用户名: 密码: 验证码:
多层交错剖分式超高压模具设计及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压技术在现代科学研究和工业生产中发挥着不可替代的重要作用。而模具作为超高压设备的核心部件,不但要能承受足够高的压力,还要能提供足够大的腔体容积。因为大容积的腔体不但能够提供足够的样品空间,还能形成稳定且梯度较小的压力场和温度场。可见模具大型化是现代超高压技术发展的必然要求,但目前模具大型化所面临的主要问题就是大件硬质合金制造加工困难。
     多层交错剖分式超高压模具是一种新型的组合模具。它主要有剖分块和支撑环构成,无需使用大件硬质合金。不但提高了腔体内的压力,而且还扩大了腔体的容积,适于模具大型化制造。本文通过有限元软件对多层交错剖分式超高压模具进行研究。对比分析了多层交错剖分式模具和年轮式模具的应力分布特征,并进一步对多层交错剖分式模具结构进行了优化。探讨了模具各部件的破裂机理,预测了模具的承压能力,并进行了相关的实验验证。通过电-热-结构耦合计算,分析了温度对多层交错剖分式模具应力及其腔体容积的影响。为多层交错剖分式模具的设计、加工和制造提供理论依据。
     本文研究的主要内容和结论如下:
     1.多层交错剖分式超高压模具原理和特点。
     多层交错剖分式模具依据未裂先分的思想对缸体和预紧环进行剖分,从结构上解决了超高压模具大型化所面临的问题。根据倍压原理使作用在压缸内壁处较大的压力分散作用于外层支撑环内壁。通过摩擦阻力的作用进一步减小剖分块对支撑环的接触压力。并采用解析法对多层交错剖分式模具进行了力学分析,推导出内部压力向支撑环传递的力学模型,为模具初步设计提供了依据。
     2.多层交错剖分式超高压模具应力分析及结构优化。
     对多层交错剖分式超高压模具有限元模型建立过程中所涉及的边界条件进行了介绍,并建立了基于ANSYS/Workbench的有限元模型。采用静态隐式算法对多层交错剖分式模具的应力特点进行了分析,探讨了其各部件的失效准则,并与年轮式模具进行了对比。另外还对多层交错剖分式模具结构做了进一步改进。结果表明:多层剖分式模具压缸的周向应力要远小于年轮式模具的周向应力,尽管其外层支撑环存在应力集中现象,但总体上仍处于优势;剖分块数从内到外不断减小,能够同时降低支撑环和压缸应力;通过增加剖分层数和摩擦系数,能够进一步减小支撑环应力;通过修改支撑环内壁轮廓形状可以避免出现应力集中现象,进而使支撑环受力更均匀;在压缸剖分块内壁与锥面的结合处采用圆角过渡能够消除该区域的应力峰值,并且压缸内壁为平面或者凸面时,能够显著降低其应力值。
     3.预紧力对多层交错剖分式超高压模具容积变化的影响。
     基于多层交错剖分式模具特有的结构,探讨了其预紧力的施加方法,不但可以通过层间或层内过盈来实现预紧力的施加,而且还可以采用钢丝或钢带缠绕剖分块组合体来实现预紧力的施加。并以层间过盈为例,分析了预紧力的施加对多错层交错剖分式模具腔体容积的影响。结果表明:通过施加预紧力的方法,可以大幅度减小腔体在内壁压力作用下的容积增大量,并且采用双层支撑环的效果更佳。另外,经过对具有不同尺寸腔体的模具进行研究发现:压缸径向位移随腔体半径的增加而增加,但在预紧力作用下,其增加幅度较小,并且值也小。例如,在5400MPa压力作用下,腔体半径为50mm多层交错剖分式模具施加合适的预紧力后,其内壁的径向位移仅为0.15mm。
     4.多层交错剖分式超高压模具承压能力计算。
     通过响应面法对多层交错剖分式模具的承压能力进行了计算,分析了模具尺寸、剖分层数以及预紧力对承压能力的影响,并与年轮式模具进行了对比。研究表明:当多层交错剖分式模具尺寸或层数不足时,其承压能力由其支撑环的强度决定,当多层交错剖分式模具尺寸或层数足够时,其承压能力由其压缸的强度决定;施加预紧力后,压缸等效应力随着其内壁作用力的增大呈现先减小再增大的趋势,但最终与未施加预紧力时的等效应力趋于一致,支撑环一直处于较高应力状态,不会因压缸内壁压力的加载而出现明显变化;预紧力的施加基本上不会影响多层交错剖分式模具的最终承压能力;经过有限元计算,多层交错剖分式模具内壁的承压能力约是年轮式模具的1.5倍,能够轻易地达到8GPa;相应的物理实验也表明多层交错剖分式模具的承压能力要远高于年轮式模具。
     5.温度和压力对多层交错剖分式超高压模具性能的影响。
     通过对多层交错剖分式模具进行多物理场耦合计算,分析了温度和压力载荷对多层交错剖分式模具性能的影响。结果表明:腔体温度为1500℃时,缸体温度约为213℃;温度载荷对压缸应力基本没有影响,压缸的应力值与压缸内壁的压力载荷呈非线性增加关系;温度载荷和压力载荷对腔体容积的变化都有影响,并且都呈现非线性增加关系;当模具没有施加预紧力时,温度载荷对支撑环应力基本无影响,支撑环应力与压力载荷呈非线性增加关系;当模具施加预紧力时,支撑环应力与温度载荷呈非线性减小关系,与压力载荷基本无关;施加预紧力的多层交错剖分式模具,其腔体容积变化率较小,更适于高质量金刚石的合成。
Ultrahigh pressure technology plays an irreplaceable role in the fields of modernscientific research and industrial production. As the core component of ultrahighequipment, mold not only to withstand enough high pressure, also need to provide enoughcavity volume. Because of the large volume of the cavity is not only able to provideenough sample space, also can form stable and small gradient of pressure field andtemperature field. This shows large-scale mold is the inevitable requirement of moderndevelopment of ultrahigh pressure technology. But the main problem with large-scalemold is the difficulty of manufacturing large size carbide.
