用户名: 密码: 验证码:
材料、形状耦元、热循环温度对热作模具热疲劳性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热疲劳失效是热作模具主要失效形式之一。国产模具使用寿命较低,我国每年消耗热作模具近百亿元人民币。因此,提高热作模具的热疲劳性能,降低模具的制造成本,具有重要的经济意义。以往研究表明,通过激光仿生耦合技术模仿生物体表的耦合作用,已经对处理国内常用的3Cr2W8V热作模具钢的热疲劳性能起到了很好的效果。然而,激光仿生耦合技术中耦元及其特征参数均对处理材料的热疲劳性能产生不同影响,并且不同种类热作模具钢经激光仿生耦合处理后的热疲劳性能响应不同,同时热循环温度也是处理后材料产生不同程度热疲劳破坏的重要因素,因此需要对其影响机制进行更深入地探讨与揭示。
     因此,考察了形状耦元截面形态对激光仿生耦合试样热疲劳性能的影响;研究了在不同热循环温度下不同种类热作模具钢经激光仿生耦合处理后热疲劳性能的响应及热疲劳循环后母材与单元体的组织和硬度的变化规律;研究了材料耦元强化处理对仿生耦合试样热疲劳性能的影响;模拟了未处理试样热疲劳过程冷却后的应力场并结合热疲劳试验前后激光仿生耦合试样和未处理试样的拉伸性能,探讨了激光仿生耦合处理提高热疲劳性能的机理。主要研究结果如下:
     1.根据形状耦元截面形态的轮廓及尺寸定义了三种单元体截面形态,即单元体宽度与深度比大于4倍将其命名为―扁长‖形单元体、单元体截面轮廓类似于抛物线形将其命名为―U‖形单元体、单元体截面轮廓类似于三角形将其命名为―V‖形单元体。揭示出形状耦元截面形态对热疲劳性能的影响规律,即―U‖形单元体对热疲劳性能提高效果最佳,之后为―V‖形单元体和―扁长‖形单元体。
     2.不同热循环温度条件下,不同种类热作模具钢经激光仿生耦合处理后对热疲劳性能响应规律不同,即经激光仿生耦合处理后其热疲劳性能均比未处理试样有不同幅度提高;热循环上限温度为600℃时,激光仿生耦合处理HD钢具有最佳的热疲劳性能,其次为处理HHD钢、H13钢;热循环上限温度为650℃、700℃及750℃时,激光仿生耦合处理HHD钢具有最佳的热疲劳性能,其次为处理H13钢、HD钢。不同热循环温度条件下,形状耦元对提高热疲劳性能的影响为网状>条状>点状。
     3.揭示了不同热循环温度条件下,不同种类热作模具钢经激光仿生耦合处理后热疲劳性能产生不同响应的原因,即在热循环上限温度为600℃时热疲劳循环后HD钢母材及其单元体的硬度仍然最高,并且不同种类热作模具钢母材及单元体的微观组织较热疲劳试验前并无显著变化,因此,在热循环上限温度为600℃时激光仿生耦合处理HD钢具有最佳的热疲劳性能。在热循环上限温度为650℃、700℃、750℃时热疲劳循环后在不同种类热作模具钢中HHD钢母材及其单元体具有最佳的抗热循环软化能力及组织热稳定性,因此,在热循环上限温度为650℃、700℃、750℃时激光仿生耦合处理HHD钢具有最佳的热疲劳性能。
     4.揭示出材料耦元强化处理对仿生耦合试样热疲劳性能的影响规律
     a)激光仿生耦合试样再经脉冲电流处理后,单元体组织细化、硬度提高,并且激光未处理区域也发生相变,产生细小的隐晶马氏体组织。脉冲电流处理后提高了仿生耦合试样的整体性能,因此进一步提高了仿生耦合试样的热疲劳性能。
     b)激光熔覆(LC)处理与激光熔凝(LM)处理相比改变了单元体的组织和化学组成。热疲劳后LC单元体的抗热循环软化能力、组织热稳定性都优于LM单元体,因此,LC处理进一步改善了仿生耦合试样的热疲劳性能。
     5.揭示出激光仿生耦合处理提高材料热疲劳性能的机理
     a)材料经激光仿生耦合处理后组织和性能都要优于未处理材料,即通过个体强化机制与双相混合机制使处理后的材料展现出优异的抗热疲劳裂纹萌生能力。另一方面,形状耦元对热疲劳裂纹的扩展表现出不同程度的阻滞行为,降低了热疲劳裂纹的扩展速度,提高了处理表面的抗热疲劳裂纹扩展能力。
     b)当单元体形状相同时,由于热疲劳裂纹的萌生与扩展是在材料表层的一定深度范围内发生,并且热疲劳裂纹的深度随着热疲劳循环次数的增加而逐渐增加,因此不同单元体截面形态对热疲劳性能的提高幅度不同。―扁长‖形单元体在三种单元体截面形态中面积最小,且深度最浅,因此其对热疲劳性能提高幅度最小。―U‖形单元体截面面积大于―扁长‖形单元体,并且随着深度的增加―U‖形单元体的宽度要大于―V‖形单元体,因此―U‖形单元体具有最佳的热疲劳性能。
Thermal fatigue damage is one of the major reasons which lead to the failure ofhot-work dies. There is consumption of hot-work die about10billion RMB in Chinadue to low using life of domestic dies. Therefore, improvement in thermal failureproperty and reduction in fabricating cost of hot-work die possesses economicsignificance. In previous studies, thermal fatigue property of3Cr2W8V steel, which isthe common material for hot-work die in China, has been improved effectively by laserbiomimetic coupling (LBC) technique which imitates the coupling effect of flora andfauna surfaces. However, for the investigation of thermal fatigue properties of hot-workdies treated by LBC technique, there are many coupling elements and characteristicparameters which can influence the thermal fatigue properties. Moreover, the responsesof thermal fatigue properties of different hot-work dies materials treated by LBCtechnique are different. On the other hand, the thermal cycles temperatures are alsoimportant for the thermal fatigue properties of materials treated by LBC technique.Thus, the influence mechanisms of these factors on the thermal fatigue properties needto be further explored and revealed.
