用户名: 密码: 验证码:
双螺杆构型及挤压参数的建模与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆构型是双螺杆挤压机的核心部件,物料在不同的螺杆构型中受到的热机械效能和停留时间分布存在差异,最终影响挤出产品的综合性能。高温脱脂粕因其氮溶解指数NSI<30%,难以实现挤压组织化,由此,相关挤压机理、螺杆构型及其挤压参数的研究鲜见报道。本文基于高温脱脂粕双螺杆挤压组织化关键技术研究背景,对螺杆构型的数学建模、高温脱脂粕粉在螺杆构型全流道内的流动机理、螺杆构型及其挤压参数对组织化蛋白目标参数的影响进行研究,并取得了重要研究成果。
     1)根据全啮合同向双螺杆的啮合原理,建立了螺杆构型的全局数学模型,并据此建立了螺杆构型的理论设计方法。
     2)以高温脱脂粕为原料,TXLL110型同向啮合双螺杆挤压机为设备,以螺杆构型为试验因素,设计3种螺杆构型并进行比较试验,通过试验分析得出,螺杆构型对高温脱脂粕挤压组织化目标参数的主要影响因素是熔融区长径比与螺杆元件组合。
     3)通过对螺杆构型全流道内压力场、速度场、温度场的数值模拟与分析得出:输送区应采用大螺距正向螺纹输送元件以获得较大的加料能力,输送区的压力、温度变化较小,压力变化范围0~1MPa,温度变化范围80~84℃;熔融区应设置正反向捏合块及开槽螺纹元件,并且与其上游的螺纹元件按一定压缩比有效组合起来。熔融区的压力、温度逐渐上升,压力变化范围0.9-3.0MPa,温度变化范围95~153℃;计量均化区应配置中小螺距双头螺纹元件,计量均化区压力、温度变化很小,压力基本在3.0-3.4MPa范围内,温度基本在155~157℃范围内。
     4)通过响应面试验与回归分析,得到螺杆长径比、熔融区长径比、模口直径与挤压产品组织化度,以及螺杆长径比、熔融区长径比、模口直径与挤压产品感官评定的数学模型,为螺杆结构设计提供了理论依据,同时,通过响应优化得到结构参数的较优取值:螺杆长径比25.5:1,熔融区长径比12:1,模口直径16mm。
     5)通过响应面试验与回归分析,得到机筒温度、物料含水率、喂料速度、螺杆转速与挤压产品组织化度,以及机筒温度、物料含水率、喂料速度、螺杆转速与挤压产品感官评定的数学模型,为挤压过程控制提供了理论依据,同时,通过响应优化得到操作参数的较优取值:机筒温度145~147℃,物料含水率30%,喂料速度550~560kg/h,螺杆转速340r/min。本文的研究成果开创了高温脱脂粕挤压组织化研究的新领域,为双螺杆挤压机的设计制造、挤压工艺的制定提供了理论依据。
The screw configuration is the main component in a twin-screw extruder. Because the raw material is subjected to different thermal mechanical efficiency and residence time distribution in different screw configuration, so lead to different product performance. Because nitrogen solubility index NSI<30%, so it is difficult to achieve high-temperature defatted meal extrusion texturization, and the less study has been reported on extrusion mechanism, screw configuration and extrusion parameters. This article is based on the technology of high-temperature defatted meal extrusion texturization, then, the author studied mathematical model of screw configurations, flow mechanism of material flow in whole runner and the influence of screw configurations and extrusion parameters on target parameters of products, at the same time, achieved important research results.
     1) According to the meshing principle of intermeshing co-rotating twin screw, the mathematical model and design method of the whole screw configuration were built up.
     2) Using high-temperature defatted peanut meal as raw material, using TXLL110twin-screw extruder, the influence of three kinds of screw configurations on target parameters of products was studied by comparison experiment. The results showed that the ration between length and diameter of molten area and screw element combination were the main factors.
     3) The results of numerical simulation showed that coarse pitch single thread screw element could be used in feeding zone. Pressure range0-1MPa, temperature range80-84℃; Forward and reverse kneading block and slotted screw element could be used in melting zone. Pressure range0.9-3.0MPa, temperature range95-153℃; Small and medium pitch double thread screw element could be used in homogenizing zone. Pressure range3.0-3.4MPa, temperature range155-157℃.
     4) The mathematical models of structure parameters and target parameters were obtained by response surface analysis. The products obtained the optimum structure under the conditions of the ration between length and diameter of screw25.5:1, the ration between length and diameter of molten area12:1, and the diameter of die orifice16mm.
