用户名: 密码: 验证码:
利用高场强超声波增强大豆蛋白凝胶性及凝胶缓释效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白作为大豆产业中的主要产品之一,在食品生产中应用广泛。在大豆蛋白的众多性质中,凝胶性是重要又独特的性质。近年来,高场强超声波技术在食品工业中的应用受到越来越多的关注,已有研究表明超声技术能够改善大豆蛋白的功能特性。但是,利用高场强超声技术,系统全面地对大豆蛋白凝胶性进行改善的研究并不多见。
     本研究首先以高场强超声波技术作为改性手段改性大豆蛋白。然后选取三种不同类型的大豆蛋白冷热凝胶(“内酯豆腐”热凝胶、“传统豆腐”热凝胶和转谷氨酰胺酶冷凝胶)作为成胶模型,模拟凝胶形成。研究发现高场强超声作用显著提高了以上三种大豆蛋白凝胶的凝胶性质。接着,为了探索利用大豆蛋白凝胶作为营养物及药物包埋载体的可能性,我们选取其中的冷凝胶(以避免对热敏性营养物或者药物的破坏)作为包埋载体,对核黄素进行了包埋和体外消化实验。结果显示超声处理显著减缓了核黄素在消化液中的释放速率。最后,将超声波分别作用于大豆7S和1lS蛋白后发现,超声对7S性质的改变比11S更显著。其具体结果如下:
     (1)高场强超声波(20kHz,200-600W下,15或者30分钟)作用能改变商用大豆分离蛋白的功能特性。超声波作用降低大豆分离蛋白溶液的储存模量和损失模量,使蛋白溶液体现出更像液体的流变性。扫描电镜显示,超声作用使冻干后的大豆分离蛋白的片状聚合物增大,并且超声作用后大豆分离蛋白溶液的游离巯基含量从9.13±0.44μmol g-1可溶蛋白增加至(?)18.08±0.39μmol g-1可溶蛋白,表面疏水性由1400增加到4200,在不同溶液中的溶解性也增加。超声后,蛋白分子间的非共价作用可能减少并转化为静电相互作用。高场强超声作用能够改变商用大豆分离蛋白二级结构;并且打开蛋白分子或者聚合体,使巯基和疏水基团暴露,改变蛋白三级结构;超声还可能改变蛋白的聚合形式,使蛋白聚合物部分解体。
     (2)模拟“内酯”豆腐生产工艺,以10%(w/v)大豆分离蛋白,内酯加入量为0.3g/100mL来制作大豆分离蛋白内酯凝胶。对比未被超声作用的大豆分离蛋白和高场强超声波(20kHz,400W,5-40分钟)处理之后的大豆分离蛋白内酯凝胶发现:高场强超声显著提高商用大豆分离蛋白葡萄糖酸内酯凝胶的持水性、凝胶强度和凝胶坚固性(G’)。其中,被超声处理20分钟的凝胶持水性、凝胶强度和凝胶G’最高,分别为95.53±0.25%,60.90±2.87g和96340Pa。此外,超声预处理还降低了内酯凝胶的巯基含量和蛋白分子间的非共价相互作用。扫描电镜显示,超声预处理后的凝胶空间结构致密、均一,而未处理凝胶含有很多大小不均匀的孔状结构。流变研究显示,在凝胶形成的各个阶段里,降温过程对超声处理后的凝胶强度增强作用最明显,而保温过程对未被超声处理的凝胶强度增强作用最明显。超声降低了蛋白溶液粒度,Pearson相关性分析显示蛋白溶液粒径大小与内酯凝胶持水性、凝胶强度和凝胶G’显著负相关。
     (3)模拟“传统豆腐”生产工艺,以10%(w/v)大豆分离蛋白,硫酸钙加入量为20mM来制作大豆分离蛋白钙离子凝胶。对比未被超声作用的大豆分离蛋白和高场强超声波(20kHz,400W,5-40分钟)处理之后的大豆分离蛋白钙离子凝胶发现:高场强超声显著提高商用大豆分离蛋白硫酸钙凝胶的持水性和凝胶强度。被超声处理40分钟的凝胶持水性和凝胶强度最高。并且,超声预处理还降低了钙凝胶的巯基含量。扫描电镜显示,超声预处理改变了钙离子凝胶的三维结构,经过超声预处理的钙离子凝胶空间结构致密、均一,而未处理凝胶含有很多大小不均匀的孔状结构。对大豆分离蛋白在95℃加热10分钟以后,超声预处理仍然在一些重要性质方面体现出差异,比如:粒度分布改变,蛋白粒度降低,表面疏水性和巯基含量增加。
     (4)超声提高内酯和钙离子凝胶性的机理总结如下:超声作用降低了大豆分离蛋白粒度,并且在此过程中将原本包埋于大豆分离蛋白内部的疏水基团和巯基暴露到分子或者聚合物表面。接下来的加热处理进一步促进了蛋白粒度的降低和活性基团的暴露。超声波还可能促使蛋白形成可溶性聚合物,这些可溶性蛋白聚合物可能在凝胶形成时的加热过程中形成难溶聚合物。接着凝固剂加入,促进聚合物形成。超声对大豆分离蛋白产生的结构和构象的改变可能会有益于分子间疏水相互作用和分子间二硫键的形成,最终形成致密、均一的网状空间结构。
     (5)探究了超声预处理对大豆分离蛋白转谷氨酰胺酶冷凝胶凝胶性的影响,发现超声能够增强其凝胶性。选取此种冷凝胶为包埋载体包埋核黄素,因为冷环境能够更好地保护热敏性营养物质或药物。高场强超声波(20kHz,400W)处理40分钟之后,包埋核黄素的大豆分离蛋白冷凝胶凝胶产量由6.02增加到11.27;凝胶强度由11.4g增加到37.5g;包埋率也由88.8%增加到100%。并且经过40分钟超声处理之后核黄素在模拟胃液或者肠液中的释放速率减慢。通过对凝胶的进一步研究发现:凝胶的肿胀性降低,抗腐蚀性增加,空间结构也呈现出更加致密的网状结构。聚丙烯酰胺电泳显示超声预处理增加了大豆蛋白凝胶的交联度,促进了共价交联反应的发生。拉曼光谱显示,超声预处理后,蛋白凝胶多肽链和氨基酸残基的微环境以及化学性质发生了变化,意味着三级结构改变了。
     (6)用高场强超声(20kHz,400W下5-40分钟)处理从脱脂大豆粉中提取的7S和11S。超声作用后,在pH=7.0,0.05M的Tris缓冲液中,7S的粒度由73.3nm减少至51.6nnm,浊度(2%)由0.602减少到0.147,表面疏水性由856增加到1060,溶解性从85%增加到93%,乳化活性指数由34.1m2/g增加到53.7m2/g,乳化稳定指数由9.7分钟增加到52.6分钟。对11S而言,超声后11S在Tris缓冲液中的浊度降低,但对其粒度和乳化稳定指数影响不大。除此之外,11S的表面疏水性和溶解度在前20分钟时降低但之后又增加。7S和11S的巯基含量都在超声之后降低。超声没有改变7S和11S的二级结构,但它增加了非还原性电泳在高分子量处聚集物的含量,并且拉曼光谱显示芳香和脂肪族氨基酸侧链的微环境也发生了改变。从以上在Tris缓冲液中粒度、浊度、溶解度和乳化性的改变,不难发现,超声对7S的影响比11S更加显著。超声对7S蛋白聚集物的解聚集,可能是造成以上变化的主要原因。但同时,我们应该注意到11S在Tris缓冲液中聚集程度高,这也可能导致超声对11S功能性质影响不大。
Soybean protein which has already been widely used in food processing area is an important product in soy industry. Among all the properties of soy protein, gelation property is important and unique. During the recent years, high intensity ultrasound (HIU) technology has attracted a lot of attentions. Moreover, some recent researches have pointed out that HIU can change the physicochemical properties of soy protein. However, to the best of our knowledge, few systematic researches on using HIU to improve the gelation property of soy protein have been reported.
     In this study, the first step is to use HIU to change the physicochemical properties of soy protein. Then three kinds of gelation models, namely,"glucono-deta-lactone (GDL) tofu" heated gel,"traditional" tofu heated gel and TGase induced cold gel, were chosen. It was observed that HIU increased the gelation property of the above three kinds of gels. After that, in order to develop the soy protein macro-hydrogel as drug or nutritional compound carrier, TGase induced cold gel was chosen to encapsulate riboflavin. The reason for choosing TGase gel is because this gel can be formed at mild temperature thus can protect a lot of heat sensitive materials. In vitro experiments showed that40min HIU reduced the release speed of riboflavin obviously. Finally, soy7S and11S were treated by HIU and we found that the effects of HIU on7S were more profound than those of11S. Our specific findings were listed below:
     (1) The effects of low-frequency (20kHz) HIU at varying power (200,400or600W) and time (15or30min) on functional and structural properties of reconstituted soy protein isolate (SPI) dispersions were examined. HIU treatments reduced both the storage modulus and loss modulus of SPI dispersions and formed more viscous SPI dispersions (fluid character). Moreover, HIU treatment significantly decreased the consistency coefficients and increased the flow behaviour index of SPI dispersions. Scanning electron microscopy of lyophilized HIU SPI showed different microstructure with larger aggregates compared to non-treated SPI. No significant change was observed in the protein electrophoretic patterns by SDS-PAGE. However, free sulfhydryl content (SH), surface hydrophobicity and protein solubility of SPI dispersions were all increased with HIU treatment. Differences in solubility profiles in the presence versus absence of denaturing (0.5%sodium dodecyl sulfate and6M urea) and reducing (mercaptoethanol) agents suggested a decrease in non-covalent interactions of SPI in dispersion after HIU. Secondary structure analysis by circular dichroism indicated lower a-helix and random coil in SPI treated at lower power, in contrast to higher a-helix and lower β-sheet in SPI treated with higher power (600W). HIU resulted in partial unfolding and reduction of intermolecular interactions as demonstrated by increases in free sulfhydryl groups and surface hydrophobicity, leading to improved solubility and fluid character of SPI dispersions, while larger aggregates of HIU SPI in the dry state were formed after lyophilization.
     (2)HIU (20k Hz,400W) pre-treatments of SPI improved the water holding capacity (WHC), gel strength and gel firmness (final elastic moduli) of glucono-δ-lactone induced SPI gels (GISG). Sonication time (0,5,20, and40min) had a significant effect on the above three properties.20min HIU-GISG had the highest WHC (95.53±0.25%), gel strength (60.90±2.87g) and gel firmness (96340Pa), compared with other samples. Moreover, SH groups and non-covalent interactions of GISG also changed after HIU pre-treatments. The HIU GISG had denser and more uniform microstructures than the untreated GISG. Rheological investments showed that the cooling step (reduce the temperature from95℃to25℃at a speed of2℃/min) was more important for the HIU GISG network formation while the heat preservation step (keep temperature at95℃for20min) was more important for the untreated GISG. HIU reduced the particle size of SPI and Pearson correlation test showed that the particle size of SPI dispersions was negatively correlated with WHC, gel strength and gel firmness.
     (3) HIU (20kHz at400W for5,20or40min) pre-treatments of SPI changed the particle distribution and reduced particle size of SPI dispersions. Surface hydrophobicity and free SH content of SPI increased with HIU time. Free SH content of CaSO4-induced SPI gels (CISG) and protein solubility in the presence of SDS and urea decreased after HIU pretreatments, suggesting HIU facilitated disulfide bond formation during CISG formation. HIU resulted in more uniform and denser gel network, WHC and gel strength of CISG. Furthermore, WHC and gel strength were positively correlated with free SH content of heated SPI and surface hydrophobicity of unheated SPI, and negatively correlated with particle size of heated SPI and free SH content of CISG. In conclusion, HUS induced structural changes in SPI molecules, leading to different microstructure and improved WHC and gel strength of CISG.