     Multilayer stagger-split type ultrahigh pressure die is a novel assemble mold. It ismainly composed of divided bodies and supported ring. And it doesn’t need to use largesize tungsten carbide, but provides the access to producing large-scale die. Whatsmore,it not only can expanded the cavity, but also improve the cavity pressure. In this thesis,the performance of multilayer stagger-split die was investigated by finite elementsoftware. The comparison and analysis on stress distribution characteristics of multilayerstagger-split die and belt type die were presented. And then brought forward an improvedstructure for multilayer stagger-split die. This article explored the rupture mechanism ofthe mold parts, and predicted the pressure capacity of multilayer stagger-split die, andthe related experiment was carried out to verify the simulation results. The influences oftemperature on stress and cavity volume of multilayer stagger-split die were analyzed byelectrical-thermal-structure coupling calculation. The results can provide theoreticalbasis for the design and processing of multilayer stagger-split type ultrahigh pressure die.
     The main contents and conclusions of this contribution are as follows:
     1. Principle and characters of multilayer stagger-split die
     Multilayer stagger-split die has been constructed based on the principle of “dividing dies before cracking”, this solved the problem with manufacturing large-scaleultrahigh pressure mold from the structure. According to the principle of pressuremultiplier, the larger force loaded on inner face of cylinder can be translated on the innerwall of outer supported ring as small force. The contact force between divided block andsupport ring was further reduced through the effect of frictional resistance. Andmechanical analysis of multilayer stagger-split die was performed by the analytic method.The translation mechanical model of the internal pressure to give to support ring isdeduced. It provides a basis for the preliminary design of stagger-split die.
     2. The stress analysis and structure optimization of multilayers stagger-splittype ultrahigh pressure die
     The boundary conditions for numerical simulation of multilayer stagger-splitultrahigh pressure die are introduced, and the finite element model was established basedon ANSYS/Workbench. The stress distribution disciplinarian were analyzed by adoptingstatic implicit algorithm, and the results were compared with that of belt type die. Alsothe structure of multilayer stagger-split die was further improved. The results shows thatthe cylinder circumferential stress of multilayer stagger-split die pressure is far less thanthat of belt type die. In spite of there is stress concentration phenomenon in the outersupported ring of multilayer stagger-split die, but as a whole, the die is still in theadvantage. The stress of support ring and cylinder can be reduced at the same timethrough the arrangement that the number of divided blocks gradually dwindled down frominside to outside, and the support ring stress can be further reduced by increasing thenumber of divided layers and the coefficient of friction. The stress concentrationphenomenon of supported ring can be avoided by modifying its inner wall contour shape,and then the supported ring stress is more evenly. The junction between inner wall andthe cone of cylinder adopted transition fillet can eliminate the peak stress in the region.The stress value of cylinder can be significantly reduced if the inner wall of the cylinderpressure is design as flat or convex.
     3. The influence of preload to cavity volume of multilayer stagger-split die.
     Based on the unique structure of multilayer stagger-split die, the method of preloadapplication was discussed. The preload application can be realized not only by theinterference of inter-layers or between layers, but also by using steel wire or strip to intertwine the divided body assembly. And the influence of preload exerted on the cavityvolume of multilayer stagger-split die was analyzed by the example of inter-layerinterference. The results showed that: the increase amount of cavity volume under innerwall pressure could be greatly reduced by applying a preload force, especially by usingdouble layers support ring. Furthermore, by using different sizes of the mold cavities, itwas found that the normal displacement of inner wall of cylinder increases with theincrease of cavity radius, but both the variation and the increase amplitude becomesmaller when the preload is applied to the cylinder. For example, under the pressure of5400MPa, when the multilayer stagger-split die whose cavity radius is50mm is appliedsuitable preload, the normal displacement of inner wall of cylinder is only0.15mm.
