用户名: 密码: 验证码:
高氮无镍奥氏体不锈钢的微观结构和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢是一种在工业上得到广泛应用的结构材料。与传统奥氏体不锈钢相比较,高氮奥氏体不锈钢具有许多优异的性能,比如高强度、高韧性、高应变硬化能力、强耐蚀性和低磁化性能等。高氮奥氏体不锈钢的上述优异性能使其逐渐地发展成为一种重要的新型结构材料,同时开发高性能高氮奥氏体不锈钢是目前国内外学界的研究热点之一。目前已开展了关于高氮奥氏体不锈钢微观结构和力学性能的研究,但对于固溶、冷轧、温轧和热轧这些处理方式对高氮奥氏体不锈钢微观结构和力学性能的影响却仍然有待深入系统的研究。因此,研究这些处理方式对高氮奥氏体不锈钢微观结构和力学性能的影响,可对高氮奥氏体不锈钢塑性变形规律及相关机制有一个全面而深入的认识,为其合理应用提供理论基础和数据积累。
     本文通过对热成型高氮无镍奥氏体不锈钢原始钢板进行固溶处理,获得固溶态高氮钢;采用冷轧制固溶态高氮钢的方法,得到不同变形量的冷轧态高氮钢;通过时效处理的方法,获得不同微观结构的时效态高氮钢;分别采用400C和600C轧制固溶态高氮钢的方法,得到不同变形量的温轧态高氮钢;通过1140C轧制固溶态高氮钢的方法,获得不同变形量的热轧态高氮钢。使用拉伸实验测试系统和纳米压痕仪进行一系列的力学性能测试。采用X-射线衍射仪、扫描电子显微镜、透射电子显微镜等实验手段,对变形前和变形后的试样进行系统表征,并揭示相关的变形机制。
     本文的主要研究结果如下:
     1)1150C下固溶处理8h随后水淬可得平均晶粒尺寸为40m、存在大量孪晶的单相固溶态高氮无镍奥氏体不锈钢。拉伸实验显示,随应变速率的增加,屈服强度和抗拉强度增加(0.2=528-712MPa, UTS=957-1004MPa),均匀应变和断裂应变明显下降(u=44.6-72.2%, f=60.4-87.6%)。流变应力表现出较高的应变速率敏感性,应变速率敏感性和激活体积分别为0.03和17b3,表明变形主要由位错-孪晶相互作用控制。变形表面和断口表面观察揭示,固溶态高氮无镍奥氏体不锈钢较高的强度和非常高的塑性,以及强度和塑性与应变速率的关系与其大量的晶内孪晶结构以及较低层错能导致的位错-孪晶相互作用有关。
     2)采用冷轧变形方法获得了变形量为0%-70%的冷轧态高氮无镍奥氏体不锈钢,其显微组织主要为孪晶结构。随轧制变形量的增加,孪晶结构细化,数量增加。拉伸实验发现,随着轧制变形量的增加,屈服强度和抗拉强度增加(0.2=589-1885MPa, UTS=1001-2236MPa),均匀应变和断裂应变降低(u=5.9-64.1%, f=12.3-86.6%)。70%冷轧态高氮无镍奥氏体不锈钢的综合力学性能(UTS=2236MPa, f=12.3%)是迄今报导的奥氏体不锈钢的最高综合力学性能之一。极高的强度和较高塑性源于其非常细小的孪晶结构。50%冷轧态高氮无镍奥氏体不锈钢的应变速率敏感性和激活体积分别为0.04和6b3,表明其变形主要由位错-孪晶相互作用控制。
     3)50%冷轧态高氮无镍奥氏体不锈钢经200至600C时效处理3h后孪晶结构逐渐消失,微观结构粗化;800C时效处理3h后,发生明显的再结晶,形成等轴晶粒结构,析出铁素体和Cr2N相。拉伸实验显示,随时效温度从200C增至600C,时效态高氮无镍奥氏体不锈钢屈服强度和抗拉强度增加(0.2=1494-1545MPa, UTS=1834-1974MPa),均匀应变先降低后增加(u=6.31-7.85%),断裂应变趋于降低(f=9.04-9.60%)。800C以下时效态高氮钢强度的增加与析出微细Cr2N相及氮原子的偏聚对位错的钉扎作用有关,塑性明显降低则是由于微观结构的粗化和细小孪晶结构的消失。800C时效时强度和塑性的降低则是由于Cr2N相的晶界析出以及氮原子在晶界上的偏聚产生的晶界脆化作用。
     4)采用1140C热轧变形方法获得了变形量分别为30%、50%和70%的热轧态高氮无镍奥氏体不锈钢,采用400C和600C温轧变形方法得到了变形量分别为50%和70%的温轧态高氮无镍奥氏体不锈钢。拉伸实验发现,对于热轧态高氮无镍奥氏体不锈钢,随应变速率的增加,强度增加,塑性呈下降趋势;随轧制变形量的增加,强度增加,塑性下降。对于温轧态高氮无镍奥氏体不锈钢,随轧制变形量的增加,强度增加,但塑性降低;随轧制温度的提高,其强度降低,塑性降低。高轧制变形量的热轧态高氮无镍奥氏体不锈钢较高的强度源于孪晶结构的细化和大量的小角度晶界的增加,塑性的降低源于大角度晶界数量的明显降低。高轧制变形量的温轧态高氮无镍奥氏体不锈钢较高的强度源于结构的细化,塑性的降低源于带状铁素体相的析出。
     5)不同加载应变速率下的纳米压痕实验表明,与固溶态高氮无镍奥氏体不锈钢相比,70%冷轧态高氮无镍奥氏体不锈钢保载过程显示明显的蠕变变形。蠕变应变与微观结构和加载应变速率有关。显微组织越细小,加载应变速率越高,保载阶段产生的蠕变应变越大,蠕变速率越高。明显的蠕变变形主要是由于加载阶段存储的高密度位错结构在保载阶段会快速释放,产生明显的蠕变塑性变形。固溶态高氮无镍奥氏体不锈钢加载过程会形成稳定的位错结构,所以不产生明显的蠕变塑性变形。
Austenitic stainless steel has been used widely as one of the most important structuralmaterials nowadays. Compared with the conventional austenitic stainless steels, high nitro-gen austenitic stainless steels possess lots of attractive mechanical properties such as highstrength and ductility, high work hardening ability, excellent corrosion resistance and lowmagnetic susceptibility. The excellent performance above let high nitrogen austenitic stain-less steels become an increasingly important new class of structural materials and exploringgood quality of high nitrogen austenitic stainless steel has been intensive focus in the re-searchers domestically and overseas.So far, the mechanical properties and microstructure ofhigh nitrogen austenitic stainless steel have been intensively studied, however, few attentionhas been paid to the influence of solid solution, cold rolling, warm rolling and hot rolling onthe mechanical properties and microstructure systematically. To study these systematically isconducive to develop a deeper understanding of the plastic deformation and related mecha-nism, which can provide theoretical basis for the reasonable application of high nitrogenaustenitic stainless steel.