     5) The mathematical models of process parameters and target parameters were obtained by response surface analysis. The products obtained the optimum structure under the conditions of barrel temperature (zone4)145-147℃, feed moisture30%, feed speed550-560kg/h, and screw speed340r/min. As theoretical basis, the results could be used in the design and study of twin-screw extruder on high-temperature defatted meal extrusion texturization.
引文
[1]国家发展和改革委员会工业和信息化部.食品工业“十二五”发展规划.2011:27.
    [2]Riaz M N. Extruders in food applications[M]. CRC Press,2000.
    [3]Harper J M. Extrusion of foods[M]. CRC Press,1981.
    [4]Harper J M. Extrusion texturization of foods[J]. Food Technology,1986,40(3): 70-76.
    [5]Swientek B. Extrusion yields fibrous, meat-like products[J]. Prepared Foods, 2000,169(1):53-54.
    [6]Aguilera J M, Rossi F, Hiche E, et al. Development and evaluation of an extrusion-texturized peanut protein[J]. Journal of Food Science,1980,45(2): 246-250.
    [7]Alid G, Yanez E, Aguilera J M, et al. Nutritive value of an extrusion-texturized peanut protein[J]. Journal of Food Science,1981,46(3):948-949.
    [8]Li M, Lee T C. Relationship of the extrusion temperature and the solubility and disulfide bond distribution of wheat proteins[J]. Journal of Agricultural and Food Chemistry,1997,45(7):2711-2717.
    [9]Fischer T. Effect of extrusion cooking on protein modification in wheat flour[J]. European Food Research and Technology,2004,218(2):128-132.
    [10]Alonso R, Orue E, Zabalza M J, et al. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins[J]. Journal of the Science of Food and Agriculture,2000,80(3):397-403.
    [11]Alonso R, Rubio L A, Muzquiz M, et al. The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals[J]. Animal Feed Science and Technology,2001,94(1):1-13.
    [12]刘忠萍,华聘聘,华欲飞.大豆蛋白的挤压组织化研究[J].中国油脂,2003,28(5):64-66.
    [13]Atkinson W T. Meat-like protein food product:U.S. Patent 3,488,770[P]. 1970-1-6.
    [14]Flier R J. Protein product and method for forming same:U.S. Patent 3,940,495[P].1976-2-24.
    [15]Wilding M D. Process for preparing expanded soybean granules:U.S. Patent 4,044,157[P].1977-8-23.
    [16]魏益民,康立宁,张汆.食品挤压理论与技术:中卷[M].中国轻工业出版 社,2009.
    [17]de La Gueriviere J F. Texturation de proteines vegetales par cuisson-extrusion. Application aux farines de feverole[J]. Revue francaise des corps gras,1976, 23(2):67.
    [18]Aguilera J M, Kosikowski F V. Soybean extruded product:a response surface analysis[J]. Journal of Food Science,1976,41(3):647-651.
    [19]Holay S H, Harper J M. Influence of the extrusion shear environment on plant protein texturization[J]. Journal of Food Science,1982,47(6):1869-1874.
    [20]Frazier P J, Crawshaw A, Daniels N W R, et al. Optimisation of process variables in extrusion texturing of soya[J]. Journal of Food Engineering,1983, 2(2):79-103.
    [21]Sheard P R, Ledward D A, Mitchell J R. Role of carbohydrates in soya extrusion[J]. International Journal of Food Science & Technology,1984,19(4): 475-483.
    [22]Simonsky R W, Stanley D W. Texture-structure relationships in textured soy protein. V. Influence of pH and protein acylation on extrusion texturization[J]. Journal-Canadian Institute of Food Science and Technology,1982,15:294.
    [23]王洪武,周建国,林炳鉴.双螺杆挤压机工艺参数对组织蛋白的影响[J].中国粮油学报,2001,16(2):54-58.
    [24]王洪武,马榴强,周建国,等.大豆蛋白质原料体系对挤压组织化的影响[J].中国食品学报,2002,2(1):33-38.
    [25]王洪武,林炳鉴.复合组织蛋白挤压加工工艺的初步研究[J].农业工程学报,2004,20(4):216-219.
    [26]王洪武.大豆蛋白质双螺杆挤压加工工艺参数对系统参数的影响[J].中国油脂,2005,30(9):28-30.
    [27]康立宁.大豆蛋白高水分挤压组织化技术和机理研究[D][D].杨凌:西北农林科技大学,2007.