     4. The pressure capacity calculations of multilayer stagger-split type ultrahighpressure die.
     The pressure capacity of multilayer stagger-split die was calculated by responsesurface methodology. And the influences of die size, divided layers and preload on thepressure capacity were analyzed, and compared with that of the belt type die. The resultsindicated that when the size or layers of multilayer stagger-split die were insufficient, thepressure capacity was determined by the strength of its support ring, and when the sizeor layers were sufficient, the pressure capacity was determined by the strength of carbide.After applying preload, as the increase of inner wall force, the equivalent stress ofcompression cylinder showed the trend of decrease at first and then increase, but wasconsistent with the equivalent stress without applied preload in the end. The support ringhas been in a high state of stress, will not significant change with the change of theloading on the inner wall of cylinder. And the applying of preload will not affect thepressure capacity of multilayer stagger-split die. According to the finite elementcomputation, the pressure capacity of multilayer stagger-split die is5times higher thanbelt type die, it can reach to8GPa. And corresponding physical experiment also indicatesthat the pressure capacity of multilayer stagger-split die is much higher than belt type die.
     5. The influences of temperature and pressure on performance of multilayerstagger-split die.
     The influences of temperature and pressure on the performance of multilayerstagger-split die were analyzed by the calculation of multi-physics coupling. The resultsshow that the cylinder temperature is about213℃, when the chamber temperature is up to1500℃. Temperature loading has no effect on the stress of cylinder, the stress ofcylinder increases nonlinearly with the increase of pressure loading on the inner wall ofcylinder. Both temperature loading and pressure loading affect the variation of cavityvolume, and the variation increased nonlinearly as the temperature and pressure increased.When the die is not applied preload, temperature loading almost showed no effect onstress of supported ring, but the stress of supported ring is increased nonlinearly as thepressure increased. When the die is applied preload, the supported ring stress reduces bynon-linear relationship with temperature load, but no matter with pressure load. Themultilayer stagger-split die which applied to preload is more suitable for synthesis ofhigh quality diamond.
引文
[1]邵国华,魏兆灿.超高压容器[M].北京:化学工业出版社,2002.
    [2] Wentorf R H. Modern very high pressure techniques[M]. London: Butterworths,1962.
    [3]姚裕成.人造金刚石和超高压高温技术[M].北京:化学工业出版社,1996.
    [4] Bertucco A, Vetter G. High pressure process technology: fundamentals and applications[M].Access Online via Elsevier,2001.
    [5] Jayaraman A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews ofModern Physics,1983,55(1):65.
    [6]陈启武,熊湘君,邓福铭.超高压技术研究[J].矿冶工程,2001,21(1):62.
    [7] Thompson R N. Some high-pressure pyroxenes[J]. Mineralogical Magazine,1974,39:768-787.
    [8] Blank V D, Estrin E I. Phase transitions in solids under high pressure[M]. CRC Press,2013.
    [9] Scheel H J, Fukuda T. Crystal growth technology[M]. Chichester (W. Sx.): Wiley,2003.
    [10] Tolbert S H, Alivisatos A P. High-pressure structural transformations in semiconductornanocrystals[J]. Annual Review of Physical Chemistry,1995,46(1):595-626.
    [11] Sekine C, Uchiumi T, Shirotani I, et al. Metal-Insulator transition in PrRu4P12withskutterudite structure[J]. Physical Review Letters,1997,79(17):3218.
    [12] Barbee III T W, Cohen M L, Martins J L. Theory of high-pressure phases of hydrogen[J].Physical Review Letters,1989,62(10):1150.
    [13] Ueno M, Onodera A, Shimomura O, et al. X-ray observation of the structural phasetransition of aluminum nitride under high pressure[J]. Physical Review B,1992,45(17):10123.
    [14] Klotz S, Besson J M, Hamel G, et al. High pressure neutron diffraction using the paris-edinburgh cell: Experimental possibilities and future prospects[J]. International Journal ofHigh Pressure Research,1996,14(4-6):249-255.
    [15] Appelt S, Kühn H, H sing F W, et al. Chemical analysis by ultrahigh-resolution nuclearmagnetic resonance in the Earth’s magnetic field[J]. Nature Physics,2006,2(2):105-109.
    [16] Nasu S. High pressure M ssbauer spectroscopy using a diamond anvil cell[J]. HyperfineInteractions,1994,90(1):59-75.
    [17] Piermarini G J, Block S. Ultrahigh pressure diamond‐anvil cell and several semiconductorphase transition pressures in relation to the fixed point pressure scale[J]. Review ofScientific Instruments,1975,46(8):973-979.
    [18] Grimsditch M, Loubeyre P, Polian A. Brillouin scattering and three-body forces in argon athigh pressures[J]. Physical Review B,1986,33(10):7192.
    [19] Barnett J D, Block S, Piermarini G J. An optical fluorescence system for quantitativepressure measurement in the diamond‐anvil cell[J]. Review of Scientific Instruments,1973,44(1):1-9.
    [20] Whitfield C H, Brody E M, Bassett W A. Elastic moduli of NaCl by Brillouin scattering athigh pressure in a diamond anvil cell[J]. Review of Scientific Instruments,1976,47(8):942-947.
    [21] Mao H, Hemley R J. Ultrahigh-pressure transitions in solid hydrogen[J]. Reviews ofModern Physics,1994,66(2):671.
    [22] Hemley R J, Mao H K. Phase transition in solid molecular hydrogen at ultrahighpressures[J]. Physical Review Letters,1988,61(7):857.
    [23] Jayaraman A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews ofModern Physics,1983,55(1):65.