     Therefore, the effects of morphologies of shapes coupling elements on the thermalfatigue properties of LBC samples were studied. During different thermal cyclestemperatures, the responses of thermal fatigue properties of different hot-work diessteels treated by LBC technique were investigated. Moreover, variations ofmicrostructures and microhardnesses for parent metal and units were researched afterthermal fatigue cycles. In addition, the influence of materials coupling elementsstrengthening treatment on the thermal fatigue property of LBC samples was studies.The stress field of untreated sample after cooling during thermal fatigue cycles wassimulated, and combined with the tensile property of LBC samples and untreated samples before and after thermal fatigue cycles to analyze the mechanism forimproving the thermal fatigue property of LBC sample. The main results indicate that:
     1. According to the contours and dimensions of morphologies of shapes couplingelements, three kinds of units morphologies were defined, i.e.―prolate‖morphology unit which the ratio of width and depth of unit was greater than4times and―U‖morphology unit which unit contour was similar to parabola, aswell as―V‖morphology unit which contour was similar to triangle. Theinfluence of morphologies of shapes coupling elements on the thermal fatigueproperties of LBC samples were revealed, i.e.―U‖morphology unit had the bestthermal fatigue property, followed by―V‖morphology unit and―prolate‖morphology unit.
     2. During different thermal cycles temperatures, the responses of thermal fatigueproperties of different hot-work dies steels treated by LBC technique weredifferent. Three kinds of hot-work die steels treated by LBC technique hadbetter thermal fatigue property than untreated samples during different thermalfatigue cycles temperatures. During the thermal cycles temperature at600℃, thethermal fatigue properties of LBC samples sorted HD>HHD>H13. During thethermal cycles temperatures at650℃,700℃and750℃, the thermal fatigueproperties of LBC samples sorted HHD>H13>HD. During different thermalcycles temperatures, the thermal fatigue behavior of LBC sample with griddingshape is the best, followed by striation shape and spot shape among the shapescoupling elements.
     3. During different thermal cycles temperatures, different responses of thermalfatigue properties of different hot-work dies steels treated by LBC techniquewere revealed. During the thermal cycles temperature at600℃, after thermalfatigue testing, the hardness of HD steel and unit of HD steel were still thehighest, moreover the microstructure of different kinds of hot-work dies steelsand units had no significant change. Therefore, during the thermal cyclestemperature at600℃, HD steel LBC sample had the best thermal fatigue property. During the thermal cycles temperatures at at650℃,700℃and750℃,after thermal fatigue testing, thermal cycling softening resistance andmicrostructure thermal stability of HHD steel and unit of HHD steel were thebest. Thus, during the thermal cycles temperatures at650℃,700℃and750℃,HHD steel LBC sample had the best thermal fatigue property.
     4. The influences of materials coupling elements strengthening treatment on thethermal fatigue property of biomimetic coupling samples were revealed.
     a) The microstructures of units of tempered or annealed H13steel were refinedby electropulsing. Cryptocrystalline martensite were obtained when H13steel was treated by electropulsing. The thermal fatigue property of LBCsample was improved further due to better overall performance after treatedby electropulsing.
     b) Comparing with laser melting (LM), the microstructures and chemicalcompositions of units were changed by laser cladding (LC). Microstructurethermal stability and thermal cycling softening resistance of LC unit werebetter than that of LM unit. LC biomimetic coupling sample was moreeffective to improve thermal fatigue behavior than LM biomimetic couplingsample.
     5. The influence mechanisms of improved thermal fatigue property of materialstreated by LBC technique were revealed.
     a) The materials treated by LBC technique had finer microstructures and bettercomprehensive properties than that of untreated materials. On the basis ofindividual strengthening of the units and double-phases compoundstrengthening, the thermal fatigue cracks initiation resistance was improved.On the other hand, shapes coupling elements had different effect on thethermal fatigue cracks propagation resistance which decrease thepropagation speed of thermal fatigue cracks and improve the thermal fatiguecracks propagation resistance.
     b) Owing to the thermal fatigue cracks initiate and propagate within a certaindepth of materials surface, as well as the depth of thermal fatigue cracks increases with the increasing thermal fatigue cycles, different unitsmorphologies had different degrees of improvement in thermal fatigueproperty.―Prolate‖morphology unit had the smallest area and lowest depthwhich lead to the worse thermal fatigue property among differentmorphologies units. The area of―U‖morphology unit was bigger than thatof―prolate‖morphology unit, and―V‖morphology unit is narrower than the―U‖morphology unit indepthdirection, therefore,―U‖morphology unit hadthe best thermal fatigue property.
引文
[1]聂小武.常用热作模具材料的选用及其发展[J].中国铸造装备与技术,2012,(2):46-48.
    [2]刘俊英,蒋伯平,刘金海.热作模具钢的发展与应用[J].工程机械,2006,(6):54-57.
    [3]马党参,陈再枝,刘建华.我国模具钢的发展机遇与挑战[J].金属加工:冷加工,2008,(8):71-75.
    [4]吴晓春,左鹏鹏.国内外热作模具钢发展现状与趋势[J].模具工业,2013,39(10):1-9.
    [5]潘金芝,任瑞铭,戚正风.国内外模具钢发展现状[J].金属热处理,2008,33(8):10-15.
    [6]于影霞,何柏林,李力.国内外模具材料的现状及发展趋势[J].热加工工艺,2009,38(2):45-47.
    [7]郑利文.模具行业信息[J].模具工业,2013,39(7):1-5.
    [8]王立君,吕国斌.延长压铸模使用寿命的措施[J].林业机械与木工设备,1998,26(2):22-23.
    [9]续维.高性能热作模具钢工艺及性能研究[J].上海钢研,2005,(2):32-38.
    [10]姜启川.新型高性能热作模具钢[C].威海:中国铸造活动周论文集,2009.
    [11] PERSSON A, HOGMARK S, BERGSTR M J. Simulation and evaluation ofthermal fatigue cracking of hot work tool steels [J]. International Journal ofFatigue,2004,26(10):1095-1107.
    [12] KONESHLOU M, ASL K M, KHOMAMIZADEH F. Effect of cryogenictreatment on microstructure, mechanical and wear behaviors of AISI H13hotwork tool steel [J]. Cryogenics,2011,51(1):55-61.