     In this paper, solid solution-treated high nitrogen nickel-free austenitic stainless steel(HNS) samples were prepared by solution treatment. Cold-rolled HNS samples with differ-ent strains were produced by cold rolling at room temperature. By aging treatment, HNSsamples with different microstructures were produced. By rolling at400C and600C, thewarm-rolled HNS samples with different strains were prepared. By rolling at1140C, thehot-rolled HNS samples with different strains were prepared. The tensile testing system andnanoindentation were used to carry out a series of tests for mechanical properties. The X-raydiffraction, scanning electron microscopy and transmission electron microscopy were usedto characterize the specimens before and after deformation.
     The main research results of current study are listed as follows:
     1) Solid solution-treated HNS samples with single-phase and abundant intracrystalline twin were produced by solution treatment at1150C for8h and water quenching. The aver-age grain size is40m. Uniaxial tensile tests reveal that, with the increase of strain rate, theyield strength and ultimate tensile strength increase (0.2=528-712MPa, UTS=957-1004MPa) while the uniform plastic strain and tensile fracture strain decrease(u=44.6-72.2%, f=60.4-87.6%). It is noted that flow stress performs a relatively high strain rate sensitivity.The strain rate sensitivity and activation volume are0.03and17b3, respectively. This re-veals that the deformation mode is mainly the interaction between dislocation and twin. Sur-face and fracture of the deformed samples demonstrate that the relatively high strength, ul-tra-high elongation and the relation of strength and elongation with strain rate relate toabundant intracrystalline twin and the interaction between dislocation and twin caused bylow stacking fault energy.
     2) Cold rolled HNS samples with0%-70%rolling strain were produced respectively.The main structure of cold rolled HNS is twin. With the increase of rolling strain, the twinrefined and amount increased. Tensile tests reveal that, with the increase of rolling strain, theyield strength and ultimate tensile strength increase (0.2=589-1885MPa, UTS=1001-2236MPa), while the uniform plastic strain and tensile fracture ductility decrease (u=5.9-64.1%,
     f=12.3-86.6%). It is noted that the mechanical properties (UTS=2236MPa, f=12.3%)of70%cold rolled HNS have been the most outstanding results compared with the HNS re-ported before. The ultra-high strength and excellent elongation are ascribed to the refinedtwin. For50%cold rolled HNS, which exhibits a relatively high strain rate sensitivity (0.04)and low activation volume (6b3). This shows that the deformation of cold-rolled HNS ismainly controlled by the interaction between dislocation and twin.
     3) For50%cold-rolled HNS samples after aging treatment from200C to600C for3h, twin gradually disappears and grains become coarse. Aging at800C for3h, the obviousrecrystallization with the formation of equiaxed grains happen, meanwhile, the ferrite andCr2N precipitate. Tensile tests reveal that the yield strength and ultimate tensile strength of50%cold rolled HNS after aging from200C to600C can be improved significantly (0.2=1494-1545MPa, UTS=1834-1974MPa), while the uniform plastic strain has a slightly decrease and then increase (u=6.31-7.85%). The fracture ductility shows a decreasing ten-dency (f=9.04-9.60%). Under800C, the incensement of the strength is due to dislocationpinning caused by small Cr2N and segregation of nitrogen. Apparently decrease of elonga-tion is caused by coared-grain and the elimination of refined twin. At800C, the reduce ofstrength and elongation is caused by the grain boundary precipitation of Cr2N and segrega-tion of nitrogen, which result in embrittlement.
     4) Hot rolled HNS samples were prepared by30%,50%and70%rolling at1140C.Warm rolled HNS samples were prepared by50%and70%rolling at400C and600C, re-spectively. Tensile tests reveal that the strength of hot rolled HNS increase with the increaseof strain rate and rolling strain, while the elongation shows a decrease tendency. For warmrolled HNS, with the increase of strain rate, the strength still has an enhancement but theelongation decrese. Elevating the warm rolling temperature is harmful for strength and elon-gation. For hot rolled HNS, refining twin and abundant low-angle boundaries in large rollingstrain are contributed to the enhancement of the strength and the decrease of high-angleboundaries is responsible for the decrease of elongation. For warm rolled HNS, the refinedstructure in large rolling strain is beneficial for the increase of strength and the precipitationof banded ferrite is harmful for the elongation.
