用户名: 密码: 验证码:
红柳抗冲蚀特性与机理的仿生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗冲蚀磨损仿生表面的研究,在风机叶片、水泵叶片、涡轮叶片、直升机螺旋桨和飞机发动机等方面具有重要的科学意义和应用价值。本文研究了红柳的抗冲蚀磨损特性和机理,设计加工了抗冲蚀仿生表面试样和离心风机仿生表面叶片,研究了其冲蚀磨损特性,利用红柳内部孔道分布特性,对环氧树脂冲蚀磨损表面进行了仿生自修复的探索性研究。
     采集吉林白城地区和新疆阿克苏地区的红柳,分析了红柳采集地的气候特征;以白城地区采集的红柳为生物原型,通过体视显微镜和逆向工程等分析迎风面和背风面的体表形态差异;通过扫描电镜、傅里叶红外变换光谱和X射线衍射仪等设备分析红柳内部横切面和弦切面的形态、结构特征、化学成分(有机和无机成分)差异;通过万能试验机和纳米压痕仪等设备,测试、计算红柳内部从迎风面到背风面强度、弹性模量、硬度和残余应力等力学性能变化规律;探讨了红柳偏心形态结构的方向性规律,分析了红柳体表形态、内部偏心结构和残余应力之间的关系,揭示了红柳抗冲蚀磨损机理;在Q235钢表面设计并加工了抗冲蚀磨损仿生表面试样和离心风机仿生表面叶片,通过射流式冲蚀测试装置和自行设计、搭建的离心风机叶片冲蚀测试装置,进行了相应的冲蚀磨损性能测试,研究了冲蚀粒子在仿生表面产生的粒子二次冲蚀现象和机理,分析了红柳及其炭化后的内部孔道分布特性,利用其孔道特性,进行了环氧树脂冲蚀磨损表面自修复性能的探索性研究。
     红柳迎风面体表的沟槽形态特征,比背风面具有更好的抗冲蚀磨损性能;迎风面展示出了高硬度、高弹性模量等优异的力学性能,使其具有良好的抗冲蚀磨损性能;迎风面受到风沙冲蚀刺激后,细胞分裂速度快,导致迎风面年轮宽度大于背风面年轮宽度,年轮宽度的增加使迎风面体表的拉应力增大,较大的拉应力促进了体表裂纹的形成,裂纹的形成使体表拉应力降低,应力的降低促进了细胞的快速分裂;仿生表面试样和离心风机仿生表面叶片展示出良好的抗冲蚀磨损性能,与光滑试样相比,在最优试验点抗冲蚀磨损性能分别提高了约26%和29%;红柳内部孔道立体网状互通,利用红柳及其炭化后的孔道,成功进行了环氧树脂冲蚀磨损表面的自修复,为进一步抗冲蚀功能表面的仿生工程应用和自修复功能表面的设计、制备,提供了理论基础和新的思路。
Erosive wear is caused by particles that impinge on a materials surface at an angleof impingement and an impact velocity, and remove material from that surface due tomomentum effects. Helicopter propeller, aircraft engines and centrifugal fan blades areimportant mechanical parts. The tiny particles in the gas stream strike the blade surfacewhen the blades work in the gas–solid media. Erosive wear failure may occur on theblade surface. Erosion not only consumes energy and material, decreases equipmentefficiency, but also accelerates equipment failure and causes frequent componentreplacement, which lead to significant economic losses. Hence, researching on materialerosion, including the mechanism, erosion factors, and optimal selection of materials,plays a significant role in saving the materials, reducing energy consumption, andimproving economic efficiency. The general methods used to reduce erosion wear byresearchers involved enhancing the wear resistance of the material surface using texturemediated wear, friction–resistance surfaces, wear–resistant materials or coating materialswith better wear resistance.
     Biomimetics or bionics, a cutting–edge science, was born in1960s. Biomimetics isan emerging science of the mutual penetration and combination of biology, mathematics,materials science and engineering science. Organism forms a number of special featuresin the long process of evolution. It can effectively solve many major engineeringproblems by learning and imitating these special features. The biological characteristicsand mechanism of erosion resistant of the tamarisk (Tamarix Aphylla) were studied inthis paper. A new approach was to improve the erosion resistance of mechanical partsbased on the idea of biomimetics.
     This paper selects typical desert plants—tamarisk as a biological prototype. Thetamarisk was collected in Baicheng City, Jilin Province and Aksu Prefecture, XinjiangUygur Autonomous Region. The climate of two regions was analyzed. It is provided abasis for research the relationships between wind sand erosion and morphologicalstructure of the tamarisk. The windward side and leeward side surface morphology offive different diameters tamarisk in Baicheng city were analyzed by the OpticalMicroscope and reverse engineering techniques. The ring structure of the transversesection and the structure of the tangential section of the tamarisk were studied by theScanning Electron Microscopy (SEM). The results show that the tamarisk lives in thedrought, high salinity levels and frequent sandstorms environment. The size of thewindward side surface grooves cracks was greater than that of the leeward side. Thenumber of the windward side surface grooves cracks was more than that of the leewardside. The eccentric growth of the tamarisk was a universal phenomenon. The windwardside ring width was greater than that of the leeward side.