    [13] WEI M X, WANG S Q, WANG L, CUI X H, CHEN K M. Effect of temperingconditions on wear resistance in various wear mechanisms of H13steel [J].Tribology International,2011,44(7):898-905.
    [14] KAMAYA M, HARUNA T. Influence of local stress on initiation behavior ofstress corrosion cracking for sensitized304stainless steel [J]. CorrosionScience,2007,49(8):3303-3324.
    [15] KCHAOU M, ELLEUCH R, DESPLANQUES Y, BOIDIN X, DEGALLAIXG. Failure mechanisms of H13die on relation to the forging process–A casestudy of brass gas valves [J]. Engineering Failure Analysis,2010,17(2):403-415.
    [16] STARLING C, BRANCO J. Thermal fatigue of hot work tool steel with hardcoatings [J]. Thin Solid Films,1997,308-309:436-442.
    [17] SRIVASTAVA A, JOSHI V, SHIVPURI R. Computer modeling and predictionof thermal fatigue cracking in die-casting tooling [J]. Wear,2004,256(1):38-43.
    [18] PERSSON A, HOGMARK S, BERGSTR M J. Thermal fatigue cracking ofsurface engineered hot work tool steels [J]. Surface and Coatings Technology,2005,191(2):216-227.
    [19]方健儒,张瑞卿,赵玉谦,姜启川. Cr-Ni-Mo铸造热作模具钢热机械疲劳行为[J].金属热处理,2003,28(6): l3-16.
    [20] NAGAO Y, KNOERR M, ALTAN T. Improvement of tool life in cold forgingof complex automotive parts [J]. Journal of Materials Processing Technology,1994,46(1):73-85.
    [21] LI F L, LI S S, WU Y X, JIANG L W, HAN Y F. Thermal cycle fatiguebehaviors of a single crystal Ni3Al base alloy [J]. Procedia Engineering,2012,27:1141-1149.
    [22] KULKARNI K, SRIVASTAVA A, SHIVPURI R, BHATTACHARYA R,DIXIT S, BHAT D. Thermal cracking behavior of multi-layer LAFADcoatings on nitrided die steels in liquid aluminum processing [J]. Surface andCoatings Technology,2002,149(2):171-178.
    [23] PELLIZZARI M, MOLINARI A, CESCATO D, GHIDINI A. Thermal fatigueproperties of hot-work tool steels [J]. International Journal of Microstructureand Materials Properties,2008,3(2):363-372.
    [24]任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2012.
    [25] KLOB AR D, KOSEC L, KOSEC B, TU EK J. Thermo fatigue cracking ofdie casting dies [J]. Engineering Failure Analysis,2012,20:43-53.
    [26]侯晓霞.提高压铸模用钢H13使用寿命的研究[D].济南:山东大学,2005.
    [27] LI W Z, QU N. Study of high temperature wear resistance of hot work steel formagnesium alloy die casting [J]. Advanced Materials Research,2007,26-28:33-36.
    [28]卫世杰.镁合金压铸模用钢H13表面RE-BNC共渗强化研究[D].山西:太原理工大学,2007.
    [29]朱宗元.探索铝铜合金压铸模选材的计算公式[J].上海金属,1998,20(1):29-33.
    [30] PERSSON A, HOGMARK S, BERGSTR M J. Temperature profiles andconditions for thermal fatigue cracking in brass die casting dies [J]. Journal ofMaterials Processing Technology,2004,152(2):228-236.
    [31] SPERA D A, MOWBRAY D. Thermal Fatigue of Materials and Components:A Symposium [M]. American Society for Testing and Materials,1976.
    [32] XIE C S, SUN P Z, ZHAO J S. An approach to developing a hot-work diesteel for high-temperature application [J]. Materials Science and Engineering:A,1990,124(2):203-209.
    [33] COFFIN L F. A study of the effects of cyclic thermal stresses on a ductilemetal [J]. Trans. ASME,1954,76:931-950.
    [34] MANSON S S. Behavior of materials under conditions of thermal stress [M].Washington: National Advisory Committee for Aeronautics,1953.
    [35] STARKE P, EIFLER D. Fatigue assessment and fatigue life calculation ofmetals on the basis of mechanical hysteresis, temperature, and resistance Data[J]. Materials Testing,2009,51(5):261-268.
    [36] NEU R, SEHITOGLU H. Thermomechanical fatigue, oxidation, and Creep:Part II. Life prediction [J]. Metallurgical Transactions A,1989,20(9):1769-1783.
    [37] SEHITOGLU H. Thermo-mechanical fatigue life prediction methods [J].American Society for Testing and Materials STP,1992,1122:47-76.
    [38] MALPERTU J, REMY L. Influence of test parameters on thethermal-mechanical fatigue behavior of a superalloy [J]. MetallurgicalTransactions A,1990,21(1):389-399.
    [39] DUTTA V, SURESH S, RITCHIE R. Fatigue crack propagation in dual-phasesteels: Effects of ferritic-martensitic microstructures on crack path morphology[J]. Metallurgical Transactions A,1984,15(6):1193-1207.
    [40] SURESH S. Fatigue crack deflection and fracture surface contact:micromechanical models [J]. Metallurgical Transactions A,1985,16(1):249-260.
    [41] ZAIKEN E, RITCHIE R. Effects of microstructure on fatigue crackpropagation and crack closure behavior in aluminum alloy7150[J]. MaterialsScience and Engineering,1985,70:151-160.
    [42] ASWATH P, SURESH S. Microstructural effects on ambient and elevatedtemperature fatigue crack growth in titanium aluminide intermetallics [J].Metallurgical Transactions A,1991,22(4):817-828.
    [43] KARAYAKA M, SEHITOGLU H. Thermomechanical fatigue ofparticulate-reinforced aluminum2xxx-T4[J]. Metallurgical Transactions A,1991,22(3):697-707.
    [44] NISSLEY D M. Thermomechanical fatigue life prediction in gas turbinesuperalloys-A fracture mechanics approach [J]. AIAA Journal,1995,33(6):1114-1120.
    [45] HALFORD G R, MANSON S S. Life prediction of thermal-mechanicalfatigue using strainrange partitioning [J]. American Society for Testing andMaterials STP,1976,612:239-254.
    [46]夏鹏成,陈蕴博,葛学元,王淼辉.热作模具钢热疲劳性能的研究现状与发展趋势[J].金属热处理,2008,33(12):1-6.