     5) Nanoindentation tests under different strain rates show that, compared with the solidsolution-treated HNS,70%cold rolled HNS exhibits significant creep deformation. Thecreep strain is related to the microstructure and loading strain rate. The creep strain and ratebecome much higher when the structure is refined and loading strain rate become higher.Creep deformation of70%cold rolled HNS is mainly dominated from the rapidly relaxationof the dislocations structures which generated in the loading regime. The high stability of thedislocation structures generated during loading should be responsible for the creep defor-mation in the solid solution-treated HNS.
引文
[1] SPEIDEL M O, FOCT J, HENDRY A. Properties and applications of high nitrogen steels[J]. High Nitrogen Steels-HNS88,1988:92-96.
    [2] GAVRILJUK V G, BERNS H. High nitrogen steels: structure, properties, manufacture,applications [M]. Berlin: Springer,1999.
    [3] RASHEV T S. High nitrogen steels and stainless steels: manufacturing, properties andapplications [M]. New Delhi: Narosa Publishing House,2004.
    [4] RASHEV T S. High nitrogen steels: metallurgy under pressure [M]. Bulgarian: AcademicPublishing House,1995.
    [5]金维松.含氮奥氏体不锈钢耐局部腐蚀性能的研究[D].云南:昆明理工大学,2007.
    [6]ANDREW J H. Nitrogen in iron [J]. Carnegie Scholarship Memoirs,1912,3:236-245.
    [7] FRANKS R, BIRINDE W O, THOMPSON J. Austenitie chromium-manganese-nickelsteels containing nitrogen [J]. Transactions of the American Society for Metals,1995,47:231-239.
    [8] UHLIG H H. The role of nitrogen in18-8stainless steel [J]. Transactions of the Ameri-can Society for Metals,1942,30:947-955.
    [9] KATADA Y, SAGARA M, KOBAYASHI Y, et al. Fabrication of high strength high ni-trogen stainless steel with excellent corrosion resistance and its mechanical properties[J]. Materials and Manufacturing Processes,2004,19:19-30.
    [10] TALONEN J, TAULAVUORI T, HNNINEN H. Effect of temperature on tensile behav-ior and microstructure evolution of nitrogen alloyed austenitic stainless steel [J]. Int.Conf. on High Nitrogen Steels,2006,8:52-58.
    [11] MAGEE J. TECHNICAL PAPERS-Development of Type204Cu stainless steel, alow-cost alternative to Type304-By adding3percent copper to modified Type201, anew alloy was developed that bridges the gap [J]. Wire Journal International,2002,35:84-90.
    [12]陆世英,张廷凯,康喜范等.不锈钢[M].北京:原子能出版社,1995.
    [13]吴玖.双相不锈钢[M].北京:冶金工业出版社,1999.
    [14] STEIN G, HUCKLENBROICH I. Manufacturing and applications of high nitrogensteels [J]. Materials and Manufacturing Processes,2004,19:7-17.
    [15]赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与应用,2005,20:38-40.
    [16]沈卓身,汪崧,黄震中.高耐蚀奥氏体合金新进展[J].石油化工腐蚀与防护,1997,14:7-12.
    [17]周维智,孙晓洁,徐国涛. Mn18Cr18N钢护环生产工艺研究概况[J].大型铸锻件,2001,91:52-54.
    [18]任伊宾,杨柯,张炳春.真空感应炉充氩冶炼高氮Cr-Mn-Mo-Cu奥氏体不锈钢[J].特殊钢,2004,25:13-15.
    [19]李坤. Fe-22Cr-16Mn-1.5Ni-0.4Si-0.1C-0.6N高氮奥氏体不锈钢的析出行为研究[D].辽宁:东北大学,2010.
    [20]李花兵,姜周华.不锈钢熔体中氮溶解度的热力学计算模型[J].东北大学学报,2007,28:672-675.
    [21] WANG S, YANG K, SHAN Y, et al. Plastic deformation and fracture behaviors of ni-trogen-alloyed austenitic stainless steels [J]. Materials Science and Engineering: A,2008,490:95-104.
    [22]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].辽宁:中国科学院金属研究所,2008.
    [23] MONYPENNY J H G. Stainless iron and steel [M]. London: Chapman&Hall,1951.
    [24] UGGOWITZE P J, MAGDOWSKI R, SPEIDEL M O. Nickel free high nitrogen aus-tenitic steel [J]. ISIJ international,1996,36:901-908.
    [25] ANDREEV C H, RASHEV T S. Chromium-manganese stainless steel with nitrogencontent up to2.10wt%[J]. Materials Science Forum,1999,318:255-260.
    [26] SPEIDEL H J C, SPEIDEL M O. Nickel and chromium-based high nitrogen alloys [J].Materials and Manufacturing Processes,2004,19:95-109.
    [27] SIMMONS J W. Overview: high-nitrogen alloying of stainless steels [J]. Materials Sci-ence and Engineering:A,1996,207:159-169.
    [28] KUBOTA S, XIA Y, TOMOTA Y. Work-hardening behavior and evolution of disloca-tion-microstructures in high-nitrogen bearing austenitic steels [J]. ISIJ international,1998,38:474-481.
    [29]任伊宾.新型医用无镍不锈钢的研究[D].辽宁:中国科学院金属研究所,2004.
    [30] TOBLER R L, MEYN D. Cleavage-like fracture along slip planes in Fe-18Cr-3Ni-13Mn-0.37N austenitic stainless steel at liquid helium temperature [J]. MetallurgicalTransactionsA,1988,19:1626-1631.
    [31] TOMOTA Y, ENDO S. Cleavage-like fracture at low temperatures in an18Mn-18Cr-0.5N austenitic steel [J]. ISIJ international,1990,38:656-662.
    [32] MULLNER P, SOLENTHALER C, UGGOWITZER P J. Brittle fracture in austeniticsteel [J].Acta Metallurgica et Materialia,1994,42:2211-2217.