    [28]张汆.花生蛋白挤压组织化技术及其机理研究[D][D].杨凌:西北农林科技大学,2007.
    [29]张波,魏益民,康立宁.双螺杆挤压机螺杆元件类型对扭矩和压力的影响[J].农业机械学报,2007,38(9):71-74.
    [30]文东辉,徐克非,郝文杰,等.国外双螺杆挤压膨化机的研究现状[J].食品与机械,1999(5):35-37.
    [31]Meuser F, Van Lengerich B. System analytical model for the extrusion of starches[J]. Thermal processing and quality of foods,1984:175-179.
    [32]Carrot C, Guillet J, May J F, et al. Modeling of the conveying of solid polymer in the feeding zone of intermeshing co-rotating twin screw extruders[J]. Polymer Engineering & Science,1993,33(11):700-708.
    [33]Potente H, Melisch U, Palluch K P. A physico-mathematical model for solids conveying in co-rotating twin screw extruders[J]. International Polymer Processing,1996,11(1):29-41.
    [34]Bawiskar S, White J L. Solids conveying and melting in a starve fed self-wiping co-rotating twin screw extruder[J]. International Polymer Processing,1995, 10(2):105-110.
    [35]刘廷华.双螺杆挤出可视化实验研究与非充满固体输送及熔融理论研究[D][D].北京:北京化工大学,1995.
    [36]Tayeb J, Vergnes B, VALLE G D. A basic model for a twin-screw extruder[J]. Journal of Food Science,1989,54(4):1047-1056.
    [37]Huneault M A, Champagne M F, Luciani A. Polymer blend mixing and dispersion in the kneading section of a twin-screw extruder[J]. Polymer Engineering & Science,1996,36(12):1694-1706.
    [38]Kajiwara T, Nagashima Y, Nakano Y, et al. Numerical study of twin-screw extruders by three-dimensional flow analysis-development of analysis technique and evaluation of mixing performance for full flight screws[J]. Polymer Engineering & Science,1996,36(16):2142-2152.
    [39]Funatsu K, Kihara S I, Miyazaki M, et al.3-D numerical analysis on the mixing performance for assemblies with filled zone of right-handed and left-handed double-flighted screws and kneading blocks in twin-screw extruders[J]. Polymer Engineering & Science,2002,42(4):707-723.
    [40]Goffart D, Van Der Wal D J, Klomp E M, et al. Three-dimensional flow modeling of a self-wiping co-rotating twin-screw extruder. Part I:The transporting section[J]. Polymer Engineering & Science,1996,36(7):901-911.
    [41]Van Der Wal D J, Goffart D, Klomp E M, et al. Three-dimensional flow modeling of a self-wiping co-rotating twin-screw extruder. Part II:The kneading section[J]. Polymer Engineering & Science,1996,36(7):912-924.
    [42]Cheng H, Manas-Zloczower I. Distributive mixing in conveying elements of a ZSK-53 co-rotating twin screw extruder[J]. Polymer Engineering & Science, 1998,38(6):926-935.
    [43]Ishikawa T, Kihara S I, Funatsu K.3-D numerical simulations of non-isothermal flow in co-rotating twin screw extruders[J]. Polymer Engineering & Science, 2000,40(2):357-364.
    [44]Ishikawa T, Kihara S, Funatsu K.3-D non-isothermal flow field analysis and mixing performance evaluation of kneading blocks in a co-rotating twin srew extruder[J]. Polymer Engineering & Science,2001,41(5):840-849.
    [45]Bravo V L, Hrymak A N, Wright J D. Numerical simulation of pressure and velocity profiles in kneading elements of a co-rotating twin screw extruder[J]. Polymer Engineering & Science,2000,40(2):525-541.
    [46]Fukuoka T. Numerical analysis of a reactive extrusion process. Part Ⅱ: Simulations and verifications for the twin screw extrusion[J]. Polymer Engineering & Science,2000,40(12):2524-2538.
    [47]Bertrand F, Thibault F, Delamare L, et al. Adaptive finite element simulations of fluid flow in twin-screw extruders[J]. Computers & Chemical Engineering, 2003,27(4):491-500.
    [48]Ficarella A, Milanese M, Laforgia D. Numerical study of the extrusion process in cereals production:Part Ⅰ. Fluid-dynamic analysis of the extrusion system[J]. Journal of Food Engineering,2006,73(2):103-111.