    [24] Alireza P L, Ko Y T, Gillett J, et al. Superconductivity up to29K in SrFe2As2andBaFe2As2at high pressures[J]. Journal of Physics: Condensed Matter,2009,21(1):012208.
    [25] Harrington P, Kerr M A. The ultra high pressure conjugate addition of indoles to electron-deficient olefins[J]. Canadian Journal of Chemistry,1998,76(9):1256-1265.
    [26] van Eldik R. Inorganic high pressure chemistry: kinetics and mechanisms[M]. ElsevierPublishing Company,1986.
    [27] Badding J V. High-pressure synthesis, characterization, and tuning of solid statematerials[J]. Annual Review of Materials Science,1998,28(1):631-658.
    [28] Katayama I, Maruyama S, Parkinson C D, et al. Ion micro-probe U–Pb zircongeochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks fromthe Kokchetav massif, northern Kazakhstan[J]. Earth and Planetary Science Letters,2001,188(1):185-198.
    [29] Morishima H, Kato T, Suto M, et al. The phase boundary between α-and β-Mg2SiO4determined by in situ X-ray observation[J]. Science,1994,265(5176):1202-1203.
    [30]方啸虎.人造金刚石、立方氮化硼及其制品实用大全:人造金刚石立方氮化硼基础与标准.第一册[M].北京:化学工业出版社,1993.
    [31]袁公昱.人造金刚石合成与金刚石工具制造[M].长沙:中南工业大学出版社,1992.
    [32]于启勋,解丽静.现代刀具材料系列讲座(十一)超硬刀具材料—金则石与立方氮化硼[J].机械工程师,2001(11):69-73.
    [33]张京英,于启勋,庞思勤,等.聚晶立方氮化硼刀具材料的发展和应用[J].机械工程师,2008(3):24-24.
    [34]马贤锋,周艳平,阎学伟.高压下石榴石Gd3In2Ga3O12的合成[J].科学通报,1996,41(5):418-421.
    [35] Okamoto K, Maruyama S. The high-pressure synthesis of lawsonite in the MORB+H2Osystem[J]. American Mineralogist,1999,84:362-373.
    [36] Chopra P N. The plasticity of some fine‐grained aggregates of olivine at high pressure andtemperature[J]. Mineral and Rock Deformation: Laboratory Studies: The Paterson Volume,1986,36:25-33.
    [37] Lee. Davison, Grady D E, Shahinpoor M. High-Pressure shock compression of solids II[M].Springer New York,1996.
    [38] Papin D. A new digester or engine for softening bones:1681[M]. London: Dawson,1966.
    [39] Canton J. Experiments to prove that water is not incompressible; by John Canton. MA andFRS[J]. Philosophical Transactions,1761,52:640-643.
    [40] Canton J. Experiments and observations on the compressibility of water and some otherfluids, by John Canton, MA and FRS[J]. Philosophical Transactions,1764,54:261-262.
    [41] Perkins J. On the compressibility of water[J]. Philosophical Transactions of the RoyalSociety of London,1820,110:324-329.
    [42] Perkins J. On the progressive compression of water by high degrees of force, with sometrials of its effects on other fluids[J]. Philosophical Transactions of the Royal Society ofLondon,1826,116:541-547.
    [43] Tammann G. Kristallisieren und schmelzen[M]. Leipzig: Barth,1903.
    [44] Richards T W, Stull W N. New method for determining compressibility[M]. The CarnegieInstitution,1903.
    [45] Bridgman P W. Recent work in the field of high pressures[J]. American Scientist,1943,31(1):1-35.
    [46] Bridgman PW. Bridgman[J]. Proceedings of the American Academy of Arts and Sciences,1952,81:165.
    [47] Hall H T. Ultra‐High‐Pressure, High‐Temperature Apparatus: the``Belt''[J]. Review ofScientific Instruments,1960,31(2):125-131.
    [48] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds[J]. Nature,1955,176(4471):51-55.
    [49] Wentorf Jr R H. Synthesis of the cubic form of boron nitride[J]. The Journal of ChemicalPhysics,1961,34:809.
    [50] Hall H T. Some High‐Pressure, High‐Temperature apparatus design considerations:equipment for use at100000atmospheres and3000℃[J]. Review of Scientific Instruments,1958,29(4):267-275.
    [51] Weir C E, Lippincott E R, Van Valkenburg A, et al. Infrared studies in the1-to15-micronregion to30,000atmospheres[J]. J. Res. Natl. Bur. Stand. A,1959,63:55-62.
    [52] Von Platen B. A multiple piston, high pressure, high temperature apparatus[J]. Modern VeryHigh Pressure Techniques,1962:118-136.
    [53]王光祖.我国第一颗人造金刚石的诞生[J].超硬材料工程,2008,20(4):45-47.
    [54]胡恩良,陶知耻.我国第一颗人造金刚石的诞生[J].超硬材料工程,2009,21(6):45-47.
    [55]李志宏,刘金昌,司文元,等.我国人造金刚石工业现状及发展[J].金刚石与磨料磨具工程,2002,1:49-53.
    [56] DeCarli P S, Jamieson J C. Formation of diamond by explosive shock[J]. Science,1961,134(3472):92-92.