    [33] VOGT J B, MESSAI A, FOCT J. Cleavage fracture of austenite induced by nitrogensupersaturation [J]. Scripta metallurgica et materialia,1994,31:549-554.
    [34] TOMOTA Y, XIA Y, INOUE K. Mechanism of low temperature brittle fracture in highnitrogen bearing austenitic steels [J].Acta Materialia,1998,46:1577-1587.
    [35] TOMOTA Y, NAKANO J, XIA Y, et al. Unusual strain rate dependence of low temper-ature fracture behavior in high nitrogen bearing austenitic steels [J]. Acta Materialia,1998,46:3099-3108.
    [36] SIMMONS J W, COVINO B S. Effect of nitride (Cr2N) precipitation on the mechanical,corrosion, and wear properties of austenitic stainless steel [J]. ISIJ international,1996,36:846-854.
    [37] HA H, KWON H. Effects of Cr2N on the pitting corrosion of high nitrogen stainlesssteels [J]. ElectrochimicaActa,2007,52:2175-2180.
    [38] BABA H, KATADA Y. Effect of nitrogen on crevice corrosion in austenitic stainlesssteel [J]. Corrosion Science,2006,48:2510-2524.
    [39] BAYOUMI F M, GHANEM W A. Effect of nitrogen on the corrosion behavior of aus-tenitic stainless steel in chloride solutions [J]. Materials Letters,2005,59:3311-3314.
    [40] JARGELIUS-PETTERSSON R F A. Electrochemical investigation of the influence ofnitrogen alloying on pitting corrosion of austenitic stainless steels [J]. Corrosion Sci-ence,1999,41:1639-1664.
    [41] SPEIDEL M O, PEDRAZZOLLI R M. High nitrogen stainless steels in chloride solu-tions [J]. Materials Performance,1992,31:59-61.
    [42] MENZEL J, KIRSCHNER W, STEIN G. High nitrogen containing Ni-free austeniticsteels for medical applications [J]. ISIJ international,1996,36:893-900.
    [43] VAUGHAN D, PHALEN D. Anti-corrosion behavior of nitrogen contained steel [J].Corrosion,1965,19:315-342.
    [44] KIM S J, LEE T H. Precipitation sequences in austenitic Fe-22Cr-21Ni-6Mo-(N) stain-less steels [J]. Materials Science Forum,1999,318:109-114.
    [45] JARGELIUS-PETTERSSON R F A. Localised corrosion of stainless steels: ranking,alloying, and microstructure effects [J]. Scandinavian Journal of Metallurgy,1995,24:188-193.
    [46]雍岐龙,裴和中,田建国等.铌在钢中的物理冶金学基础数据[J].微合金化技术,2010,10:66-69.
    [47]胡心彬,李麟,吴晓春.铌微合金化在特殊钢中的应用[J].金属热处理,2003,28:5-10.
    [48]王荣滨.18-8型奥氏体不锈钢晶间腐蚀原因分析[J].材料保护,1999,32:31-32.
    [49]谢敬佩,王文焱,王爱琴.铌、氮在中锰奥氏体钢中的作用[J].钢铁研究学报,2002,14:38-41.
    [50]马艳红,黄元伟.硅含量对不锈钢耐蚀性能的影响[J].上海金属,1999,21:52-57.
    [51]梁成浩,张继德.磷、硅、锰和铜对高纯18Cr-14Ni不锈钢在氯化物介质中抗孔蚀性能的影响[J].腐蚀科学与防护技术,1995,7:336-340.
    [52] BIRRINGER R, GLEITER H, KLEIN H P, et al. Nanocrystalline materials an approachto a novel solid structure with gas-like disorder?[J]. Physics Letters A,1984,102:365-369.
    [53] SANDERS P G, FOUGERE G E, THOMPSON L J, et al. Improvements in the synthe-sis and compaction of nanocystalline materials [J]. Nanostructured Materials,1997,8:243-252.
    [54] SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior ofnanocrystalline copper and palladium [J].Acta Materialia,1997,45:4019-4025.
    [55] GLEITER H. Nanocrystalline materials [J]. Progress in Materials Science,1989,33:223-315.
    [56] AGNEW S R, ELLIOTT B R, YOUNGDAHL C J, et al. Microstructure and mechanicalbehavior of nanocrystalline metals [J]. Materials Science and Engineering: A,2000,285:391-396.
    [57] IWAHASHI Y, WANG J, HORITA Z. Principle of equal-channel angular pressing forthe processing of ultrafinegrained materials [J]. Scripta Materialia,1996,35:143-146.
    [58] VALIEV R. Nanostructuring of metals by severe plastic deformation for advancedproperties [J]. Nature Materials,2004,3:511-516.
    [59] VALIEV R Z, SERGUEEVA A V, MUKHERJEE A K. The effect of annealing on ten-sile deformation behavior of nanostructured SPD titanium [J]. Scripta Materialia,2003,49:669-674.
    [60] MISHRA A, RICHARD V, GR GORI F, et al. Microstructural evolution in copper pro-cessed by severe plastic deformation [J]. Materials Science and Engineering: A,2005,410-411:290-298.
    [61] PIPPAN R, WETSCHER F, HAFOK M, et al. The limits of refinement by severe plasticdeformation [J].Advanced Engineering Materials,2006,8:1046-1056.
    [62] SHIN D H, KIM I, KIM J, et al. Grain refinement mechanism during equal-channel an-gular pressing of a low-carbon steel [J].Acta Materialia,2001,49:1285-1292.
    [63] GHOLINIA A, PRANGNELL P B, MARKUSHEV M V. The effect of strain path onthe development of deformation structures in severely deformed aluminium alloys pro-cessed by ECAE [J].Acta Materialia,2000,48:1115-1130.