    [49]Ficarella A, Milanese M, Laforgia D. Numerical study of the extrusion process in cereals production:Part Ⅱ. Analysis of variance[J]. Journal of Food Engineering,2006,72(2):179-188.
    [50]金月富,耿孝正,梁畅.新型同向双螺杆元件—S型元件研究(Ⅰ)——流场数值模拟[J].中国塑料,2002,16(1):79-85.
    [51]梁畅,马秀清,耿孝正.啮合同向双螺杆挤出机中S型元件不同螺杆构型下的流场模拟[J].中国塑料,2003,17(5):78-82.
    [52]Chen Z, White J L. Dimensionless non-Newtonian isothermal simulation and scale-up considerations for modular intermeshing co-rotating twin screw extruders[J]. International Polymer Processing,1991,6(4):304-310.
    [53]Lai-Fook R A, Li Y, Smith A C. A 2-d numerical study of intermeshing self-wiping screws in biopolymer extrusion[J]. Polymer Engineering & Science, 1991,31(15):1157-1163.
    [54]Szydlowski W, Brzoskowski R, White J L. Modelling flow in an intermeshing co-rotating twin screw extruder:flow in kneading discs[J]. International Polymer Processing,1987,1(4):207-214.
    [55]Wang Y, White J L, Szydlowski W. Flow in a modular intermeshing co-rotating twin screw extruder[J]. International Polymer Processing,1989,4(4):262-269.
    [56]Sastrohartono T, Jaluria Y, Karwe M V. Numerical simulation of fluid flow and heat transport in twin-screw extruders for non-Newtonian fluids[J]. Polymer Engineering and Science,1992,35:1213-1221.
    [57]Karwe M V, Jaluria Y. Numerical simulation of fluid flow and heat transfer in a single-screw extruder for non-Newtonian fluids[J]. Numerical Heat Transfer, 1990,17(2):167-190.
    [58]White J L, Chen Z. Simulation of non-isothermal flow in modular co-rotating twin screw extrusion[J]. Polymer Engineering & Science,1994,34(3):229-237.
    [59]Carneiro O S, Caldeira G, Covas J A. Flow patterns in twin-screw extruders[J]. Journal of Materials Processing Technology,1999,92:309-315.
    [60]Cheng H, Friis A. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology[J]. Food and Bioproducts Processing,2010,88(2):188-194.
    [61]耿孝正.双螺杆挤出机及其应用[M].中国轻工业出版社,2003,220-235.
    [62]Dreiblatt A. The "art" of screw design-part 1. www.centuryextrusion.com, 2008b
    [63]耿孝正,啮合同向双螺杆挤出过程不同功能段的螺杆构型和整根螺杆的组合设计[J].中国塑料,2000,14(8):68-73.
    [64]Choudhury G S, Gautam A. Comparative study of mixing elements during twin-screw extrusion of rice flour[J]. Food Research International,1998,31(1): 7-17.
    [65]Choudhury G S, Gogoi B K, Oswalt A J. Twin-screw extrusion pink salmon muscle and rice flour blends:Effects of kneading elements[J]. Journal of Aquatic Food Product Technology,1998,7(2):69-91.
    [66]Choudhury G S, Gautam A. On-line measurement of residence time distribution in a food extruder[J]. Journal of Food Science,1998,63(3):529-534.
    [67]张波,魏益民,康立宁,等.挤压参数对组织化大豆蛋白持水性的影响[J].农业工程学报,2007,23(11):260-263.
    [68]Gautam A, Choudhury G S. Screw configuration effects on residence time distribution and mixing in twin-screw extruders during extrusion of rice flour[J]. Journal of Food Process Engineering,1999,22(4):263-285.
    [69]Gautam A, Choudhury G S. Screw configuration effects on starch breakdown during twin-screw extrusion of rice flour[J]. Journal of Food Processing Preservation,1999,23(5):355-375.
    [70]Chao-Chi Chuang G, Yeh A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking[J]. Journal of Food Engineering,2004,63(1):21-31.
    [71]Booy M L. Geometry of fully wiped twin-screw equipment[J]. Polymer Engineering & Science,1978,18(12):973-984.
    [72]瞿维国,戴宁,张裕中.同向啮合型双螺杆挤压机挤压过程分析[J].粮油加工与食品机械,2000(5):12-13.
    [73]Vergnes B, Valle G D, Delamare L. A global computer software for polymer flows in corotating twin screw extruders[J]. Polymer Engineering & Science, 1998,38(11):1781-1792.