    [57] Bundy F P. Direct conversion of graphite to diamond in static pressure apparatus[J].Science,1962,137(3535):1057-1058.
    [58] Ashcroft K. High pressure apparatus: U. K. Patent1,041,299[P].1964-9-25.
    [59] Kawai N, Endo S. The generation of ultrahigh hydrostatic pressures by a split sphereapparatus[J]. Review of Scientific Instruments,1970,41(8):1178-1181.
    [60] Ohtani E, Irifune T, Hibberson W O, et al. Modified split-sphere guide block for practicaloperation of a multiple-anvil apparatus[J]. High Temperatures. High Pressures,1987,19(5):523-529.
    [61] Walker D, Carpenter M A, Hitch C M. Some simplifications to multianvil devices for highpressure experiments[J]. American Mineralogist,1990,75(9-10):1020-1028.
    [62](苏) Д.С.Циклис著.高压和超高压物理-化学研究技术.王殿儒,罗明晖译.北京:科学出版社,1983.
    [63]王强,蔡冬梅,何芳.六面顶硬质合金顶锤强度分析及结构优化[J].中国机械工程,2006(S1).
    [64]姚裕成,胡光亚.从两面顶,六面顶,凹模的特点论我国合成金刚石装备大型化的方向[J].工业金刚石,1998(6):1-3.
    [65] Kubo A, Ito E, Katsura T, et al. In situ X‐ray observation of iron using Kawai‐typeapparatus equipped with sintered diamond: Absence of β phase up to44GPa and2100K[J]. Geophysical Research Letters,2003,30(3).
    [66]唐群,呼文贤.进口硬质合金顶锤和压缸的解剖分析[J].粉末冶金技术,1996,14(1):44-51.
    [67] Venkateswaran C, Anbukumaran K, Victor Jaya N, et al. Design and performance of a belt-type high pressure, high temperature apparatus[J]. Review of Scientific Instruments,1997,68(1):189-192.
    [68]李裕民.六面顶硬质合金顶锤最佳几何参数的选择[J].磨料磨具与磨削,1991,3:32-36.
    [69]王强,李德军.超硬材料两面顶合成装置关键部件的强度分析[J].锻压机械,1995,30(4):48-50.
    [70] Mirwald P W, Getting I C, Kennedy G C. Low‐friction cell for piston‐cylinder high‐pressure apparatus[J]. Journal of Geophysical Research,1975,80(11):1519-1525.
    [71]陈祖德,鲍忠兴.几种物质在45kb内P-V关系的测量[J].物理学报,1978,27(5):591-595.
    [72] Lamé G, Clapeyron B P E. Meoire sur l’équilibre intérieure des corps solides homogènes[J]. Memoires Préstentés Par Divers Savants à l’Academie Des Sciences,1868,18:733.
    [73] Loveday J. High-Pressure Physics[M]. Boca Raton: CRC Press,2012.
    [74] Bradley C C. High pressure methods in solid state research[M]. Paul W, Warshauer D Meds., New York: McGraw-Hill,1963.
    [75] Murata K, Yokogawa K, Yoshino H, et al. Pressure transmitting medium Daphne7474solidifying at3.7GPa at room temperature[J]. Review of Scientific Instruments,2008,79(8):085101-085101-6.
    [76] Laukhin V N, Kostyuchenko E é, Sushko Y V, et al. Effect of pressure on thesuperconductivity ofβ-(BEDT-TTF)2l3[J]. Jetp Letters,1985,41(2):81-84.
    [77] Mrema G C, McNulty P B. Mathematical model of mechanical oil expression fromoilseeds[J]. Journal of Agricultural Engineering Research,1985,31(4):361-370.
    [78]吕衣礼,鲁德洋.薄试样水平定向凝固过程中界面附近的微观流场[J].西北工业大学学报,1996,14(2):199-203.
    [79]孙龙.压力对Zr41.2Ti13.8Cu12.5Ni10Be22.5块体非晶合金晶化行为的影响[J].实验室研究与探索,2005,24(08):19-20.
    [80]张绍和,胡郁乐,傅晓明.金刚石与金刚石工具知识问答1000例[M].长沙:中南大学出版社,2008.
    [81] Bassett W A. Diamond anvil cell,50th birthday[J]. High Pressure Research,2009,29(2):163-186.
    [82]武琪,彭放,李庆华.金刚石对顶砧中密封垫的探究[J].西南民族大学学报:自然科学版,2010,36(6):1028-1032.
    [83]商玉生,王彦云.金刚石砧压力室中的红宝石测压法[J].物理,1983,12(7):417-422.
    [84]郑海飞,孙樯,赵金,等.金刚石压腔高温高压实验的压力标定方法及其现状[J].高压物理学报,2004,18(1):78-82.
    [85] Boehler R, De Hantsetters K. New anvil designs in diamond-cells[J]. High PressureResearch,2004,24(3):391-396.
    [86] Dadashev A, Pasternak M P, Rozenberg G K, et al. Applications of perforated diamondanvils for very high-pressure research[J]. Review of Scientific Instruments,2001,72(6):2633-2637.
    [87] Xu J A, Mao H K, Bell P M. High-pressure ruby and diamond fluorescence: observations at0.21to0.55terapascal[J]. Science,1986,232(4756):1404-1406.