     (4)The mechanism of HIU improvement of gelation properties of GISG and CISG could be summarized as follow: HIU reduced the particle size of soy protein, meanwhile, the hydrophobic and SH groups were exposed from the interior of SPI aggregate or molecular to the surface. The following heat step further reduced the particle size and exposed active groups. Moreover, HIU facilitated the formation of soluble protein aggregates which might be formed as non-soluble aggregates during the heating process. After that, coagulates were added and aggregates were formed. HIU changes the structures and conformation of SPI, which may accelerate the formation of intermolecular hydrophobic interactions and S-S bonds, finally resulting in dense and uniform3D structure.
     (5) HIU increased the gelation property of TGase induced cold SPI gel (TISG). TISG was used as control release model to encapsulate riboflavin because TISG was a cold gel which can protect heat sensitive materials.40min HIU (20kHz,400W) increased the gel yield from6.02to11.27, increased the gel strength from11.4g to37.5g and increased the encapsulate efficiency from88.8%to100%. Moreover,40min HIU reduced the riboflavin release speed in simulated gastric or intestinal fluid. Further investigations showed that the swell property of TISG reduced while the anti-erosion property increased. SDS-PAGE indicated that HIU increased the cross-link degree of SPI when treated by TGase. Raman spectroscopy revealed that HIU pretreatment of TISG changed the microenvironment of polypeptide and the chemistry of amino acid side chain, indicating the modification of tertiary structure.
     (6) The effects of HIU (20kHz at400W for5,20or40min) on soybean P-conglycinin (7S) and glycinin (11S) fractions were investigated in this study. HIU decreased turbidity and particle size of7S in0.05M Tris-HCl buffer at pH7.0, while it increased surface hydrophobicity, solubility, emulsifying activity (EAI) and emulsion stability (ESI). Similarly, HIU of soybean glycinin (11S) decreased turbidity while increasing EAI but it had minimal effects on particle size and ESI. Furthermore, surface hydrophobicity and solubility of11S decreased during the first20min of HIU but then increased upon longer treatment. The SH groups of both7S and11S fractions decreased after HIU. HIU did not change7S or11S secondary structure, but it slightly increased the percentage of high molecular-weight aggregates under non-reducing SDS-PAGE, and changed the microenvironment of aromatic and aliphatic side chains as observed by Raman spectroscopy of freeze-dried samples. The physicochemical changes of11S and especially of7S proteins induced by HIU treatment may contribute to improved applications of soy proteins in food products.
引文
[1]曾丽芬.超声波在食品干燥中的应用[J].广东化工,2008,35(2):49-51.
    [2]陈林.物理预处理-蛋白酶控制水解联合改性对大豆分离蛋白功能特性的影响研究[d][D].华南理工大学,2010.
    [3]迟玉杰.朱秀清和李文滨.大豆蛋白质加工新技术.北京:科学出版社,2008
    [4]丁原涛,吴晖.超声波技术在食品工业中的应用[J].粮油加工与食品机械,2004,(5):67-69.
    [5]胡爱军,郑捷.食品超声技术.北京:化学工业出版社,2012
    [6]江连洲.大豆化学加工工艺与应用.黑龙江:黑龙江科学技术出版社,2005
    [7]梁华,钮琰星,黄凤洪,夏伏建.超声波在食品工业上的应用[J].食品工业科技,2008,(7):293-296.
    [8]刘芳,赵峰.超声波技术在食品生产检测和食品安全检测中的应用进展[J].福建分析测试,2008,17(4):27-31.
    [9]刘晓康.超声化学及其在粮油食品工业中的应用[J].粮食与油脂,2001,(7):9-11.
    [10]刘志胜.豆腐凝胶的研究[D].北京:中国农业大学,2000.
    [11]罗东辉.均质改性大豆蛋白功能特性研究[d][D].华南理工大学,2010.
    [12]罗贤清,陈建军,胡斌,王芳,王贤锋.超声波技术在食品安全检测中的新进展[J].农机化研究,2007,(9):195-196.
    [13]司玉慧.超微粉碎对大豆分离蛋白功能作用的影响[D].山东农业大学,2012.
    [14]涂宗财.蛋白质动态超高压微射流改性研究及机理初探[D].南昌大学,2007.
    [15]维基百科.大豆.http://zh.wikipedia.org/wiki/%E5%A4%A7%E8%B1%86
    [16]吴伟.蛋白质氧化对大豆蛋白结构和凝胶性质的影响[d][D].无锡:江南大学,2010.
    [17]谢晶,韩志,孙大文.超声波技术在食品冻结过程中的应用[J].渔业现代化,2006,(5):41-44.
    [18]于新和胡林子.大豆加工副产物的综合利用.北京:中国纺织出版社,2013
    [19]曾学英.经典豆制品加工工艺与配方.湖南:湖南科学技术出版社,2013
    [20]赵峰,杨江帆,林河通.超声波技术在食品加工中的应用[J].武夷学院学报,2010,29(2):21-26.
    [21]赵旭博,董文宾,于琴,王顺民.超声波技术在食品行业应用新进展[J].食品研究与开发,2005,26(1):3-7.
    [22]朱建华,杨晓泉,熊犍.超声波技术在食品工业中的最新应用进展[J].酿酒,2005,32(2):54-57.
    [23]Achouri A, Boye JI, Belanger D, Chiron T, Yaylayan VA, Yeboah FK. Functional and molecular properties of calcium precipitated soy glycinin and the effect of glycation with κ-carrageenan [J]. Food research international, 2010, 43(5): 1494-1504.
    [24]Adachi M, Kanamori J, Masuda T, Yagasaki K, Kitamura K, Mikami B, Utsumi S. Crystal structure of soybean 11s globulin: Glycinin a3b4 homohexamer [J]. Proceedings of the National Academy of Sciences, 2003, 100(12): 7395-7400.