    [64] TAO N R, WANG Z B, TONG W P, et al. An investigation of surface nanocrystalliza-tion mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mate-rialia,2002,50:4603-4616.
    [65] WANG K, TAO N R, LIU G, et al. Plastic strain-induced grain refinement at the na-nometer scale in copper [J].Acta Materialia,2006,54:5281-5291.
    [66] ZHANG H W, HEI Z K, LIU G, et al. Formation of nanostructured surface layer on AI-SI304stainless steel by means of surface mechanical attrition treatment [J]. Acta Mate-rialia,2003,51:1871-1881.
    [67] LIU X C, ZHANG H W, LU K. Strain-induced ultrahard and ultrastable nanolaminatedstructure in nickel [J]. Science,2013,342:337-40.
    [68] FAN J, FU T. Toughened austenitic stainless steel by surface severe plastic deformation[J]. Materials Science and Engineering:A,2012,552:359-363.
    [69] FRECHARD S, REDJAIMIA A, LACH E, et al. Mechanical behaviour of nitro-gen-alloyed austenitic stainless steel hardened by warm rolling [J]. Materials Scienceand Engineering:A,2006,415:219-224.
    [70] GREER J R, NIX W D. Nanoscale gold pillars strengthened through dislocation starva-tion [J]. Physical Review B (Condensed Matter and Materials Physics),2006,73:245410-6.
    [71] WANG G, LI G, ZHAO L, et al. The origin of the ultrahigh strength and good ductilityin nanotwinned copper [J]. Materials Science and Engineering: A,2010,527:4270-4274.
    [72] KIBEY S, LIU J B, JOHNSON D D, et al. Predicting twinning stress in fcc metals:Linking twin-energy pathways to twin nucleation [J]. Acta Materialia,2007,55:6843-6851.
    [73] ROSAKIS P, TSAI H. Dynamic twinning processes in crystals [J]. International Journalof Solids and Structures,1995,32:2711-2723.
    [74] CHRISTIAN J W, MAHAJAN S. Deformation twinning [J]. Progress in Materials Sci-ence,1995,39:1-157.
    [75] CHEN M, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline alumi-num [J]. Science,2003,300:1275-1277.
    [76] DAO M, LU L, SHEN Y F, et al. Strength, strain-rate sensitivity and ductility of copperwith nanoscale twins [J].Acta Materialia,2006,54:5421-5432.
    [77] CHEN X H, LU L. Work hardening of ultrafine-grained copper with nanoscale twins [J].Scripta Materialia,2007,57:133-136.
    [78] ASHBY M F, VERRALL R A. Diffusion-accommodated flow and superplasticity [J].Acta Metallurgica,1973,21:149-163.
    [79] WEI Q, JIA D, RAMESH K T, et al. Evolution and microstructure of shear bands innanostructured Fe [J].Applied Physics Letters,2002,81:1240-1242.
    [80] JOSHI S P, RAMESH K T. Stability map for nanocrystalline and amorphous materials[J]. Physical Review Letters,2008,101:025501-4.
    [81] JOSHI S P, RAMESH K T. Rotational diffusion and grain size dependent shear instabil-ity in nanostructured materials [J].Acta Materialia,2008,56:282-291.
    [82] JOSHI S P, RAMESH K T. Grain size dependent shear instabilities in body-centeredand face-centered cubic materials [J]. Materials Science and Engineering: A,2008,493:65-70.
    [83] WANG Z, FU W, SUN S, et al. Mechanical behavior and microstructural change of ahigh nitrogen Cr-Mn austenitic stainless steel during hot deformation [J]. Metallurgicaland Materials TransactionsA,2010,41:1025-1032.
    [84] SCHINO.A. D, BARTERI M, KENNY J M. Grain size dependence of mechanical, cor-rosion and tribological properties of high nitrogen stainless steels [J]. Journal of Mate-rials Science,2003,38:3257-3262.
    [85] SALLER G, SPIRADEK H K, SCHEU C, et al. Microstructural evolution of Cr-Mn-Naustenitic steels during cold work hardening [J]. Materials Science and Engineering: A,2006,427:246-254.
    [86] HONG C M, SHI J, SHENG L Y, et al. Influence of hot working on microstructure andmechanical behavior of high nitrogen stainless steel [J]. Journal of Materials Science,2011,46:5097-5103.
    [87] WANG W, WANG S, YANG K, et al. Temperature dependence of tensile behavior of ahigh nitrogen Fe-Cr-Mn-Mo stainless steel [J]. Materials and Design,2009,30:1822-1824.
    [88] KIM Y S, NAM S M, KIM S J. Strain rate dependence of deformation behavior ofhigh-nitrogen austenitic steels [J]. Journal of Materials Processing Technology,2007,187:575-577.
    [89] DI SCHINO A, KENNY J M, MECOZZI M G, et al. Development of high nitrogen,low nickel,18%Cr austenitic stainless steels [J]. Journal of Materials Science,2000,35:4803-4808.
    [90] BHAV SINGH B, SIVAKUMAR K, BALAKRISHNA BHAT T. Effect of cold rollingon mechanical properties and ballistic performance of nitrogen-alloyed austenitic steels[J]. International Journal of Impact Engineering,2009,36:611-620.
    [91] DI SCHINO A, BARTERI M, KENNY J M. Effects of grain size on the properties of alow nickel austenitic stainless steel [J]. Journal of Materials Science,2003,38:4725-4733.
    [92] YUAN Z, DAI Q, CHENG X, et al. Impact properties of high-nitrogen austenitic stain-less steels [J]. Materials Science and Engineering:A,2008,475:202-206.