    [47]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,1989.
    [48]平修二,郭廷玮,李安定.热应力与热疲劳[M].北京:国防工业出版社,1984.
    [49] PERSSON A, HOGMARK S, BERGSTR M J. Failure modes in field-testedbrass die casting dies [J]. Journal of Materials Processing Technology,2004,148(1):108-118.
    [50] KOVRIGIN V A, STAROKOZHEV B S, YURASOV S A. Effect of oxidizingprocesses on crazing of die-casting molds [J]. Metal Science and HeatTreatment,1980,22(9):688-690.
    [51] PERSSON A. Strain based approach to crack growth and thermal fatigue lifeof hot work tool steels [J]. Scandinavian Journal of Metallurgy,2004,33(1):53-64.
    [52] NORSTR M L, SVENSSON M, HRBERG N. Thermal fatigue behaviour ofhot-work tool steels [J]. Metals Technology,1981,8(1):376-381.
    [53]王赵俊.一种高性能的新型热作模具钢[J].国外金属热处理,2000,21(4):15-19.
    [54]冯晓曾,刘剑虹.3Cr2W8V,4Cr5MoSiVl钢热疲劳机理及热疲劳抗力的差异[J].安徽工学院学报,1988,7(2):1-9.
    [55]李熙章,施占华,周凤云,肖钟义.几种模具钢的热疲劳性能对比研究[J].安徽工学院学报,1988,7(2):10-20.
    [56] TSUJII N, ABE G, FUKAURA K, SUNADA H. Effect of testing atmosphereon low cycle fatigue of hot work tool steel at elevated temperature [J].International Journal of Fatigue,1997,19(1):97-97.
    [57] TSUJII N, ABE G, FUKAURA K, SUNADA H. High temperature low cyclefatigue behaviour of a4.2Cr-2.5Mo-V-Nb hot work tool steel [J]. Journal ofMaterials Science Letters,1996,15(14):1251-1254.
    [58] NORSTROEM L. A New Generation of Steel for die casting dies [J]. DieCasting Engineer,1982,26(5):24-27.
    [59] MEDIRATTA S R, RAMASWAMY V. Low cycle fatigue behaviour ofdual-phase steel with different volume fractions of martensite [J]. InternationalJournal of Fatigue,1985,7(2):101-106.
    [60] SHERMAN A M, DAVIES R G. The effect of martensite content on thefatigue of a dual-phase steel [J]. International Journal of Fatigue,1981,3(1):36-40.
    [61] SURESH S.材料的疲劳[M].北京:国防工业出版社,1999.
    [62] Dieter G E. Mechanical metallurgy [M]. New York: McGraw-Hill,1976.
    [63] MINKOFF I. The physical metallurgy of cast iron [M]. Chichester: John Wileyand Sons,1983.
    [64] MEBARKI N, LAMESLE P, DELAGNES D, LEVAILLANT C, DELMAS F.Relationship between microstructure and mechanical properties of a5%Cr hotwork tool steel [C] Karlstad University,6th International Tooling Conference,2002.
    [65]赵应富,朱心昆,顾昆.热处理对H13钢热疲劳性能影响的研究[J].昆明理工大学学报(理工版),1991,16(5):24-30.
    [66]冯端.金属物理学:相变[M].北京:科学出版社,1990.
    [67]吴晓春,许珞萍,闵永安,张恒华,徐晓.回火温度对4Cr5MoSiV1钢和8407钢热疲劳性能的影响[J].金属热处理,2001,26(4):7-10.
    [68]潘晓峰,周细应. SKD61钢的热处理工艺和性能研究[J].热处理,2009,24(1):38-41.
    [69] CUI X H, WANG S Q, WEI M X, YANG Z R. Wear Characteristics andMechanisms of H13Steel with Various Tempered Structures [J]. Journal ofMaterials Engineering and Performance,2011,20(6):1055-1062.
    [70]丁柏群,曹贵允.60CrMoRE钢热疲劳性能研究[J].钢铁,1999,34(2):38-42.
    [71] BATTACHAR V S. Thermal fatigue behaviour of nickel-base superailoy263sheets [J]. International Journal of Fatigue,1995,17(6):407-413.
    [72]胡心彬,李麟,吴晓春.4Cr5MoSiV1热作模具钢热疲劳中碳化物粗化动力学分析[J].材料热处理学报,2005,26(1):57-62.
    [73] MEDVEDEVA A, BERGTR M J, GUNNARSSON S, ANDERSSON J.High-temperature properties and microstructural stability of hot-work toolsteels [J]. Materials Science and Engineering: A,2009,523(1):39-46.
    [74] Yang Q X, CUI Z Q, LIAO B, YAO M. Effect of rare earth elements ongrowth dynamics of austenite in60CrMnMo steel [J]. Journal of Rare Earths,1999,17(1):46-49.
    [75] KIESSLING R, LANGE N. Non-metallic inclusions in steel [M]. London:Metals Society,1978.
    [76] RAMAGE R M, JATA K, SHIFLET G J, STARKR E A. The effect of phasecontinuity on the fatigue and crack closure behavior of a dual-phase steel [J].Metallurgical Transactions A,1987,18(7):1291-1298.
    [77] JIANG Q C, LIANG H Q, SUI H L. Effect of Y-Ce complex modification onthermal fatigue behavior of high Cr cast hot working die steels [J]. ISIJinternational,2004,44(10):1762-1766.
    [78]常立民,刘建华,于升学,谌岩.稀土元素对低铬半钢热疲劳性能的影响[J].中国稀土学报,2002,20(1):85-87.
    [79] SONG Y P, LUO Q S, CHEN Q D, CHEN Y G. Effects of Re-B modificationon the strength and toughness of30CrMn2Si cast steel [J]. Journal of MaterialsScience,1994,29(6):1492-1496.
    [80] FIOUZDOR V, RAJABI M, NEJATI E, KHOMAMIAZDEH F. Effect ofmicrostructural constituents on the thermal fatigue life of A319aluminumalloy [J]. Materials Science and Engineering: A,2007,454-455(25):528-535.