    [25]Albu S, Joyce E, Paniwnyk L, Lorimer J, Mason T. Potential for the use of ultrasound in the extraction of antioxidants from< i> rosmarinus officinalis for the food and pharmaceutical industry [J]. Ultrasonics Sonochemistry, 2004, 11(3): 261-265.
    [26]Alting AC. Cold gelation of globular proteins [M]. Wageningen Universiteit, 2003.
    [27]Arzeni C, Martinez K, Zema P, Arias A, Perez O, Pilosof A. Comparative study of high intensity ultrasound effects on food proteins functionality [J]. Journal of Food Engineering, 2011.
    [28]Arzeni C, Martinez K, Zema P, Arias A, Perez O, Pilosof A. Comparative study of high intensity ultrasound effects on food proteins functionality [J]. Journal of Food Engineering, 2012a, 108(3): 463-472.
    [29]Arzeni C, Perez OE, Pilosof AMR. Functionality of egg white proteins as affected by high intensity ultrasound [J]. Food Hydrocolloids, 2012b.
    [30]Barbosa-Canovas G, Rodriguez J. Update on nonthermal food processing technologies: Pulsed electric field, high hydrostatic pressure, irradiation and ultrasound [J]. Food Australia, 2002,54(11):513-520.
    [31]Bermudez - Aguirre D, Mawson R, Barbosa - Canovas G. Microstructure of fat globules in whole milk after thermosonication treatment [J]. Journal of food science, 2008,73(7): E325-E332.
    [32]Bian Y, Myers DJ, Dias K, Lihono MA, Wu S, Murphy PA. Functional properties of soy protein fractions produced using a pilot plant-scale process [J]. Journal of the American Oil Chemists' Society, 2003,80(6): 545-549.
    [33]Bosiljkov T, Tripalo B, Brncic M, Jezek D, Karlovic S, Jagust I. Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk [J]. African Journal of Biotechnology, 2011,10(1):34-41.
    [34]Caillard R, Petit A, Subirade M. Design and evaluation of succinylated soy protein tablets as delayed drug delivery systems [J]. International journal of biological macromolecules, 2009, 45(4):414-420.
    [35]Campbell LJ, Gu X, Dewar SJ, Euston SR. Effects of heat treatment and glucono-< i> 8-lactone-induced acidification on characteristics of soy protein isolate [J]. Food hydrocolloids, 2009, 23(2): 344-351.
    [36]Chandrapala J, Oliver C, Kentish S, Ashokkumar M. Ultrasonics in food processing [J]. Ultrasonics sonochemistry, 2012, 19(5): 975-983.
    [37]Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate [J]. Ultrasonics sonochemistry, 2011,18(5): 951-957.
    [38]Chemat F, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction [J]. Ultrasonics Sonochemistry, 2011,18(4): 813-835.
    [39]Chen L, Chen J, Ren J, Zhao M. Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates [J]. Journal of agricultural and food chemistry, 2011a, 59(6): 2600-2609.
    [40]Chen L, Chen J, Ren J, Zhao M. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties [J]. Food Hydrocolloids, 2011b, 25(5):887-897.
    [41]Chen L, Chen JS, Yu L, Wu KG, Liu XL, Chai XH. Modifications of soy protein isolates using ultrasound treatment for improved emulsifying properties [J]. Advanced Materials Research,2012,554: 944-948.
    [42]Chen L, Subirade M. Elaboration and characterization of soy/zein protein microspheres for controlled nutraceutical delivery [J]. Biomacromolecules, 2009, 10(12): 3327-3334.
    [43]Chen N, Zhao M, Sun W, Ren J, Cui C. Effect of oxidation on the emulsifying properties of soy protein isolate [J]. Food Research International, 2013, 52(1): 26-32.
    [44]Cruz N, Capellas M, Jaramillo D, Trujillo A, Guamis B, Ferragut V. Soymilk treated by ultra high-pressure homogenization: Acid coagulation properties and characteristics of a soy-yogurt product [J]. Food hydrocolloids, 2009, 23(2): 490-496.
    [45]Delgado AE, Zheng L, Sun D-W. Influence of ultrasound on freezing rate of immersion-frozen apples [J]. Food and Bioprocess Technology, 2009, 2(3): 263-270.
    [46]Errington AD, Foegeding EA. Factors determining fracture stress and strain of fine-stranded whey protein gels [J]. Journal of Agricultural and Food Chemistry, 1998,46(8):2963-2967.
    [47]Faris RJ, Wang H, Wang T. Improving digestibility of soy flour by reducing disulfide bonds with thioredoxin [J]. Journal of agricultural and food chemistry, 2008, 56(16): 7146-7150.
    [48]Fernandez-Diaz MD, Barsotti L, Dumay E, Cheftel JC. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white [J]. Journal of Agricultural and Food Chemistry, 2000, 48(6): 2332-2339.
    [49]Ferrante S, Guerrero S, Alzamora SM. Combined use of ultrasound and natural antimicrobials to inactivate listeria monocytogenes in orange juice [J]. Journal of Food Protection?,2007,70(8):1850-1856.
    [50]Fukushima D. Recent progress in research and technology on soybeans [J]. Food science and technology research, 2001,7(1):8-16.
    [51]Gulseren I, Guzey D, Bruce BD, Weiss J. Structural and functional changes in ultrasonicated bovine serum albumin solutions [J]. Ultrasonics Sonochemistry, 2007,14(2):173-183.
    [52]Ghafoor K, Choi YH, Jeon JY, Jo IH. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (vitis vinifera) seeds [J]. Journal of agricultural and food chemistry, 2009, 57(11): 4988-4994.
    [53]Gordon L, Pilosof AM. Application of high-intensity ultrasounds to control the size of whey proteins particles [J]. Food biophysics, 2010a, 5(3):203-210.
    [54]Gordon L, Pilosof AMR. Application of high-intensity ultrasounds to control the size of whey proteins particles [J]. Food Biophysics, 2010b, 5(3):203-210.