    [93] MILITITSKY M, MATLOCK D K, REGULLY A, et al. Impact toughness properties ofnickel-free austenitic stainless steels [J]. Materials Science and Engineering: A,2008,496:189-199.
    [94] LEE T H, SHIN E, OH C S, et al. Correlation between stacking fault energy and defor-mation microstructure in high-interstitial-alloyed austenitic steels [J]. Acta Materialia,2010,58:3173-3186.
    [95]石锋.高氮奥氏体不锈钢的组织稳定性研究[D].辽宁:东北大学,2008.
    [96] COURTNEY T H. Mechanical behavior of materials [M].北京:机械工业出版社(影印版),2004.
    [97] SIMMONS J W. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8–10)Mn-5Ni austenitic stainless steels [J]. Acta Materialia,1997,45:2467-2475.
    [98] SIMMONS J W. Influence of nitride(Cr2N) precipitation on the plastic flow behavior ofhigh-nitrogen austenitic stainless stee [J]. Scripta metallurgica et materialia,1995,32:265-270.
    [99] LI H B, JIANG Z H, ZHANG Z R, et al. Mechanical properties of nickel free high ni-trogen austenitic stainless steels [J]. Journal of Iron and Steel Research, International,2007,14:330-334.
    [100]王松涛,杨柯,单以银等.冷变形对高氮奥氏体不锈钢组织与力学行为的影响[J].金属学报,2007,43:713-718.
    [101] SHEN X, GU C, LIAN J, et al. Tensile-relaxation behavior of electrodeposited nano-crystalline Ni [J]. Journal ofApplied Physics,2010,108:054319.
    [102] CHENG S, MA E, WANG Y M, et al. Tensile properties of in situ consolidated nano-crystalline Cu [J].Acta Materialia,2005,53:1521-1533.
    [103] LIAN J, GU C, JIANG Q, et al. Strain rate sensitivity of face-centered-cubic nano-crystalline materials based on dislocation deformation [J]. Journal of applied physics,2006,99:076103.
    [104] ASARO R J, SURESH S. Mechanistic models for the activation volume and rate sen-sitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta Materialia,2005,53:3369-3382.
    [105] WEI Q, CHENG S, RAMESH K T, et al. Effect of nanocrystalline and ultrafine grainsizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Ma-terials Science and Engineering:A,2004,381:71-79.
    [106] LU L, SCHWAIGER R, SHAN Z W, et al. Nano-sized twins induce high rate sensitiv-ity of flow stress in pure copper [J].Acta Materialia,2005,53:2169-2179.
    [107] SHEN X, LIAN J, JIANG Z, et al. High strength and high ductility of electrodepositednanocrystalline Ni with a broad grain size distribution [J]. Materials Science and Engi-neering:A,2008,487:410-416.
    [108] WANG Y M, HAMZA A V, MA E. Temperature-dependent strain rate sensitivity andactivation volume of nanocrystalline Ni [J].Acta Materialia,2006,54:2715-2726.
    [109] GU C D, LIAN J S, JIANG Q, et al. Experimental and modelling investigations onstrain rate sensitivity of an electrodeposited20nm grain sized Ni [J]. Journal of PhysicsD:Applied Physics,2007,40:7440.
    [110] ZHANG H, JIANG Z, LIAN J, et al. Strain rate dependence of tensile ductility in anelectrodeposited Cu with ultrafine grain size [J]. Materials Science and Engineering: A,2008,479:136-141.
    [111] LEE T H, OH C S, KIM S J, et al. Deformation twinning in high-nitrogen austeniticstainless steel [J].Acta Materialia,2007,55:3649-3662.
    [112] CHANG B, ZHANG Z. Cyclic deformation behavior in a nitrogen-alloyed austeniticstainless steel in terms of the evolution of internal stress and microstructure [J]. Materi-als Science and Engineering:A,2012,556:625-632.
    [113] HONG C M, SHI J, SHENG L Y, et al. Effects of hot-working parameters on micro-structural evolution of high nitrogen austenitic stainless steel [J]. Materials and Design,2011,32:3711-3717.
    [114] PICKERING F B. Physical metallurgy of stainless steel developments [J]. Internation-al Materials Reviews,1976,21:227-268.
    [115] MILITITSKY M, DE WISPELAERE N, PETROV R, et al. Characterization of themechanical properties of low-nickel austenitic stainless steels [J]. Materials Science andEngineering:A,2008,498:289-295.
    [116] WANG S T, YANG K, SHAN Y Y, et al. Study of cold deformation behaviors of a highnitrogen austenitic stainless steel and316L stainless steel [J]. Acta Metallrgica Sini-ca-Chinese Edition-,2007,43:171.
    [117] FRECHARD S, REDJAIMIA A, LACH E, et al. Dynamical behaviour and micro-structural evolution of a nitrogen-alloyed austenitic stainless steel [J]. Materials Scienceand Engineering:A,2008,480:89-95.
    [118] LACH E, ANDERSON C, SCHIRM V, et al. Hypervelocity impact into a high strengthand ductile steel alloy [J]. International Journal of Impact Engineering,2008,35:1625-1630.
    [119] LIU S Y, LIU D Y, LIU S C. Transgranular fracture in low temperature brittle fractureof high nitrogen austenitic steel [J]. Journal of Materials Science,2007,42:7514-7519.
    [120] OJIMA M, ADACHI Y, TOMOTA Y, et al. Work hardening mechanism in high nitro-gen austenitic steel studied by in situ neutron diffraction and in situ electron backscat-tering diffraction [J]. Materials Science and Engineering:A,2009,527:16-24.
    [121] UEJI R, KONDO D, TAKAGI Y, et al. Grain size effect on high-speed deformation ofHadfield steel [J]. Journal of Materials Science,2012,47:7946-7953.