    [81] ZLEPPING W, DANZER R, Fischer F, Maurer K. Influence of the Structureand of the Temperature Field on the Formation and Propagation of ThermalFatigue Cracks [C] Amsterdam, Fracture Control of Engineering Structures,2013.
    [82]崔昆.中国模具钢现状及发展(I)[J].机械工程材料,2001,25(1):1-5.
    [83]蔡美良,丁惠麟,孟沪龙.新编工模具钢金相热处理[M].北京:机械工业出版社,1998.
    [84] BIROL Y. Thermal Cycling of Yttria-Stabilized Zirconia-Coated Hot WorkTool Steel [J]. Journal of thermal spray technology,2011,20(5):1110-1117.
    [85] ARMAS A F, PETERSEN C, SCHMITT R, AVALOS M, ARMAS I A.Mechanical and microstructural behaviour of isothermally and thermallyfatigued ferritic/martensitic steels [J]. Journal of nuclear materials,2002,307-311:509-513.
    [86] CHANG H J, KAI J J. Effects of temperature on the low cycle fatigue andmicrostructures of HT-9ferritic steel [J]. Journal of nuclear materials,1992,191-194:836-840.
    [87] WILSON D. Precipitation and growth of carbide particles in a cyclicallystrained low-carbon steel [J]. Acta Metallurgica,1973,21(5):673-682.
    [88] KANAAZWA K, YAMAGUCHI K, KOBAYASHI K. Effects of Temperatureand Strain Rate on Low-Cycle Fatigue Behaviour of a12%Cr MartensiticStainless Steel [J]. Journal of the Society of Materials Science,1979,28(308):393-399.
    [89] SEHITOGLU H. Thermomechanical fatigue behaviour of materials [M].American Society for Testing and Materials,1993.
    [90]许珞萍,吴晓春,邵光杰,闵永安.4Cr5MoSiV1,8407钢的热疲劳性能[J].材料工程,2001,(2):3-7.
    [91] JIANG Q C, SUI H L, GUAN Q F. Thermal fatigue behavior of new typehigh-Cr cast hot work die steel [J]. ISIJ international,2004,44(6):1103-1107.
    [92]刘剑虹,冯晓曾,张德福.利用扫描电镜动态研究3Cr2W8V钢热疲劳裂纹的萌生[J].安徽工学院学报,1988,7(2):45-50.
    [93]哈宽富.断裂物理基础[M].北京:科学出版社,2000.
    [94]胡心彬.铌微合金化H13钢的热疲劳行为[D].上海:上海大学,2005.
    [95]隋鹤龙.新型高Cr热作模具钢的组织与性能[D].长春:吉林大学,2006.
    [96]姜祖赓.模具钢[M].北京:冶金工业出版社,1988.
    [97]徐进.模具钢[M].北京:冶金工业出版社,1998.
    [98]丁洁,姜超,陈林.国内外模具钢生产现状及发展[J].山西冶金,2006,(2):7-10.
    [99]邱绍岐,祝桂华.电炉炼钢原理及工艺[M].北京:冶金工业出版社,1996.
    [100]曹方.电渣重熔过程智能控制方法的研究[D].大连:大连理工大学,2010.
    [101]褚作明,陈东,金康.模具材料的选用及其性能优化[J].金属加工(热加工),2009,(15):13-18.
    [102]刘敬龙,金恒阁,刘世坚,祝凯.浅谈炉外精炼技术[J].河南冶金,2004,12(2):7-9.
    [103]刘浏.炉外精炼工艺技术的发展[J].炼钢,2001,17(4):1-7.
    [104]王敦旭.炼钢脱氧工艺及夹杂物控制探讨[J].四川冶金,2012,34(5):9-13.
    [105]王晓晶.钢中非金属夹杂物控制的分析与探讨[J].山西冶金,2006,29(2):21-23.
    [106]董志强,苏建民,赵丽华.炼钢生产过程中氮的主要来源及降低措施[C].石家庄:河北省冶金学会炼钢—连铸技术与学术年会论文集,2009.
    [107]黄春峰.国外新型热作模具钢及其热处理工艺[J].模具技术,2000,(3):89-93.
    [108]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,1999.
    [109] RAD H F, AMADEH A, MORADI H. Wear assessment of plasma nitridedAISI H11steel [J]. Materials&Design,2011,32(5):2635-2643.
    [110] HIG K H. Wear protection of steels by boriding, vanadizing, nitriding,carburising, and hardening [J]. Materials&Design,1980,2(2):83-92.
    [111]罗顺,林义民,唐维学,侯惠君.离子渗氮对H13钢高温摩擦磨损性能的影响[J].热加工工艺,2011,40(4):169-171.
    [112]于忠江,王殿梁,刘杨,郝士明,赵刚. H13钢碳化物析出型渗碳(CDC)处理[J].材料与冶金学报,2002,1(4):311-316.
    [113]王豫.工模具钢的两相区渗碳研究[J].金属热处理学报,1999,20(3):56-60.
    [114] SAKLAKOGLU I E, SAKLAKOGLU N, SHORT K T, COLLINS G A.Characterization of austenitic stainless steel after plasma immersion nitrogenand carbon implantation [J]. Materials&Design,2007,28(5):1657-1663.
    [115] MITTERER C, HOLLER F, STEL F, HEIM D. Application of hard coatingsin aluminium die casting—soldering, erosion and thermal fatigue behaviour [J].Surface and Coatings Technology,2000,125(1):233-239.
    [116] LUGSCHEIDER E, BARIMANI C, GUERREIRO S, BOBZIN K. Corrosiontests of PVD coatings with die lubricant used for Al high-pressure die-castingdies [J]. Surface and Coatings Technology,1998,108-109(10):408-412.
    [117]伊春.异军突起:仿生学的逆袭[J].发明与创新,2012,(12):4-6.
    [118]李旭朝,陈绍平,于雪艳,肖玲.仿生学在涂料开发中的应用[J].现代涂料与涂装,2006,9(7):47-49.
    [119]云舒.走进仿生学的神奇世界[J].今日科苑,2005,(4):16-19.
    [120] WANG C A, HUANG Y, ZAN Q, GUO H, CAI S. Biomimetic structuredesign—a possible approach to change the brittleness of ceramics in nature [J].Materials Science and Engineering: C,2000,11(1):9-12.
