.
    [67]刘宝杰,邹正平,严明,等.叶轮机械计算流体动力学技术现状与发展趋势[J].航空学报,2002,23(5):394-404.
    [68]Jose Gonzalez, Joaquin Fernandez, Eduardo Blanco, et al. Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump[J]. Transactions of the ASME,2002,124:348-354.
    [69]Jose Gonzalez, Carlos Santolaria. Unsteady Flow Structure and Global Variables in a Centrifugal Pump[J]. Journal of Fluids Engineering,2006,128:937-946.
    [70]Jose Gonzalez, Jorge Parrondo, Carlos Santolaria, et al. Steady and Unsteady Radial Forces for a Centrifugal Pump with Impeller Tongue Gap Variation[J]. Journal of Fluids Engineering,2006,128:454-462.
    [71]Feng, J; Benra, FK; Dohmen, HJ. Unsteady flow visualization at part-load conditions of a radial diffuser pump:by PIV and CFD [J]. Journal of visualization,12(1):65-72
    [72]唐辉,何枫.离心泵内流场的数值模拟[J].水泵技术,2002(3):3-7,14.
    [73]Felix A. Muggli, Peter Holbein, Philippe Dupont. CFD Calculation of a Mixed Flow Pump Characteristic from Shutoff to Maximum Flow[J]. Transactions of the ASME, 2002,124:798-802.
    [74]Shukla S. N., Kshirsagar J. T.. Numerical Experiments on a Centrifugal Pump[J]. ASME Fluids Engineering Division,2002,257(2B):709-720.
    [75]王文全.节能离心泵全流道数值模拟及性能预测[D].昆明:昆明理工大学,2005.
    [76]Chen K.W., Lee T. S., Winoto S. H., et al. Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions[J]. International Journal of Rotating Machinery, Volume 2007, Article ID 83641,8 Pages.
    [77]裴吉,袁寿其,袁建平.流固耦合作用对离心泵内部流场影响的数值计算[J].农业机械学报,2009,40(12):107-112.
    [78]张剑慈,朱祖超,崔宝玲.开式叶轮高速离心泵叶形对泵内流场的影响分析[J].农业机械学报,2007,38(10):41-44.
    [79]谈明高,刘厚林,王勇等.叶轮外径对离心泵内流影响的CFD分析[J].排灌机械工程学 报,2009,27(5):314-318.
    [80]张伟,余运超,陈红勋.离心泵叶轮非设计工况下内部湍流流场的模拟[J].排灌机械工程学报,2010,28(1):38-42.
    [81]张计光,陈红勋,马峥,等.双吸泵内流场的数值模拟及流动分析[J].上海大学学报(自然科学版),2006,12(2):186-190.
    [82]童跃平,张淑佳,李贤华等.标准k-ε模型与RSM模型在离心泵三维模拟中的比较[J].浙江工业大学学报,2008,36(6):678-681.
    [83]郭鹏程,罗兴锜,刘胜柱.离心泵内叶轮和压水室间耦合流动的三维湍流数值模拟[J].农业工程学报,2005,21(8):1-5.
    [84]张金凤,梁赞,袁建平等.离心泵进口回流流场及其控制方法的数值模拟[J].排灌机械工程学报,2012,33(4):402-407.
    [85]史佩琦,崔宝玲,陈洁达等.低比转速离心泵内部流场数值模拟[J].浙江理工大学学报,2012,29(4):575-579.
    [86]邵杰,张桂英,吴玉林.半开式离心泵内部流场的数值模拟研究[J],热能与动力工程,2011,26(3):290-294.
    [87]江伟,郭涛,李国君等.离心泵流场流固耦合数值模拟[J].农业机械学报,2012,43(9):53-56.
    [88]M. C., Roco. Reinhart E. Caculation of solid particles concentration in centrifugal pump impellers vging finite element technique[J]. Hydrotransport,1980 (7):359-371.
    [89]Frei. B, Huber. H, Characteristics of different pump types operating with ice slurry[J]. International Journal of Refrigeration,2005,28(1):92-97.
    [90]M. Mehta, J.R. Kadambi, S. Sastry, J. M. Sankovic, M.P. Wernet. Particle velocities in the rotating impeller of slurry pump[C]. Proceedings of FEDSM2007,5th Joint ASME/JSME Fluids Engineering Conference. San Diego, California USA,2007:1-10.