    [122] DI SCHINO A, KENNY J M. Grain refinement strengthening of a micro-crystallinehigh nitrogen austenitic stainless steel [J]. Materials Letters,2003,57:1830-1834.
    [123] STOLYAROV V V, ZHU Y T, ALEXANDROV I V, et al. Grain refinement and prop-erties of pure Ti processed by warm ECAP and cold rolling [J]. Materials Science andEngineering:A,2003,343:43-50.
    [124] HUANG J X, YE X X, XU Z. Effect of Cold Rolling on Microstructure and Mechani-cal Properties of AISI301LN Metastable Austenitic Stainless Steels [J]. Journal of Ironand Steel Research, International,2012,19:59-63.
    [125] KARAMAN I, SEHITOGLU H, MAIER H, et al. Competing mechanisms and mod-eling of deformation in austenitic stainless steel single crystals with and without nitro-gen [J].Acta Materialia,2001,49:3919-3933.
    [126] XU M Z, WANG J J, LIU C M. Mechanical properties and microstructure evolution ofcold-deformed high-nitrogen nickelfree austenitic stainless steel during annealing [J].Journal of Wuhan University of Technology-Mater,2012,27:830-835.
    [127] BLICHARSKI M, GORCZYCA S. Structural inhomogeneity of deformed austeniticstainless steel [J]. Metal Science,1978,12:303-312.
    [128] WERNER E. Solid solution and grain size hardening of nitrogen-alloyed austeniticsteels [J]. Materials Science and Engineering:A,1988,101:93-98.
    [129] DUGGAN B, HATHERLY M, HUTCHINSON W, et al. Deformation structures andtextures in cold-rolled70:30brass [J]. Metal Science,1978,12:343-351.
    [130] GU C, LIAN J, JIANG Z, et al. Enhanced tensile ductility in an electrodepositednanocrystalline Ni [J]. Scripta Materialia,2006,54:579-584.
    [131] LI H Q, EBRAHIMI F. Transition of deformation and fracture behaviors in nanostruc-tured face-centered cubic metals [J].Appled Physics Letters,2004,84:4307-4309.
    [132] TORRE D F, SWYGENHOVEN V H, VICTORIA M. Nanocrystalline electrodeposit-ed Ni: microstructure and tensile properties [J].Acta Materialia,2002,50:3957-3970.
    [133] WANG N, WANG Z, AUST K T, et al. Room temperature creep behavior of nanocr-ystalline nickel produced by an electrodeposition technique [J]. Materials Science andEngineering:A,1997,237:150-158.
    [134] SCHWAIGER R, MOSER B, DAO M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J].Acta Materialia,2003,51:5159-5172.
    [135] MAE. Watching the Nanograins Roll [J]. Science,2004:623-624.
    [136] LU L, SHEN Y, CHEN X, et al. Ultrahigh strength and high electrical conductivity incopper [J]. Science,2004,304:422-426.
    [137] JIANG Z, LIU X, LI G, et al. Strain rate sensitivity of a nanocrystalline Cu synthe-sized by electric brush plating [J].Applied Physics Letters,2006,88:143115-143115-3.
    [138] GUDURU R K, MURTY K L, YOUSSEF K M, et al. Mechanical behavior of nano-crystalline copper [J]. Materials Science and Engineering:A,2007,463:14-21.
    [139] CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J].Scripta Materialia,2006,54:1913-1918.
    [140] WANG G, JIANG Z, ZHANG H, et al. Enhanced tensile ductility in an electrodepos-ited nanocrystalline copper [J]. Journal of Materials Research,2008,23:2238-2244.
    [141] SHEN Y F, LU L, LU Q H, et al. Tensile properties of copper with nano-scale twins [J].Scripta Materialia,2005,52:989-994.
    [142] YAMAKOV V, WOLF D, PHILLPOT S R, et al. Grain-boundary diffusion creep innanocrystalline palladium by molecular-dynamics simulation [J]. Acta Materialia,2002,50:61-73.
    [143] LU L, SUI M L, LU K. Superplastic extensibility of nanocrystalline copper at roomtemperature [J]. Science,2000,287:1463-1466.
    [144] OVIDKO I A. Review on the fracture processes in nanocrystalline materials [J]. Jour-nal of Materials Science,2007,42:1694-1708.
    [145] COBLE R L. A model for boundary diffusion controlled creep in polycrystalline mate-rials [J]. Journal ofApplied Physics,1963,34:1679-1682.
    [146] REED-HILL R E, ABBASCHIAN R. Physical metallurgy principles [J]. PWS-Kent,Boston,1994.
    [147]刘承志,张剑桥,姜周华等.时效处理对不同氮含量的316L不锈钢冲击韧性及析出物的影响[J].2011年全国高品质特殊钢生产技术研讨会文集,2011.
    [148] LI H B, JIANG Z H, FENG H, et al. Aging precipitation behavior of18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel and its influences on mechanicalproperties [J]. Journal of Iron and Steel Research,2012,19:43-51.
    [149] LI H, JIANG Z, ZHANG Z, et al. Effect of grain size on mechanical properties ofnickel-free high nitrogen austenitic stainless steel [J]. Journal of Iron and Steel Re-search,2009,16:58-61.
    [150] SIMMONS J W. Mechanical properties of isothermally aged high-nitrogen stainlesssteel [J]. Metallurgical and Materials TransactionsA,1995,26:2085-2101.
    [151] BALACHANDRAN G, BHATIA M L, BALLAL N B, et al. Processing nickel freehigh nitrogen austenitic stainless steels through conventional electroslag remelting pro-cess [J]. ISIJ international,2000,40:478-483.