    [121]孙久荣,戴振东.仿生学的现状和未来[J].生物物理学报,2007,23(2):109-115.
    [122] LU Y X. Significance and progress of bionics [J]. Bionics Engineering,2004,1(1):1-3.
    [123]金散福.仿生结构在润滑条件下耐磨性能的研究[D].长春:吉林大学,2007.
    [124] Ren L Q. Progress in the bionic study on anti-adhesion and resistancereduction of terrain machines [J]. Science in China Series E: TechnologicalSciences,2009,52(2):273-284.
    [125]齐文溥.仿生设计在高速列车头型,车灯设计中的应用[D].成都:西南交通大学,2012.
    [126]方陵生.神奇的仿海豚潜水艇[J].海洋世界,2004,(8):19-20.
    [127] WANG J J, LAN S L, CHEN G. Experimental study on the turbulent boundarylayer flow over riblets surface [J]. Fluid Dynamics Research,2000,27(4):217-229.
    [128] KOELTZSCH K, DINKELACKER A, GRUNDMAN R. Flow overconvergent and divergent wall riblets [J]. Experiments in Fluids,2002,33(2):346-350.
    [129]刘博.快速鲨鱼盾鳞肋条结构的表征及其减阻仿生学初步研究[D].青岛:青岛科技大学,2008.
    [130] BECHERT D W, BRUSE M, HAGE W. Experiments with three-dimensionalriblets as an idealized model of shark skin [J]. Experiments in Fluids,2000,28(5):403-412.
    [131] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape fromcontamination in biological surfaces [J]. Planta,1997,202(1):1-8.
    [132] NEINHUIS C, BARTHLOTT W. Characterization and distribution ofwater-repellent, self-cleaning plant surfaces [J]. Annals of Botany,1997,79(6):667-677.
    [133] BARTHLOTT W, NEINHUIS C. Special-Lotus Effect: Nature's model forself-cleaning surfaces [J]. International Textile Bulletin-English Edition,2001,47(1):8-13.
    [134] KOCH K, NEINHUIS C, ENSIKAT H J, BARTHLOTT W. Self assembly ofepicuticular waxes on living plant surfaces imaged by atomic forcemicroscopy (AFM)[J]. Journal of Experimental Botany,2004,55(397):711-718.
    [135] JUNIPER B, SOUTHWOOD S R. Insects and the plant surface [M]. London:Edward Arnold,1986.
    [136] JIANG L, ZHAO Y, ZHAI J. A Lotus-Leaf-like Superhydrophobic Surface: APorous Microsphere/Nanofiber Composite Film Prepared byElectrohydrodynamics [J]. Angewandte Chemie,2004,116(33):4438-4441.
    [137] FENG L, LI S, LI H, ZHAI J, SONG Y, JIANG L, ZHU D. Super-hydrophobicsurface of aligned polyacrylonitrile nanofibers [J]. Angewandte Chemie,2002,114(7):1269-1271.
    [138]葛亮.仿生不粘锅粘附性能的研究[D].长春:吉林大学,2005.
    [139]任露泉,丛茜,陈秉聪,吴连奎,李安琪,景德璋.几何非光滑典型生物体表防粘特性的研究[J].农业机械学报,1992,23(2):29-35.
    [140] KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structuresof plants: an inspiration for biomimetics [J]. Progress in Materials Science,2009,54(2):137-178.
    [141]丛茜,任露泉,吴连奎,陈秉聪,李安珙,胡阿林.几何非光滑生物体表形态的分类学研究[J].农业工程学报,1992,8(2):7-12.
    [142]任露泉,陈德兴,胡建国,王连成.仿生推土板减粘降阻机理初探[J].农业工程学报,1990,6(2):13-19.
    [143]任露泉,丛茜.界面粘附中非光滑表面基本特性的研究[J].农业工程学报,1992,8(1):16-22.
    [144]任露泉,陈德兴,胡建国.土壤动物减粘脱土规律初步分析[J].农业工程学报,1990,6(1):15-20.
    [145]任露泉,佟金,李建桥,陈秉聪.松软地面机械仿生理论与技术[J].农业机械学报,2000,31(1):5-9.
    [146]陈秉聪,任露泉,徐晓波,崔相旭,王煜明,张伯兰,葛辽海,金桂萍.土壤粘附仿生研究(二)典型土壤动物体表形态减粘脱土的初步研究[J].农业工程学报,1990,6(2):1-6.
    [147]任露泉,佟金,李建桥,陈秉聪.生物脱附与机械仿生—多学科交叉新技术领域[J].中国机械工程,1999,10(9):984-986.
    [148]程红,孙久荣,李建桥,任露泉.臭蜣螂体壁表面结构及其与减粘脱附功能的关系[J].昆虫学报,2002,45(2):175-181.
    [149]王国林,任露泉.蜣螂体表几何非光滑结构单元分布的分形特性[J].农业机械学报,1997,28(4):5-9.
    [150] REN L Q, DENG S, WANG J, HAN Z. Design principles of the non-smoothsurface of bionic plow moldboard [J]. Journal of Bionics Engineering,2004,1(1):9-19.
    [151]黄君霆.蜘蛛丝研究的动向[J].丝绸,1999,(9):47-49.
    [152]袁辉.蜘蛛丝的研究与开发利用[J].国外纺织技术,2003,(6):7-8.
    [153] MUNOZ E, DALTON A B, COLLINS S, KOZLV M, RAZAL J, COLEMANJ N, KIM B G, EBRON V H, SELVIDGE M, FERRARIS J P. Multifunctionalcarbon nanotube composite fibers [J]. Advanced Engineering Materials,2004,6(10):801-804.
    [154] WU Q, HENRIKSSON M, LIU X, BERGLUND L A. A high strengthnanocomposite based on microcrystalline cellulose and polyurethane [J].Biomacromolecules,2007,8(12):3687-3692.
    [155] YANG X, REN L Q, CONG Q. Experimental study on freezing adhesion ofcoal dusts [J]. Terramechanics,2002,(22):342-345.
    [156] REN L Q, HAN Z, TIAN L, LI J. Characteristics of the non-smooth surfacemorphology of living creatures and its application in agricultural engineering[J]. Design and Nature,2004,6:275-284.