    [88] Khvostantsev L G, Vereshchagin L F, Novikov A P. Device of toroid type for high pressuregeneration[J]. High Temp.-High Pressures,1977,9(6):637-639.
    [89] Karandikar A S, Mukherjee G D, Vijayakumar V, et al. Pressure evolution of resistance inframework structured materials α-ZrMo2O8and α-HfMo2O8[J]. Journal of AppliedPhysics,2006,100(1):013517-013517-7.
    [90] Lheureux D, Polian A, Fischer M, et al. Ultrasonic and brillouin scattering measurementsunder pressure near the structural phase transition of strontium titanate[C]//UltrasonicsSymposium,2000IEEE. IEEE,2000,1:557-560.
    [91] Ekimov E A, Suetin N V, Popovich A F, et al. Thermal conductivity of diamond compositessintered under high pressures[J]. Diamond and Related Materials,2008,17(4):838-843.
    [92] Besson J M, Nelmes R J, Hamel G, et al. Neutron powder diffraction above10GPa[J].Physica B: Condensed Matter,1992,180:907-910.
    [93] Klotz S, Besson J M, Hamel G, et al. High pressure neutron diffraction using the paris-edinburgh cell: Experimental possibilities and future prospects[J]. International Journal ofHigh Pressure Research,1996,14(4-6):249-255.
    [94] Klotz S, Besson J M, Hamel G, et al. Neutron powder diffraction at pressures beyond25GPa[J]. Applied Physics Letters,1995,66(14):1735-1737.
    [95] Loriers‐Susse C, B stide J P, Backstr m G. Specific heat measured at high pressures by apulse method[J]. Review of Scientific Instruments,1973,44(9):1344-1349.
    [96] Bundy F P. Pressure—temperature phase diagram of iron to200kbar,900℃[J]. Journal ofApplied Physics,1965,36(2):616-620.
    [97] Leger J M, Loriers-Susse C, Vodar B. Pressure effect on the curie temperatures of transitionmetals and alloys[J]. Physical Review B,1972,6(11):4250-4261.
    [98] Claussen W F. Detection of the α‐γ Iron Phase Transformation by Differential ThermalConductivity Analysis[J]. Review of Scientific Instruments,1960,31(8):878-881.
    [99] Dobson D P, Mecklenburgh J, Alfe D, et al. A new belt-type apparatus for neutron-basedrheological measurements at gigapascal pressures[J]. High Pressure Research,2005,25(2):107-118.
    [100] Groenbaek J, Thun N. Forming tool for a pressable material[P]. World Patent:2001052977.2001-7-26.
    [101] Groenbaek J. High-pressure tool[P]. World Patent:2001036080.2001-5-25.
    [102]姚裕成,黄民生,刘兴瑞.2500吨金刚石压机的研究与设计[J].人工晶体学报,1987,16(3):243-248.
    [103]来小丽,王强,蔡冬梅,等.预应力缠绕模具设计理论[J].济南大学学报(自然科学版),2007,21(4):332-336.
    [104]来小丽,王强,蔡冬梅,等.钢带缠绕预应力模具缠绕层数的确定方法[J].塑性工程学报,2008,15(3):152-156.
    [105]王强,何芳,杨晋穗,等.高强度高刚度钢带缠绕预应力模具[J].制造技术与机床,2011,5:29-32.
    [106] Lloyd E C, Hutton U O, Johnson D P. Compact multi-anvil wedge-type high pressureapparatus[J]. J. Res. Natl. Bur. Stand., Sect. C,1959,63:59-65.
    [107] Zeitlin A. High-pressure technology[J]. Scientific American,1965,212(5):38-46.
    [108] Samara G A, Henius A, Giardini A A. A study of pressure homogeneity in the hexahedralanvil high-pressure apparatus[J]. Journal of Basic Engineering,1964,86:729-734.
    [109] Hall H T. High pressure apparatus: ram-in-tie-bar multianvil presses[J]. Review of PhysicalChemistry of Japan,1967,37(2):63-71.
    [110]韩奇钢. WC硬质合金顶锤的理论研究与设计[D].吉林大学,2010.
    [111] Leger J M, Bastide J P. Variation de la température de Curie de Cr3Te4sous très hautepression[J]. Physica Status Solidi (a),1975,29(1):107-113.
    [112] Liebermann R C. Multi-anvil, high pressure apparatus: a half-century of development andprogress[J]. High Pressure Research,2011,31(4):493-532.
    [113] Sumiya H, Irifune T, Kurio A, et al. Microstructure features of polycrystalline diamondsynthesized directly from graphite under static high pressure[J]. Journal of MaterialsScience,2004,39(2):445-450.
    [114]吕世杰.滑块式六含八大腔体高压装置的温压标定及高压合成金刚石新触媒的发现[D].西南交通大学,2010.
    [115] Katsura T, Funakoshi K, Kubo A, et al. A large-volume high-pressure and high-temperatureapparatus for in situ X-ray observation,‘SPEED-Mk.II’[J]. Physics of the Earth andPlanetary Interiors,2004,143:497-506.