    [55]Gu X, Campbell LJ, Euston SR. Influence of sugars on the characteristics of glucono- δ-lactone-induced soy protein isolate gels [J]. Food Hydrocolloids, 2009, 23(2): 314-326.
    [56]Gulseren I, Guzey D, Bruce BD, Weiss J. Structural and functional changes in ultrasonicated bovine serum albumin solutions [J]. Ultrasonics Sonochemistry, 2007,14(2): 173-183.
    [57]Guo J, Zhang Y, Yang X-Q. A novel enzyme cross-linked gelation method for preparing food globular protein-based transparent hydrogel [J]. Food Hydrocolloids, 2012, 26(1):277-285.
    [58]Guo ST, Ono T. The role of composition and content of protein particles in soymilk on tofu curding by glucono - δ - lactone or calcium sulfate [J]. Journal of food science, 2005,70(4): C258-C262.
    [59]Guzey D, Gulseren I, Bruce B, Weiss J. Interfacial properties and structural conformation of thermosonicated bovine serum albumin [J]. Food Hydrocolloids, 2006,20(5):669-677.
    [60]Hashizume K, Ka G. Difference between tofus coagulated with glucono-delta-lactone and calcium salts [J]. Nihon Shokuhin Kogyo Gakkai shi, 1978.
    [61]Hashizume K, Maeda M, Watanabe T. Relationship of heating and cooling condition to hardness of tofu [bean curd] [J]. Journal of Japanese Society of Food Science and Technology, 1978, 25.
    [62]Hayakawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins [J]. Journal of Food Science, 1985,50(2): 486-491.
    [63]Hoshi Y, Yamauchi F. Determination of sulfhydryl and disulfide contents of soybean 11s globulin and their change by lyophilization [J]. Agricultural and Biological Chemistry, 1983, 47(11):2435-2440.
    [64]Hou H, Chang K. Structural characteristics of purified β-conglycinin from soybeans stored under four conditions [J]. Journal of agricultural and food chemistry, 2004, 52(26): 7931-7937.
    [65]Hu H, Fan X, Zhou Z, Xu X, Fan G, Wang L, Huang X, Pan S, Zhu L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments [J]. Ultrasonics sonochemistry, 2013a, 20(1):187-195.
    [66]Hu H, Li-Chan EC, Wan L, Tian M, Pan S. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate [J]. Food Hydrocolloids, 2013b, 32(2): 303-311.
    [67]Hu H, Wu J, Li-Chan EC, Zhu L, Zhang F, Xu X, Fan G, Wang L, Huang X, Pan S. Effects of ultrasound on structural and physical properties of soy protein isolate (spi) dispersions [J]. Food Hydrocolloids, 2013c, 30(2):647-655.
    [68]Huang W, Xue A, Niu H, Jia Z, Wang J. Optimised ultrasonic-assisted extraction of flavonoids from< i> folium eucommiae and evaluation of antioxidant activity in multi-test systems< i> in vitro [J]. Food chemistry, 2009, 114(3): 1147-1154.
    [69]Jambrak AR, Lelas V, Mason TJ, Kresic G, Badanjak M. Physical properties of ultrasound treated soy proteins [J]. Journal of Food Engineering, 2009a, 93(4): 386-393.
    [70]Jambrak AR, Lelas V, Mason TJ, Kresic G, Badanjak M. Physical properties of ultrasound treated soy proteins [J]. Journal of Food Engineering, 2009b, 93(4): 386-393.
    [71]Jambrak AR, Mason TJ, Lelas V, Herceg Z, Herceg IL. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions [J]. Journal of Food Engineering, 2008, 86(2):281-287.
    [72]Jambrak AR, Mason TJ, Lelas V, Kresic G. Ultrasonic effect on physicochemical and functional properties of [alpha]-lactalbumin [J]. Lwt-Food Science and Technology, 2010a, 43(2):254-262.
    [73]Jambrak AR, Mason TJ, Lelas V, Kresic G. Ultrasonic effect on physicochemical and functional properties of a-lactalbumin [J]. LWT-Food science and Technology, 2010b, 43(2): 254-262.
    [74]Jang J-H, Moon K-D. Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid [J]. Food chemistry, 2011,124(2):444-449.
    [75]Jayasooriya SD, Torley P, D'arcy BR, Bhandari BR. Effect of high power ultrasound and ageing on the physical properties of bovine< i> semitendinosus and< i> longissimus muscles [J]. Meat science, 2007, 75(4): 628-639.
    [76]Kao F-J, Su N-W, Lee M-H. Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey [J]. Journal of agricultural and food chemistry, 2003,51(21):6211-6216.
    [77]Karki B, Lamsal BP, Grewell D, Pometto AL, Van Leeuwen J, Khanal SK, Jung S. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes [J]. Journal of the American Oil Chemists' Society, 2009a, 86(10): 1021-1028.
    [78]Karki B, Lamsal BP, Grewell D, Pometto III AL, Van Leeuwen J, Khanal SK, Jung S. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes [J]. Journal of the American Oil Chemists' Society, 2009b, 86(10):1021-1028.
    [79]Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto AL, Grewell D, Khanal SK. Enhancing protein and sugar release from defatted soy flakes using ultrasound technology [J]. Journal of Food Engineering, 2010a, 96(2): 270-278.
    [80]Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto III AL, Grewell D, Khanal SK. Enhancing protein and sugar release from defatted soy flakes using ultrasound technology [J]. Journal of food engineering, 2010b, 96(2):270-278.
    [81]Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1980, 624(1):13-20.
    [82]Kentish S, Wooster T, Ashokkumar M, Balachandran S, Mawson R, Simons L. The use of ultrasonics for nanoemulsion preparation [J]. Innovative food science & emerging technologies, 2008, 9(2): 170-175.
    [83]Kim KS, Kim S, Yang HJ, Kwon DY. Changes of glycinin conformation due to ph, heat and salt determined by differential scanning calorimetry and circular dichroism [J]. International journal of food science & technology, 2004, 39(4): 385-393.