    [91]P. D. Sequeira Yoshimi Watanabe, Hiroyuki Eryu, Tetsuya Yamamoto Effects of platelet size and mean volume fraction on platelet orientation and volume fraction distributions in functionally graded Material Fabricated by a Centrifugal Solid-Particle Method[J]. Journal of Engineering Materials and Technology,2007, Vol.129:304-312.
    [92]蔡保元.离心泵的两相流理论及其设计原理.科学通报,1983.(8):498-502.
    [93]蔡保元.按两相流设计的杂志泵的性能特点.水泵技术,1986(2):14-18.
    [94]许洪元.离心式渣浆泵的设计理论研究与运用.水力发电学报,1998.(1):76-84.
    [95]顾广运.按两相流理论研究渣浆泵的体会.水泵技术1989.(4):26-30.
    [96]崔巍.固液两相流流动理论在渣浆泵改进设计中的应用.水泵技术,1994,(2):18-22.
    [97]殷建华.固液两相流离心泵的设计研究[J].机械,1990,17(1):11-16.
    [98]姜培正,陈良才.离心泵液固两相流动的理论分析与泵的设计研究[J].西安交通大学学报,1990,24(5):19-24.
    [99]陈良才,姜培正.离心泵液固两相流动理论与设计之探讨[J].武汉华工学院学报,1991,13(1):13-20.
    [100]魏进家,姜培正,胡春波.密相液固两相湍流流动研究[J],应用力学学报,1997,14(4):1-6
    [101]魏进家,姜培正,宇波.离心泵叶轮内密相液固两相湍流的数值模拟[J].应用力学学报,2000,17(3):31-36.
    [102]朱祖超,崔宝玲,李昳等.双流道泵输送固液介质的水力性能及磨损试验研究[J].机械工程学报,2009,45(12):65-69.
    [103]Yuan Shouqi, Zhang Peifang, Zhang Jinfeng. Numerical simulation of 3-D densedolid-liquid two-phase turbulent flow in anon-clogging mud pumps [J]. Chinese Journal of Mechanical Engineering,2004,17(4):623-627.
    [104]Li Hong,Yuan Shouqi Liu Weiwei, Numerical simulation of flow of pulp fiber suspensions in stock pump with semi-openimpeller[J]. Chinese Journal of Mechanical Engineering,2005(4):546-549.
    [105]吴玉林,葛亮,陈乃祥,离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报(自然科学版),2001,41(10):93-96.
    [106]朱玉才,吴玉林,潘爱先等.离心式固液两相流泵叶片形状对流体动力特性影响的研究[J].机械工程学报,2004,(08):67-71.
    [107]陈次昌,杨昌明,熊茂涛.低比转速离心泵叶轮内固液两相流的数值分析[J].排灌机械工程学报,2006,24(6):1-3.
    [108]刘栋,杨敏官,董祥.出口角对离心泵内固液两相流动影响[J].排灌机械工程学报,2009,27(1):1-5.
    [109]张静,吴波,覃正超.离心泵内固液两相流动的三维数值模拟[J].湖南农业大学学报(自然科学版),2009,35(2):189-191.
    [110]刘娟,许洪元,唐澍等.离心泵内固体颗粒运动规律与磨损的数值模拟[J].农业机械学报,2008,39(6):54-59.
    [111]刘建瑞,徐永刚,王董梅等.离心泵叶轮固液两相流动及泵外特性数值分析[J].农业机械学报,2010,41(3):86-90.
    [112]王显丰.含不同粒径混合砂粒离心泵固液两相流数值模拟[J].石油矿场机械,2012,41(9):19-23.
    [113]黄思,王国玉.洗煤输送泵内高浓度固液两相湍流的数值模拟[J].煤矿机械,2005,(11):53-55.
    [114]苏波隆B K,混合液在泥浆泵流道中的流动特性的研究[J].杂质泵技术, 1986(12):36-54.
    [115]Sun Zixiang, Wu Yulin, Xue Dunsong, Experimental investigation of the flow inside a model impeller by using PIV measurement[C]. Proc of 2nd ICPF, Tsinghua University,Beijing,1995.795-798.
    [116]杜朝辉,竺晓程.光测速技术及其在叶轮机械旋转流动中的应用[J].热力透平,2003,32(4):205-211.
    [117]杨敏官,高波,刘栋等.旋流泵内部盐析两相流速度场的PDPA试验[J].工程热物理学报,2008,29(2):237-240.
    [118]WU Jiezhi, WU jianmin. Vorticity dynamics on boundaries[J]. Advances In Applied Mechanics,1996,32:119-175.