    [157] SUN S Y. REN L Q, TONG J. Design and Applications of Flexible Lining forAnti-adhesion [J]. Transactions of the Chinese Society of AgriculturalEngineering,1996,12(1):65-70.
    [158] REN L Q, LIANG Y. Biological couplings: Classification and characteristicrules [J]. Science in China Series E: Technological Sciences,2009,52(10):2791-2800.
    [159]朱凤武,佟金.土壤深松技术及高效节能仿生研究的发展[J].吉林大学学报(工学版),2003,39(3):732-736.
    [160]王淑杰,任露泉,韩志武,邱兆美,周长海.典型植物叶表面非光滑形态的疏水防黏效应[J].农业工程学报,2005,21(9):16-19.
    [161]弯艳玲,丛茜,金敬福,王晓俊.蜻蜓翅膀微观结构及其润湿性[J].吉林大学学报(工学版),2009,39(3):732-736.
    [162] FANG Y, SUN G, CONG Q, CHEN G H, REN L Q. Effects of methanol onwettability of the non-smooth surface on butterfly wing [J]. Journal of BionicEngineering,2008,5(2):127-133.
    [163] FANG L, LI S, LI Y, LI H, ZHANG L, ZHAI J, SONG Y, LIU B, JIANG L,ZHU D. Super-Hydrophobic Surfaces: From Natural to Artificial [J].Advanced Materials,2002,14(24):1857-1860.
    [164]郭蕴纹.不粘锅形态—材料自洁耦合仿生研究[D].长春:吉林大学,2007.
    [165] REN L Q, QIU Z, HAN Z, GUAN H, WU L. Experimental investigation oncolor variation mechanisms of structural light in Papilio maackii menetriesbutterfly wings [J]. Science in China Series E: Technological Sciences,2007,50(4):430-436.
    [166]韩志武,邬立岩,邱兆美,任露泉.紫斑环蝶鳞片的微结构及其结构色[J].科学通报,2008,53(22):2692-2696.
    [167]邱兆美,韩志武.蝴蝶鳞片微观结构与模型分析[J].农业机械学报,2009,40(11):193-196.
    [168]邬立岩.仿蝴蝶鳞片微结构视频隐身仿生变色材料设计与制备[D].长春:吉林大学,2009.
    [169] ALEXANDER D E. Unusual phase relationships between the forewings andhindwings in flying dragonflies [J]. Journal of Experimental Biology,1984,109(1):379-383.
    [170] WOOTTON R J, PECK J K. Flight adaptations in Palaeozoic Palaeoptera(Insecta)[J]. Biological Reviews,2000,75(1):129-167.
    [171]李秀娟.蜻蜓翅膀功能特性力学机制的仿生研究[D].长春:吉林大学,2013.
    [172]任露泉,李秀娟.蜻蜓翅膀功能特性及其仿生研究进展[J].中国科学:技术科学,2013,43(4):353-367.
    [173] REN L Q, LI X. Functional characteristics of dragonfly wings and its bionicinvestigation progress [J]. Science China Technological Sciences,2013,56(4):884-897.
    [174] ENNOS A R. The effect of size on the optimal shapes of gliding insects andseeds [J]. Journal of Zoology,1989,219(1):61-69.
    [175] HEUER A H, FINK D, LARAIA V, ARIAS J, CALVERT P, KENDALL K,MESSING G, BLACKWELL J, RIEKE P, THOMPSON D. Innovativematerials processing strategies: a biomimetic approach [J]. Science,1992,255(5048):1098-1105.
    [176] JACKSON A, VINCENT J, TURNER R. The mechanical design of nacre [J].Proceedings of the Royal society of London. Series B. Biological sciences,1988,234(1277):415-440.
    [177] TAYLOR J D, LAYMAN M. The mechanical properties of bivalve (Mollusca)shell structures [J]. Palaeontology,1972,15(7):73-87.
    [178] CURREY J. Mechanical properties of mother of pearl in tension [J].Proceedings of the Royal society of London. Series B. Biological sciences,1977,196(1125):443-463.
    [179] CURREY J, BREAR K. Fatigue fracture of mother-of-pearl and itssignificance for predatory techniques [J]. Journal of Zoology,1984,203(4):541-548.
    [180]李恒德,冯庆玲,崔福斋,马春来,李文治,毛传斌.贝壳珍珠层及仿生制备研究[J].清华大学学报(自然科学版),2001,41(4):41-47.
    [181] KAMAT S, SU X, BALLARINI R, HEUER A. Structural basis for the fracturetoughness of the shell of the conch Strombus gigas [J]. Nature,2000,405(6790):1036-1040.
    [182] MAYER G. Rigid biological systems as models for synthetic composites [J].Science,2005,310(5751):1144-1147.
    [183]李秀娟,梁云虹,张志辉,任露泉.杨树叶片的微观结构及拉伸特性[J].吉林大学学报(工学版),2012,42(1):440-443.
    [184]汪矛,郑相如,张志农.叶脉的形态与结构[J].生物学通报,1998,33(8):10-12.
    [185]邸铁男,刘立君,贾志欣,李继强,周宏.热作模具表面裂纹局部激光仿生阻断实验研究[J].精密成形工程,2012,4(3):1-4.
    [186] KWOK C, CHENG F, MAN H. Microstructure and corrosion behavior of lasersurface-melted high-speed steels [J]. Surface and Coatings Technology,2007,202(2):336-348.
    [187] SHIN J C, DOH J M, YOON J K, LEE D Y, KIM J S. Effect of molybde numon the microstructure and wear resistance of cobalt-base Stellite hardfacingalloys [J]. Surface and Coatings Technology,2003,166(2):117-126.
    [188] ALABEEDI K F, ABBOUD J H, BENYOUNIS K Y. Microstructure anderosion resistance enhancement of nodular cast iron by laser melting [J]. Wear,2009,266(9):925-933.
    [189] YIBAS B S, KHALED M, KARATAS C. Corrosion properties andmorphology of laser melted aluminum alloy8022surface [J]. Journal ofMaterials Engineering and Performance,2009,18(1):1-7.
    [190] LU Z, XU Y, HU Z. Low cycle fatigue behavior of a directionally solidifiedcobalt base superalloy [J]. Materials Science and Engineering: A,1999,270(2):162-169.