    [116] Shatskiy A, Katsura T, Litasov K D, et al. High pressure generation using scaled-up Kawai-cell[J]. Physics of the Earth and Planetary Interiors,2011,189(1):92-108.
    [117] Majzoobi G H, Farrahi G H, Pipelzadeh M K, et al. Experimental and finite elementprediction of bursting pressure in compound cylinders[J]. International journal of pressurevessels and piping,2004,81(12):889-896.
    [118] Jahed H, Farshi B, Karimi M. Optimum autofrettage and shrink-fit combination in multi-layer cylinders[J]. Journal of pressure vessel technology,2006,128(2):196-200.
    [119] Majzoobi G H, Farrahi G H, Mahmoudi A H. A finite element simulation and anexperimental study of autofrettage for strain hardened thick-walled cylinders[J]. MaterialsScience and Engineering: A,2003,359(1):326-331.
    [120] Alegre J M, Bravo P, Preciado M. Fatigue behaviour of an autofrettaged high-pressurevessel for the food industry[J]. Engineering Failure Analysis,2007,14(2):396-407.
    [121] H.L.D. Pugh, Institution of Mechanical Engineers (Great Britain). High PressureEngineering: the Second International Conference University of Sussex, Brighton,8-10July,1975[M].[S. l.]: Mechanical Engineering Publications for the Institution ofMechanical Engineers,1977.
    [122]吴任东,张磊,王雪凤.全预应力场下剖分-组合挤压筒的设计方法和结构:中国,101879535A[P].2011-11-10
    [123]吴任东,王雪凤,张磊.预应力钢丝缠绕剖分-组合挤压筒[J].清华大学学报(自然科学版),2010(7):12-17.
    [124]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [125]韩以伦,温学雷,王斌龙.基于ANSYS的液压缸的有限元分析及优化[J].煤矿机械,2011,32(9):79-80.
    [126]韩江,陈党,夏链,等.20MN大型框架式液压机机身有限元分析及优化设计[J].锻压技术,2011,36(3):67-70.
    [127]孙庆,应富强.基于有限元分析的60MN挤压铸造机主液压缸设计[J].机电工程,2011,28(001):33-37.
    [128] Moss W C, Hallquist J O, Reichlin R, et al. Finite element analysis of the diamond anvilcell: Achieving4.6Mbar[J]. Applied Physics Letters,1986,48(19):1258-1260.
    [129] Moss W C, Goettel K A. Finite element design of diamond anvils[J]. Applied PhysicsLetters,1987,50(1):25-27.
    [130] Moss W C. Double bevel construction of a diamond anvil: U.S. Patent4,776,223[P].1988-10-11.
    [131]黄德武.超高压模具应力的有限元法分析[J].机械设计与制造,1982,1:37-40.
    [132] Wang Q, He F, Lu W, et al. Strength analysis and optimization for both the cylinder and theanvil of a BELT-type ultra-high-pressure apparatus by FEM[J]. Journal of MaterialsProcessing Technology,55:5-10.
    [133]王鹏,王强,蔡冬梅,等. Belt型两面顶模具温度场和应力场有限元分析及钢带缠绕数值模拟初探[J].人工晶体学报,2008,37(2):493-499.
    [134]王鹏,王强,蔡冬梅,等. M arc有限元在Belt型两面顶模具应力分析中的应用[J].人工晶体学报,2008,37(1):162-166.
    [135]韩奇钢,贾晓鹏,马红安,等.六面顶压机顶锤的小斜边角度模拟分析[J].超硬材料工程,2008,20(3):12-14.
    [136] Han Q G, Jia X P, Qin J M, et al. FEM study on a double-beveledanvil and its application tosynthetic diamonds[J]. High Pressure Research,2009,29(3):449–456.
    [137]于歌,韩奇钢,李明哲,等.新型圆角式高压碳化钨硬质合金顶锤的有限元分析[J].物理学报,2012,61(4):040702-040702-5.
    [138]韩奇钢,马红安,肖宏宇,等.基于有限元法分析宝石级金刚石的合成腔体温度场[J].物理学报,2010,59(3):1923-1927.
    [139]韩奇钢,贾晓鹏,马红安,等.基于三维有限元法模拟分析六面顶顶锤的热应力[J].物理学报,2009(7):4812-4816.
    [140] Zhang B, Guo W L. Cracking diamond anvil cells by compressed nanographite sheets nearthe contact edge[J]. Applied Physics Letters,2005,87:051907-051907-3.
    [141]李瑞,马红安,韩奇钢,等.基于ANSYS的金刚石合成腔内的温度场分析[J].吉林大学学报(工学版),2008,38(3):535-538.
    [142]李瑞,韩奇钢,贾晓鹏,等.旁热式高压合成腔体内温度场分布的有限元模拟[J].金刚石与磨料模具工程,2009,170(2):9-12.
    [143] Li R, Ma H A, Han Q G, et al. Simulation of pressure distribution in a pyrophyllite high-pressure cell by finite-element analysis[J]. High Pressure Research,2007,27(2):249-257.
    [144]李瑞,马红安,尹斌华,等.基于ANSYS/LS-DYNA的叶蜡石传压性能的有限元分析[J].吉林大学学报(工学版),2008,38(2):292-297.