    [84]Kimura A, Fukuda T, Zhang M, Motoyama S, Maruyama N, Utsumi S. Comparison of physicochemical properties of 7s and 11s globulins from pea, fava bean, cowpea, and french bean with those of soybean french bean 7s globulin exhibits excellent properties [J]. Journal of agricultural and food chemistry, 2008, 56(21):10273-10279.
    [85]Kinsella JE. Functional properties of soy proteins [J]. Journal of the American Oil Chemists' Society,1979,56(3):242-258.
    [86]Kohyama K, Sano Y, Doi E. Rheological characteristics and gelation mechanism of tofu (soybean curd) [J]. Journal of Agricultural and Food Chemistry, 1995, 43(7):1808-1812.
    [87]Kresic G, Lelas V, Jambrak AR, Herceg Z, Brncic SR. Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins [J]. Journal of Food Engineering, 2008, 87(1):64-73.
    [88]Kuldiloke J, Eshtiaghi M, Zenker M, Knorr D. Inactivation of lemon pectinesterase by thermosonication [J]. International Journal of Food Engineering, 2007, 3(2).
    [89]Lakemond CM, de Jongh HH, Paques M, van Vliet T, Gruppen H, Voragen AG. Gelation of soy glycinin; influence of ph and ionic strength on network structure in relation to protein conformation [J]. Food Hydrocolloids, 2003,17(3):365-377.
    [90]Lazko J, Popineau Y, Legrand J. Soy glycinin microcapsules by simple coacervation method [J]. Colloids and Surfaces B:Biointerfaces,2004,37(1):1-8.
    [91]Lee H, Zhou B, Liang W, Feng H, Martin SE. Inactivation of< i> escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling [J]. Journal of Food Engineering, 2009, 93(3): 354-364.
    [92]Leong T, Wooster T, Kentish S, Ashokkumar M. Minimising oil droplet size using ultrasonic emulsification [J]. Ultrasonics Sonochemistry, 2009, 16(6): 721-727.
    [93]Li - Chan E, Ismail A, Sedman J, Voort F. Vibrational spectroscopy of food and food products [J]. Handbook of vibrational spectroscopy, 2002.
    [94]Li B, Sun D-W. Effect of power ultrasound on freezing rate during immersion freezing of potatoes [J]. Journal of Food Engineering, 2002, 55(3): 277-282.
    [95]LIU HH, KUO MI. Effect of microwave heating on the viscoelastic property and microstructure of soy protein isolate gel [J]. Journal of texture studies, 2011,42(1): 1-9.
    [96]Madadlou A, Emam-Djomeh Z, Mousavi ME, Mohamadifar M, Ehsani M. Acid-induced gelation behavior of sonicated casein solutions [J]. Ultrasonics Sonochemistry,2010,17(1):153-158.
    [97]Madadlou A, Mousavi ME, Emam-Djomeh Z, Ehsani M, Sheehan D. Comparison of ph-dependent sonodisruption of re-assembled casein micelles by 35 and 130khz ultrasounds [J]. Journal of food engineering, 2009, 95(3): 505-509.
    [98]Maity I, Rasale DB, Das AK. Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of pt nanoparticles [J]. Soft Matter, 2012, 8(19): 5301-5308.
    [99]Malaki Nik A, Tosh SM, Woodrow L, Poysa V, Corredig M. Effect of soy protein subunit composition and processing conditions on stability and particle size distribution of soymilk [J]. LWT-Food Science and Technology, 2009, 42(7): 1245-1252.
    [100]Maltais A, Remondetto GE, Gonzalez R, Subirade M. Formation of soy protein isolate cold - set gels: Protein and salt effects [J]. Journal of Food Science, 2005, 70(1):C67-C73.
    [101]Maltais A, Remondetto GE, Subirade M. Mechanisms involved in the formation and structure of soya protein cold-set gels: A molecular and supramolecular investigation [J]. Food hydrocolloids, 2008, 22(4):550-559.
    [102]Maltais A, Remondetto GE, Subirade M. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds [J]. Food hydrocolloids, 2009,23(7):1647-1653.
    [103]Manas P, Munoz B, Sanz D, Condon S. Inactivation of lysozyme by ultrasonic waves under pressure at different temperatures [J]. Enzyme and microbial technology, 2006, 39(6): 1177-1182.
    [104]Manoi K, Rizvi SS. Physicochemical changes in whey protein concentrate texturized by reactive supercritical fluid extrusion [J]. Journal of food engineering, 2009,95(4): 627-635.
    [105]Martini S, Potter R, Walsh M. Optimizing the use of power ultrasound to decrease turbidity in whey protein suspensions [J]. Food research international,2010, 43(10):2444-2451.
    [106]Martini S, Walsh M. Sensory characteristics and functionality of sonicated whey [J]. Food Research International, 2012.
    [107]Maruyama N, Adachi M, Takahashi K, Yagasaki K, Kohno M, Takenaka Y, Okuda E, Nakagawa S, Mikami B, Utsumi S. Crystal structures of recombinant and native soybean β - conglycinin β homotrimers [J]. European Journal of Biochemistry,2001,268(12): 3595-3604.
    [108]Maruyama N, Sato R, Wada Y, Matsumura Y, Goto H, Okuda E, Nakagawa S, Utsumi S. Structure-physicochemical function relationships of soybean P-conglycinin constituent subunits [J]. Journal of Agricultural and food chemistry, 1999,47(12):5278-5284.
    [109]Matemu AO, Kayahara H, Murasawa H, Katayama S, Nakamura S. Improved emulsifying properties of soy proteins by acylation with saturated fatty acids [J]. Food chemistry, 2011,124(2):596-602.
    [110]Mauri AN, Anon MC. Effect of solution ph on solubility and some structural properties of soybean protein isolate films [J]. Journal of the Science of Food and Agriculture, 2006, 86(7): 1064-1072.