    [119]WU jiezhi, WU Jianmin. Boundary Vorticity dynamics since lighthill 1963 article[J]. Theoretical and Computational Fluid Dynamics,1998,10:459-474.
    [120]Wu J Z, Zheng T G, LU X Y, et al. Towards new moment in terms of boundary vorticity flux[C]//Proceedings of American Institute of Aeronautics and Astronautics Conference Reno US A:American Institute of Aeronautics and Astronautics(AIAA),1996:1-10.
    [121]WU Jiezhi, Roach R L, Lo C F, et al. Aerodynamic diagnostics and design based on boundary vorticity dynamics[C]//Proceedings of American Institute of Aeronautics and Astronautics Conference. Norfolk, USA:American Institute of Aeronautics and Astronautics(AIAA),1999:33-36.
    [122]李秋实,郭明.基于局部涡动力学的一个低速压气机诊断与设计[J].自然科学进展,2005,15(2):221-228.(in Chinese)
    [123]吴宏,李秋实,郭明等.跨声速风扇转子的BVF气动优化方法[J].北京航空航天大学学报:自然科学版,2007,33(1):14-17,26.
    [124]徐朝辉.高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D].北京:清华大学,2004.
    [125]杨琳,樊红刚,陈乃祥.基于涡动力学得可逆转轮双向流动诊断及优化设计[J].清华大学学报:自然科学版,2007,47(5):686-690.
    [126]樊红刚,陈乃祥,杨琳.可逆式转轮三维流动的涡动力学诊断研究[J].水力发电学报,2007,26(3):124-128.
    [127]张梁,刘树红,张乐福等,混流式转轮内部流场的涡动力学分析[J].水力发电学报,2007(6):106-110.
    [128]李凤超,樊红刚,王正伟等.贯流式水轮机桨叶涡动力学优化设计[J].清华大学学报(自然科学版)2011.Vol.51(6):836-839.
    [129]Miguel Asuaje, Farid Bakir, Sma"ine Kouidri, et al. Numerical Modelization of the low in Centrifugal Pump:Volute Influence in Velocity and Pressure Fields[J]. International Journal of Rotating Machinery,2005(3):244-255.
    [130]J. H. Ferziger, M. Peric. Computational Methods for Fluid Dynamics[M]. Berlin:Springer,1996.
    [131]齐治昌.数值分析及其应用(第二版)[M],长沙,国防科技大学出版社,1998.02.
    [132]陈义良编.湍流计算模型[M].合肥,中国科学技术大学出版社,1991.05.
    [133]张兆顺等.湍流理论与模拟[M].北京,清华大学出版社,2005.09.
    [134]刘顺隆,郑群等.计算流体力学[M].哈尔滨工程大学出版社,1998.05.
    [135]张翔.不锈钢冲压焊接离心泵能量转换特性与设计方法[D].湛江:江苏大学,2011.
    [136]韩伟.浮选机内多相流动特性及浮选动力学性能的数值研究[D].兰州:兰州理工大学,2009.
    [137]Fluent Inc. FLUENT User's G.uide[M]. Fluent Inc,2003,3.
    [138]Manninen M, Taivassalo V and Kallio S. On the mixture model for multiphase flow. Technical Research Centre of Finland. VTT Publication,1996.
    [139]Tu J Y, Fletcher C A J. Fluid mechanics and numerical computation of turbulent gas-solid transport particle Phenomena flow in a 90 bend. AIChE J,1995, 41(10):2187-2197.
    [140]Hernainz F, Calero M, Blazquez G. Kinetics consideration in the flotation of phosphate ore.Advanced Powder Technol,2005(4):347-361.
    [141]M. SPIDLA, M. MOSTEK, V. SINEVIC, et al Experimental assessment and CFD simulations of local solid concentration profiles in a pilot-scale stirred tank. Chem. Pap.2005,59 (6a):386-393.
    [142]张政,谢灼利.流体-固体两相流的数值模拟.化工学报,2001,52(1):1-12.
    [143]Clift R, Grace J R, Weber M E. Bubbles, drops and particles. London:Academic Press,1978.
    [144]Lahey R T.The virtual mass and lift force on ain rotating and straining insviscid flow [J]. Int J Multiphase1987,13:113-121.
    [145]Drew D A. Theory of multicomponent fluids [M].New York, Passman Springer-Verlag, 1999.
    [146]林建中.流-固两相拟序涡流及稳定性.北京,清华大学出版社,2003.
    [147]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991.
    [148]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京,清华大学出版社,2004.
    [149]江帆,黄鹏Fluent高级应用与实例分析.北京,清华大学出版社2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700