    [152] BALACHANDRAN G, BHATIA M L, BALLAL N B, et al. Influence of mechanicalprocessing and heat treatment on microstructure evolution in nickel free high nitrogenaustenitic stainless steels [J]. ISIJ international,2000,40:491-500.
    [153] BALACHANDRAN G, BHATIA M L, BALLAL N B, et al. Influence of thermal andmechanical processing on room temperature mechanical properties of nickel free highnitrogen austenitic stainless steels [J]. ISIJ international,2000,40:501-510.
    [154] BEHJATI P, KERMANPUR A, NAJAFIZADEH A. Influence of nitrogen alloying onproperties of Fe-18Cr-12Mn-XN austenitic stainless steels [J]. Materials Science andEngineering:A,2013,588:43-48.
    [155] LEE T H, OH C S, KIM S J. Effects of nitrogen on deformation-induced martensitictransformation in metastable austenitic Fe-18Cr-10Mn-N steels [J]. Scripta Materialia,2008,58:110-113.
    [156] YUAN Z Z, DAI Q X, CHENG X N, et al. In situ SEM tensile test of high-nitrogenaustenitic stainless steels [J]. Materials Characterization,2006,56:79-83.
    [157] KNUTSEN R D, LANG C I, BASSON J A. Discontinuous cellular precipitation in aCr-Mn-N steel with niobium and vanadium additions [J]. Acta Materialia,2004,52:2407-2417.
    [158] SALAHINEJAD E, AMINI R, MARASI M, et al. Microstructure and wear behaviorof a porous nanocrystalline nickel-free austenitic stainless steel developed by powdermetallurgy [J]. Materials and Design,2010,31:2259-2263.
    [159] ZHANG G L, WANG J L, LIU Y F, et al. Properties of TiN coating on45#steel forinner surface modification by grid-enhanced plasma source ion implantation method [J].Chinese Physics B,2004,13:1309.
    [160] ZHANG Y, XIE L J, ZHANG J M, et al. Relaxed energy and structure of edge disloca-tion in iron [J]. Chinese Physics B,2011,20:026102.
    [161] WANG H, LIU G Q, LUAN J H. Study on3D von Neumann equation with anisotropyfor convex grains [J].Acta Physical Society,2012,61048102.
    [162] DAI Q, YUAN Z, CHEN X, et al. High-cycle fatigue behavior of high-nitrogen aus-tenitic stainless steel [J]. Materials Science and Engineering:A,2009,517:257-260.
    [163] LIU Y L, JIN S, ZHANG Y. Interaction between impurity nitrogen and tungsten: afirst-principles investigation [J]. Chinese Physics B,2012,21:016105.
    [164] WANG W, YAN W, YANG K, et al. Temperature dependence of tensile behaviors ofnitrogen-alloyed austenitic stainless steels [J]. Journal of Materials Engineering andPerformance,2010,19:1214-1219.
    [165] DOROFEEV G A, SAPEGINA I V, LADYANOV V I, et al. Mechanical alloying andsevere plastic deformation of nanocrystalline high-nitrogen stainless steels [J]. Physicsof Metals and Metallography,2012,113:963-973.
    [166] YUAN Z Z, DAI Q X, CHENG X N, et al. Microstructural thermostability of high ni-trogen austenitic stainless steel [J]. Materials Characterization,2007,58:87-91.
    [167] NAKADA N, HIRAKAWA N, TSUCHIYAMA T, et al. Grain refinement of nick-el-free high nitrogen austenitic stainless steel by reversion of eutectoid structure [J].Scripta Materialia,2007,57:153-156.
    [168] CHOI J Y, JI J H, HWANG S W, et al. Strain induced martensitic transformation ofFe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addi-tion [J]. Materials Science and Engineering:A,2011,528:6012-6019.
    [169] JANDOVA D, REHOR J, NOVY Z. Microstructural changes taking place during thethermo-mechanical processing and cold working of steel18Cr18Mn0.5N [J]. Journalof Materials Processing Technology,2004,157:523-530.
    [170]王松涛,杨柯,单以银等.高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J].金属学报,2007,43:171-171.
    [171] SHEN Y F, LU L, DAO M, et al. Strain rate sensitivity of Cu with nanoscale twins [J].Scripta Materialia,2006,55:319-322.
    [172] CHEN J, SHI Y N, LU K. Strain rate sensitivity of a nanocrystalline Cu-Ni-P alloy [J].Journal of materials research,2005,20:2955-2959.
    [173] LUTHY H, WHITE R A, SHERBY O D. Grain boundary sliding and deformationmechanism maps [J]. Materials Science and Engineering,1979,39:211-216.
    [174] LUCAS B N, OLIVER W C. Indentation power-law creep of high-purity indium [J].Metallurgical and Materials TransactionsA,1999,30:601-610.
    [175] KONOPKA K, MIZERA J, WYRZYKOWSKI J W. The generation of dislocationsfrom twin boundaries and its effect upon the flow stresses in fcc metals [J]. Journal ofMaterials Processing Technology,2000,99:255-259.
    [176] FIELD D P, TRUE B W, LILLO T M, et al. Observation of twin boundary migration incopper during deformation [J]. Materials Science and Engineering: A,2004,372:173-179.
    [177] IMRAN M, HUSSAIN F, RASHID M, et al. Dynamic characteristics of nanoindenta-tion in Ni: A molecular dynamics simulation study [J]. Chinese Physics B,2012,21:116201.
    [178] MU J W, SUN S C, JIANG Z H, et al. Dislocation-mediated creep process in nanocr-ystalline Cu [J]. Chinese Physics B,2013,22:037303.
    [179] MU J, JIANG Z, ZHENG W, et al. High-speed creep process mediated by rapid dislo-cation absorption in nanocrystalline Cu [J]. Journal of Applied Physics,2012,111:063506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700