    [111]Mine Y, Noutomi T, Haga N. Thermally induced changes in egg white proteins [J]. Journal of Agricultural and Food Chemistry, 1990, 38(12): 2122-2125.
    [112]Molina E, Defaye AB, Ledward DA. Soy protein pressure-induced gels [J]. Food Hydrocolloids, 2002, 16(6): 625-632.
    [113]Moon S-Y, Li-Chan EC. Assessment of added ingredient effect on interaction of simulated beef flavour and soy protein isolate by gas chromatography, spectroscopy and descriptive sensory analysis [J]. Food research international, 2007,40(10):1227-1238.
    [114]Mu L, Zhao M, Yang B, Zhao H, Cui C, Zhao Q. Effect of ultrasonic treatment on the graft reaction between soy protein isolate and gum acacia and on the physicochemical properties of conjugates [J]. Journal of agricultural and food chemistry, 2010, 58(7):4494-4499.
    [115]Nagano T, Hirotsuka M, Mori H, Kohyama K, Nishinari K. Dynamic viscoelastic study on the gelation of 7 s globulin from soybeans [J]. Journal of Agricultural and Food Chemistry, 1992, 40(6): 941-944.
    [116]Nakai S. Structure-function relationships of food proteins: With an emphasis on the importance of protein hydrophobicity [J]. Journal of Agricultural and Food Chemistry, 1983, 31(4):676-683.
    [117]Nguyen NHA, Anema SG. Effect of ultrasonication on the properties of skim milk used in the formation of acid gels [J]. Innovative Food Science & Emerging Technologies, 2010, 11(4): 616-622.
    [118]Nishinari K, Fang Y, Guo S, Phillips G. Soy proteins: A review on composition, aggregation and emulsification [J]. Food Hydrocolloids, 2014.
    [119]Patist A, Bates D. Ultrasonic innovations in the food industry: From the laboratory to commercial production [J]. Innovative food science & emerging technologies, 2008,9(2):147-154.
    [120]Pearce KN, Kinsella JE. Emulsifying properties of proteins: Evaluation of a turbidimetric technique [J]. Journal of Agricultural and Food Chemistry, 1978, 26(3):716-723.
    [121]Pongsawatmanit R, Harnsilawat T, McClements DJ. Influence of alginate, ph and ultrasound treatment on palm oil-in-water emulsions stabilized by β-lactoglobulin [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 287(1):59-67.
    [122]Puppo MC, Anon MC. Structural properties of heat-induced soy protein gels as affected by ionic strength and ph [J]. Journal of Agricultural and Food Chemistry, 1998,46(9): 3583-3589.
    [123]Ramlan M, Maruyama N, Adachi M, Hontani N, Saka S, Kato N, Ohkawa Y, Utsumi S. Comparison of protein chemical and physicochemical properties of rapeseed cruciferin with those of soybean glycinin [J]. Journal of agricultural and food chemistry, 2002, 50(25): 7380-7385.
    [124]Rastogi NK. Opportunities and challenges in application of ultrasound in food processing [J]. Critical reviews in food science and nutrition, 2011,51(8): 705-722.
    [125]Renkema J, Knabben J, Van Vliet T. Gel formation by P-conglycinin and glycinin and their mixtures [J]. Food Hydrocolloids, 2001,15(4):407-414.
    [126]Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG. A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks [J]. Food Chemistry, 2010, 119(3): 1108-1113.
    [127]Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG. The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation [J]. Food Chemistry, 2009, 114(3): 905-911.
    [128]Saio K, Kajikawa M, Watanabe T. Food processing characteristics of soybean proteins. Ii. Effect of sulfhydryl groups on physical properties of tofu-gel [J]. Agricultural and biological chemistry, 1971.
    [129]Scherba G, Weigel R, O'brien W. Quantitative assessment of the germicidal efficacy of ultrasonic energy [J]. Applied and Environmental Microbiology, 1991, 57(7):2079-2084.
    [130]Shanmugam A, Chandrapala J, Ashokkumar M. The effect of ultrasound on the physical and functional properties of skim milk [J]. Innovative Food Science & Emerging Technologies, 2012.
    [131]Shimada K, Cheftel JC. Determination of sulfhydryl groups and disulfide bonds in heat-induced gels of soy protein isolate [J]. Journal of Agricultural and Food Chemistry, 1988,36(1):147-153.
    [132]Shimada K, Cheftel JC. Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate [J]. Journal of Agricultural and Food Chemistry, 1989,37(1):161-168.
    [133]Shukla T. Microwave ultrasonics in food processing [J]. Cereal foods world (USA),1992.
    [134]Sittikijyothin W, Sampaio P, Goncalves M. Microstructure and rheology of P-lactoglobulin-galactomannan aqueous mixtures [J]. Food hydrocolloids, 2010, 24(8):726-734.
    [135]Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: A review [J]. Trends in food science & technology, 2010, 21(7):323-331.
    [136]Stanley D, Tung M. Microstructure of food and its relation to texture. 1976, AVI Publishing: Westport, CT. p. 28-78.
    [137]Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM. Sonication of proteins causes formation of aggregates that resemble amyloid [J]. Protein Science,2004,13(11):3017-3027.
    [138]Sun D-W, Li B. Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing [J]. Journal of food engineering, 2003, 57(4):337-345.
    [139]Tang C-H. Effect of thermal pretreatment of raw soymilk on the gel strength and microstructure of tofu induced by microbial transglutaminase [J]. LWT-Food Science and Technology, 2007, 40(8):1403-1409.
    [140]Tang C-H, Chen L, Foegeding EA. Mechanical and water-holding properties and microstructures of soy protein isolate emulsion gels induced by cac12, glucono-δ-lactone (gdl), and transglutaminase:Influence of thermal treatments before and/or after emulsification [J]. Journal of agricultural and food chemistry, 2011,59(8):4071-4077.
    [141]Tang C-H, Wang X-Y, Yang X-Q, Li L. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties [J]. Journal of food engineering, 2009a, 92(4):432-437.