    [191] AQIDA S N, CALOSSO F, BRABAZON D, NAHER S, ROSSO M. Thermalfatigue properties of laser treated steels [J]. International Journal of MaterialForming,2010,3(1):797-800.
    [192] KHALFALAH I Y, RAHOMA M N, ABBOUD J H, BENYOUNIS K Y.Microstructure and corrosion behavior of austenitic stainless steel treated withlaser [J]. Optics&Laser Technology,2011,43(4):806-813.
    [193] CHEN P Y, Lin A Y M, MCKITTRICK J, MEYERS M A. Structure andmechanical properties of crab exoskeletons [J]. Acta Biomaterialia,2008,4(3):587-596.
    [194] KOCH K, BARTHLOTT W. Superhydrophobic and superhydrophilic plantsurfaces: an inspiration for biomimetic materials [J]. PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and EngineeringSciences,2009,367(1893):1487-1509.
    [195]张欣茹,姜泽毅,张欣欣,柳翠翠,杨怡菲.沙漠甲虫Stenocara与空气取水[J].科技导报,2006,24(2):18-21.
    [196]关振中.激光加工工艺手册[M].北京:中国计量出版社,2007.
    [197] BECHERT D W, BRUSE M, HAGE W, MEYER R. Fluid mechanics ofbiological surfaces and their technological application [J].Naturwissenschaften,2000,87(4):157-171.
    [198]陈莉.激光仿生非光滑表面热作模具的磨料磨损性能研究[D].长春:吉林大学,2007.
    [199] LIN H Q, ZHAO Y G, GAO Z, HAN L. Effects of pulse current stimulation onthe thermal fatigue crack propagation behavior of CHWD steel [J]. MaterialsScience and Engineering: A,2008,478(1):93-100.
    [200] XU J, LI Z Y, ZHU W H, LIU Z L, LIU W J. The comparative study ofthermal fatigue behavior of laser deep penetration spot cladding coating andbrush plating Ni-W-Co coating [J]. Applied Surface Science,2006,253(5):2618-2624.
    [201] CHEN L, REN L Q, ZHAO Y, ZHOU H. The Wear-Resistance of3Cr2W8VSteel with Cave Pit Non-Smooth Surface Processed by Laser [J]. Journal ofBionic Engineering,2008,5:34-39.
    [202] WANG C W, ZHOU H, ZHANG Z H, JING Z J, CONG D L, MENG C, RENL Q. Tensile property of low carbon steel with gridding units [J]. AppliedSurface Science,2013,273:128-134.
    [203] ZHANG Z H, ZHOU H, REN L Q, TONG X, SHAN H, CAO Y. Tensileproperty of H13die steel with convex-shaped biomimetic surface [J]. AppliedSurface Science,2007,253(22):8939-8944.
    [204] TONG X, ZHOU H, ZHANG W, ZHANG Z H, REN L Q. Thermal fatiguebehavior of gray cast iron with striated biomimetic non-smooth surface [J].Journal of Materials Processing Technology,2008,206(1):473-480.
    [205]杨清.脉冲电流对GCr15钢组织及性能的影响[D].长春:吉林大学,2013.
    [206]赵家萍,李保成.高能率热处理[M].北京:兵器工业出版社,1992.
    [207] ZHAO Y G, MA B D, GUO H, MA J, YANG Q, SONG J. Electropulsingstrengthened2GPa boron steel with good ductility [J]. Materials&Design,2013,43:195-199.
    [208] MA B D, ZHAO Y G, BAI H, MA J, ZHANG J, XU X. Gradient distributionof mechanical properties in the high carbon steel induced by the detour effectof the pulse current [J]. Materials&Design,2013,49:168-172.
    [209] AQIDA S N, BRABAZON D, NAHER S. An investigation of phasetransformation and crystallinity in laser surface modified H13steel [J].Applied Physics A,2013,110(3):673-678.
    [210] BIROL Y. Thermal fatigue testing of Stellite6-coated hot work tool steel [J].Materials Science and Engineering: A,2010,527(21):6091-6097.
    [211]刘研.水介质激光仿生蠕墨铸铁热疲劳性和耐磨性的一体化研究[D].长春:吉林大学,2013.
    [212]梁姝博.合金化增强仿生单元体对低碳钢拉伸性能的影响[D].长春:吉林大学,2013.
    [213] LIU Y, ZHOU H, SU H, YANG C Y, CJEMG J, ZHANG P, REN L Q. Effectof electrical pulse treatment on the thermal fatigue resistance of bioniccompacted graphite cast iron processed in water [J]. Materials&Design,2012,39:344-349.
    [214]林化强.脉冲电流对模具钢热影响区组织,力学性能和热疲劳行为的影响[D].长春:吉林大学,2009.
    [215] SJ STR M J, BERGSTR M J. Thermal fatigue in hot-working tools [J].Scandinavian Journal of Metallurgy,2005,34(4):221-231.
    [216]朱蓓蒂,彭英姿,陶曾毅,王爱华. H13模具钢表面激光熔覆钴基合金的研究[J].特殊钢,1994,15(5):38-40.
    [217]严宗达,王洪礼.热应力[M].北京:高等教育出版社,1993.
    [218]佟鑫.激光仿生耦合处理铸铁材料的抗热疲劳性能研究[D].长春:吉林大学,2009.
    [219]张朝晖. ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007.
    [220]朱宗元.我国热作模具性能数据集(续Ⅺ)[J].机械工程材料,2001,25(12):36-40.
    [221] WANG C W, ZHOU H, ZHANG Z H, ZHAO Y, ZHANG P, CONG D L,MENG C, TAN F. Tensile property of a hot work tool steel prepared bybiomimetic coupled laser remelting process with different laser input energies[J]. Applied Surface Science,2012,258(22):8732-8738.
    [222]束德林.金属力学性能[M].北京:机械工业出版社,1999.
    [223] COURTNEY T H.材料力学行为[M].北京:机械工业出版社,2004.
    [224] CHOI S H, KIM K H, OH K H, LEE D N. Tensile deformation behavior ofstainless steel clad aluminum bilayer sheet [J]. Materials Science andEngineering: A,1997,222(2):158-165.
    [225] PARIS P, ERDOGAN F. A cristal analysis of crack proportion laws [J]. Journalof Basic Engineering,1963,85(4):528-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700