    [74]郑泓,俞炜,张洪斌,等.同向啮合双螺杆挤出机挤出过程的计算机模拟[J].高分子学报,2006(5):676-681.
    [75]Lin S, Huff H E, Hsieh F. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog[J]. Journal of Food Science,2002,67(3):1066-1072.
    [76]赵琳,王乐凯,李哲滨,等.组织化植物蛋白产品评价方法研究进展[J].黑龙江农业科学,2009(4):145-147.
    [77]孙志欣,于国萍,朱秀清,等.高湿挤压技术生产组织化大豆蛋白工艺的优化研究[J].大豆科技,2009(3):44-48.
    [78]胡冬冬,彭炯,陈晋南.组合式双螺杆挤出机中三维等温流动的数值研究[J].北京理工大学学报,2006,26(3):201-205.
    [79]石兆东,山宏伟.非啮合双螺杆挤压机三维流场数值模拟[J].农机化研究,2011,33(1):41-44.
    [80]唐庆菊,李纪强,周平.基于ANSYS的食品双螺杆挤出机流场数值模拟[J].机械设计与制造,2007(12):94-95.
    [81]郭彤辉,王平.基于ANSYS软件的双螺杆挤出机的计算机模拟与分析[J].塑料科技,2011,39(9):78-82.
    [82]石兆东,王伟,张康.基于CFD的非啮合并列型双螺杆挤出机三维流场数值模拟[J].煤矿机械,2007,28(1):30-32.
    [83]陈晋南,卢世明.螺杆挤出机螺杆元件性能数值研究的进展[J].计算机辅助工程,2009,18(4):5-9.
    [84]李鹏,耿孝正,马秀清.啮合同向双螺杆挤出过程组合流道(捏合块+螺纹元件)三维流场分析[J].中国塑料,2001,15(7):66-70.
    [85]李鹏,耿孝正,马秀清.啮合同向双螺杆挤出机螺纹元件三维流场分析[J].中国塑料,2001,15(6):73-77.
    [86]刘峰,朱向哲.双螺杆挤出机齿型螺纹元件三维流场分析[J].石油化工设备,2008,37(3):37-39.
    [87]孙德锋,朱向哲.同向啮合型双螺杆反应器三维流场数值模拟[J].石油化工设备,2008,37(5):47-50.
    [88]彭炯,胡冬冬,陈晋南,等.同向双螺杆挤出机捏合段三维非等温流动的数值模拟[J].工程塑料应用,2002,30(2):42-44.
    [89]韩式方.非牛顿流体本构方程和计算解析理论[M].科学出版社,2000.
    [90]张敏革,张吕鸿,姜斌,等.非牛顿流体搅拌流场的数值模拟研究进展[J].化工进展,2009,28(8):1296-1301.
    [91]林江娇,赵春芳,朱立学.双螺杆挤压膨化机温升特性的仿真分析与试验[J].农业工程学报,2012,28(16):47-53.
    [92]贾明印,薛平,王克俭,等.嵌套式螺杆挤出机的固相温度分布[J].高分子材料科学与工程,2008,24(12):20-24.
    [93]朱向哲,苗一,袁慧群.三螺杆挤出机聚合物温度和功耗特性的数值模拟[J].高分子材料科学与工程,2009,25(10):166-170.
    [94]孙智慧,徐克非,杨绮云,等.食品双螺杆挤出机比能耗定量化研究[J].农业机械学报,2010,41(增刊):225-228.
    [95]孙建梅,冯连勋.锥形双螺杆螺纹元件流道机械功耗特性初步分析[J].中国塑料,2002,16(7):87-90.
    [96]Valle G D, Quillien L, Gueguen J. Relationships between processing conditions and starch and protein modifications during extrusion-cooking of pea flour[J]. Journal of the Science of Food and Agriculture,1994,64(4):509-517.
    [97]孙照勇,魏益民,张波,等.物料含水率对大豆蛋白挤压组织化产品特性的影响[J].中国粮油学报,2009,24(10):28-32.
    [98]刘福胜.中型双螺杆挤压膨化机生产组织蛋白的研究[M][D].东北农业大学,2006.
    [99]李里特.食品物性学[M].中国农业出版社,2001,179-182.
    [100]魏益民,康立宁,张波,等.高水分大豆蛋白组织化生产工艺和机理分析[J].农业工程学报,2006,22(10):193-197.
    [101]Montgomery D C.实验设计与分析[M].人民邮电出版社,2009.
    [102]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700