    [142]Tang C-H, Wu H, Chen Z, Yang X-Q. Formation and properties of glycinin-rich and β-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase [J]. Food research international, 2006, 39(1):87-97.
    [143]Tang CH, Wang XY, Yang XQ, Li L. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties [J]. Journal of Food Engineering, 2009b, 92(4):432-437.
    [144]Tay SL, Xu GQ, Perera CO. Aggregation profile of 11s, 7s and 2s coagulated with gdl [J]. Food chemistry, 2005,91(3):457-462.
    [145]Terefe NS, Gamage M, Vilkhu K, Simons L, Mawson R, Versteeg C. The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication [J]. Food chemistry, 2009, 117(1):20-27.
    [146]Thanh VH, Shibasaki K. Major proteins of soybean seeds. A straightforward fractionation and their characterization [J]. Journal of Agricultural and Food Chemistry, 1976, 24(6):1117-1121.
    [147]Thongson C, Davidson P, Mahakarnchanakul W, Weiss J. Antimicrobial activity of ultrasound - assisted solvent - extracted spices [J]. Letters in applied microbiology, 2004, 39(5): 401-406.
    [148]Tian ZM, Wan MX, Wang SP, Kang JQ. Effects of ultrasound and additives on the function and structure of trypsin [J]. Ultrasonics Sonochemistry, 2004, 11(6): 399-404.
    [149]Totosaus A, Montejano JG, Salazar JA, Guerrero I. A review of physical and chemical protein - gel induction [J]. International journal of food science & technology, 2002,37(6): 589-601.
    [150]Tseng YC, Xiong Y, Boatright W. Effects of inulin/oligofructose on the thermal stability and acid - induced gelation of soy proteins [J]. Journal of food science, 2008, 73(2): E44-E50.
    [151]Tunick MH. Small-strain dynamic rheology of food protein networks [J]. Journal of agricultural and food chemistry, 2010, 59(5): 1481-1486.
    [152]Valero M, Recrosio N, Saura D, Munoz N, Marti N, Lizama V. Effects of ultrasonic treatments in orange juice processing [J]. Journal of Food Engineering, 2007,80(2):509-516.
    [153]Velarde-Salcedo AJ, Barrera-Pacheco A, Lara-Gonzalez S, Montero-Moran GM, Diaz-Gois A, Gonzalez de Mejia E, Barba de la Rosa AP.< i> in vitro inhibition of dipeptidyl peptidase iv by peptides derived from the hydrolysis of amaranth (< i> amaranthus hypochondriacus 1.) proteins [J]. Food chemistry, 2013,136(2):758-764.
    [154]Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry—a review [J]. Innovative Food Science & Emerging Technologies, 2008, 9(2): 161-169.
    [155]Wagner JR, Sorgentini DA, Anon MC. Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates [J]. Journal of Agricultural and Food Chemistry, 2000, 48(8):3159-3165.
    [156]Wang H, Swain E, Kwolek W, Fehr W. Effect of soybean varieties on the yield and quality of tofu [J]. Cereal Chemistry, 1983.
    [157]Wang J, Hu X, Wang Z. Kinetics models for the inactivation of< i> alicyclobacillus acidiphilus dsml4558< sup> t and< i> alicyclobacillus acidoterrestris dsm 3922< sup> t in apple juice by ultrasound [J]. International journal of food microbiology, 2010, 139(3):177-181.
    [158]Wu J, Ding X. Characterization of inhibition and stability of soy-protein-derived angiotensin i-converting enzyme inhibitory peptides [J]. Food Research International,2002,35(4):367-375.
    [159]Wu S, Murphy PA, Johnson LA, Fratzke AR, Reuber MA. Pilot-plant fractionation of soybean glycinin and β-conglycinin [J]. Journal of the American Oil Chemists' Society, 1999, 76(3):285-293.
    [160]Wu W, Hua Y, Lin Q, Xiao H. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by peroxyl radicals [J]. International Journal of Food Science & Technology, 2011,46(9):1891-1897.
    [161]Xiao CW. Health effects of soy protein and isoflavones in humans [J]. The Journal of nutrition,2008,138(6):1244S-1249S.
    [162]Yin S-W, Tang C-H, Wen Q-B, Yang X-Q. Properties of cast films from hemp (cannabis sativa 1.) and soy protein isolates. A comparative study [J]. Journal of agricultural and food chemistry, 2007, 55(18):7399-7404.
    [163]Yue X, Xu Z, Prinyawiwatkul W, King JM. Improving extraction of lutein from egg yolk using an ultrasound - assisted solvent method [J]. Journal of food science,2006,71(4):C239-C241.
    [164]Zenker M, Heinz V, Knorr D. Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods [J]. Journal of Food Protection?,2003,66(9):1642-1649.
    [165]Zhang H, Claver IP, Zhu K-X, Zhou H. The effect of ultrasound on the functional properties of wheat gluten [J]. Molecules, 2011a, 16(5):4231-4240.
    [166]Zhang H, Claver IP, Zhu KX, Zhou H. The effect of ultrasound on the functional properties of wheat gluten [J]. Molecules, 2011b, 16(5):4231-4240.
    [167]Zhang H, Li L, Mittal G. Effects of high pressure processing on soybean beta - conglycinin [J]. Journal of food process engineering, 2010, 33(3):568-583.
    [168]Zheng L, Sun D-W. Innovative applications of power ultrasound during food freezing processes―a review [J]. Trends in Food Science & Technology, 2006, 17(1):16-23.
    [169]Zisu B, Bhaskaracharya R, Kentish S, Ashokkumar M. Ultrasonic processing of dairy systems in large scale reactors [J]. Ultrasonics sonochemistry, 2010, 17(6): 1075-1081.
    [170]Zisu B, Lee J, Chandrapala J, Bhaskaracharya R, Palmer M, Kentish S, Ashokkumar M. Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders [J]. Journal of Dairy Research, 2011,78(2): 226.
    [171]Zisu B, Schleyer M, Chandrapala J. Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk [J]. International Dairy Journal, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700