    [145] Fang J, Bull C L, Loveday J S, et al. Strength analysis and optimization of double-toroidalanvils for high-pressure research[J]. Review of Scientific Instruments,2012,83(9):093902-093902-10.
    [146] Kondrat’yev A I, Vohra Y K. Finite-element modeling of stresses and strains in a diamondanvil cell device: case of a diamond-coated rhenium gasket[J]. High Pressure Research,2007,27(3):321-331.
    [147] Debord R, Leguillon D, Syfosse G, et al. A finite element study of a high-pressure/high-temperature cell for simultaneous X-ray and ultrasonic measurement[J]. High PressureResearch,2003,23(4):451-463.
    [148]吴恩熙,周旭峰,于绍武,等.硬质合金大规格顶锤成型工艺的研究[J].硬质合金,2005,22(3):152-155.
    [149]毛丽琼,李艳玲,姚裕成.两面顶压机设计若干问题的研讨[J].超硬材料工程,2006,18(6):16-18.
    [150]上海交通大学铸压教研组.冷挤压技术的应用研究中的几个问题[J].金属学报,1977,13(1-2):129-138.
    [151]熊文松,姚裕成.钢丝缠绕500T级合成金刚石超高压模具的研究[J].人工晶体学报,1979,3:1-10.
    [152]贾志宏,王贵成,刘菊东,等.梯度聚晶金刚石复合材料的开发[J].工具技术,2004,38(10):31-32.
    [153]李启泉,彭振斌,陈启武.叶腊石在合成金刚石中的流动规律研究及行为分析[J].超硬材料工程,2006,18(2):10-13.
    [154]王强.叶蜡石在Belt装置中的力学及热学行为[J].金属成形工艺,1993,11(1):42-46.
    [155]江克斌,屠义强,邵飞.结构分析有限元原理及ANSYS实现[M].北京:国防工业出版社,2005.
    [156] Vrbka J, Knesl Z. Philosophy and reality of strength design of the BELT chamber by finiteelement method[J]. Proceedings of High Pressure Geoscience and Material Synthesis,Akademie-Verlag, Berlin,1988:234-239.
    [157]陈琦,聂崇礼.年轮型(Belt)高压装置封垫的力学行为[A].第四届全国高压学术讨论会文集[C].成都:1987.
    [158] Ashby, M F. Materials Selection in Mechanical Design,2nd edition, Butterworth-Heinemann Ltd,2004.
    [159]王琦.静态超高压高温装置[J].超硬材料与工程,1996(1):23-28.
    [160]王强,蔡冬梅,赵东. BELT装置硬质合金顶锤的结构优化[J].重型机械,2004(1):53-57.
    [161]李勇,肖军.复合材料纤维铺放技术及其应用[J].纤维复合材料,2002,19(3):39-41.
    [162]包建文,唐邦铭.5228/T800复合材料力学性能研究[J].纤维复合材料,1997,14(4):28-31.
    [163]高巨龙,于锦生.复合材料发动机壳体在航天运载中的应用[J].纤维复合材料,2006,22(3):53-54..
    [164] http://www.kennametal.com/
    [165] http://www.efunda.com/
    [166] Davis J R. Tool materials[M]. ASM international,1995.
    [167] http://www.matweb.com/
    [168]郭欣.基于有限元法的六面顶压机加热规律研究[D].中国石油大学,2010.
    [169] ANSYS, Inc.. ANSYS Theory Reference.2013.
    [170] Klünsner T, Wurster S, Supancic P, et al. Effect of specimen size on the tensile strength ofWC–Co hard metal[J]. Acta Materialia,2011,59(10):4244-4252.
    [171] Deutschman A D, Michels W J, Wilson C E. Machine design: theory and practice[M]. NewYork: Macmillan,1975.
    [172] Getting I C, Chen G, Brown J A. The strength and rheology of commercial tungsten carbidecermets used in high-pressure apparatus[M]//Experimental Techniques in Mineral and RockPhysics. Birkh user Basel,1994:545-577.
    [173]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005.
    [174]李兵,何正嘉,陈雪峰. ANSYS Workbench设计、仿真与优化(第二版).北京:清华大学出版社,2011.
    [175] Khuri A I, Mukhopadhyay S. Response surface methodology[J]. Wiley InterdisciplinaryReviews: Computational Statistics,2010,2(2):128-149.
    [176] Vafaeesefat A. Optimization of composite pressure vessels with metal liner by adaptiveresponse surface method[J]. Journal of Mechanical Science and Technology,2011,25(11):2811-2816.
    [177] Killpatrick D H. Guide device for “Belt” high pressure apparatus[J]. Review of ScientificInstruments,36:1506-1507.
    [178]冯吉福,林峰,李立惟,等.六面顶压机上不同组装结构的温度研究[J].超硬材料工程,2009,21(3):21-25.
    [179]鲁伟员.两面顶高性能金刚石复合片的研究[D].四川大学,2006.
    [180]黄道远,易丹青,刘会群,等.硬质合金强度随温度的变化及失效机理的研究[J].材料热处理学报,2007,28(5):105-108.
    [181]黄道远.热/力作用下钴基硬质合金组织性能变化及相关机理的研究[D].中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700