     The lignin, cellulose, hemi-cellulose and CaC2O4components of the windward side,transition zone and leeward side of the tamarisk were analyzed by Fourier TransformInfrared Spectroscopy (FTIS), Energy Dispersive Spectroscopy (EDS) and X–raydiffraction (XRD). Their distribution was revealed. Biomechanical properties and theirdistribution of the tamarisk, strength, hardness, modulus of elasticity, toughness andresidual stress, were tested by the Universal Testing Machine (UTM) andNanoindentation. The results show that the lignin, cellulose and CaC2O4of the tamariskwindward side were higher than that of the leeward side. The comprehensivebiomechanical properties of the windward side were superior to that of the leeward side.The tensile stress of the windward side surface was greater than that of the second edgesurface.
     The surface and interior erosion performances of the windward side and leewardside of five different diameters tamarisk were tested by erosion testing device. Thetamarisk in Aksu Prefecture was as evidence. The regular pattern of the directioneccentric structure was analyzed. The relationships of wind-sand erosion, surfacemorphology, internal structure and biomechanical properties were studied. The erosionresistance mechanism of the tamarisk was revealed from the perspective of the surfacemorphology and biomechanics. The results show that the windward side surface andinterior erosion performance of the tamarisk have better erosion resistance propertiesthan that of the leeward side. The wind-sand erosion direction was consistent with the direction of the width ring. The Eccentric growth of the tamarisk was due to rapid celldivision. The directionally eccentric growth rings of tamarisk, which are attributed toreduced stress and accelerated cell division, promote the formation of surface cracks. Thewindward rings are more extensive than the leeward side rings. The windward surfacesare more prone to cracks.
     The three kinds of biomimetic models, square groove, V–shaped groove andU–shaped groove, were established on the basis of the surface morphology of thetamarisk. The biomimetic surfaces were designed and processed on the Q235steelsurface. And the erosion performance of the biomimetic samples was tested. Thebiomimetic surface erosion morphology and surface micro-strain were analyzed andcalculated by SEM and XRD. The secondary erosion mechanism in the biomimeticsurface was revealed. The results show that the optimum design parameters ofbiomimetic surfaces were as follows: V–shaped groove, groove size of3mm, groovedistance of2mm. Compared with smooth sample, the best combination of biomimeticsample could effectively improve erosion resistance performance, which increased byabout26%. The presence of the rib of the biomimetic groove surface increased erosivewear of the surface in a distal position with respect to the rib itself. Some erosionparticles rebounded backwards after impacting on the ribs. Then, they impacted on thedistal position.
     The erosion characteristic of the impeller blades of centrifugal fan was designed andprocessedon the basis of the results of biomimetic erosion resistance surface samples test.The biomimetic surface blades were tested by the centrifugal fan blade surface erosivewear testing device. The experimental scheme was arranged according to the experimentoptimized technology. The biomimetic blade surface morphology, size and spacing forthe influence of erosive wear characteristic were analyzed by the range analysis and theregression analysis. The results show that the bionic blades of centrifugal fan had a gooderosion resistance performance. The optimum design parameters of bionic blades were asfollows: V–groove surface, groove size of4mm, groove distance of2mm. The bionicblades could effectively improve erosion resistance performance of the impeller, whichincreased by about29%. The regression equation for V–shaped groove isy_V=74.84-1.83z_2+4.33z_3Where groove size z2, groove distance z3.
     The distribution of the large–diameter cells and the micro cells in the cell wall of the transverse section and tangential section of the tamarisk and its charring was studied. Theepoxy erosive surface self-healing model using the channel of the tamarisk wasestablished. The Liquid epoxy resin flowing characteristics inside the tamarisk channelwere analyzed. The biomimetic self-healing properties of the epoxy eroded surface werestudied. The results show that the epoxy eroded surface was successful healing by usingchannel of the tamarisk and its charring. The epoxy had better flowing properties of thecharring than that of the tamarisk. It provides the new ideas and methods to designself-repair materials.
引文
[1] PalDey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti, Al)N:a review [J]. Materials Science and Engineering A,2003,342(1-2):58-79.
    [2] Oomen-Hurst S, Abad M D, Khanna M, et al. Comparative wear behavior studies ofcoated inserts during milling of NiCrMoV steel [J]. Tribology International,2012,53:115-123.
    [3] Girish R D, Paul C P, Gandhi B K, et al. Erosion wear behavior of laser clad surfacesof low carbon austenitic steel [J]. Wear,2009,266(9-10):975-987.
    [4] Kato K. Industrial tribology in the past and future [J]. Tribology Online,2011,6(1):1-9.
    [5]谢敬佩,李卫,宋延沛,等.耐磨铸钢及熔炼[M].北京:机械工业出版社,2003.
    [6] Finnie I. Some reflections on the past and future of erosion [J]. Wear,1995,186-187:1-10.
    [7] Patnaik A, Satapathy A, Chand N, et al. Solid particle erosion wear characteristics offiber and particulate filled polymer composites: a review [J]. Wear,2010,268(1-2):249-263.
    [8]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312.
    [9] Mazur Z. Numerical3D simulation of the erosion due to solid particle impact in themain stop valve of a steam turbine [J]. Applied Thermal Engineering,2004,24(13):1877-1891.
    [10]Xinba Y, Kazumichi S, Hideto M, et al. Erosive wear characteristics of spheroidalcarbides cast iron [J]. Wear,2008,264(11-12):947-957.
    [11]Harsha A P, Bhaskar D K. Solid particle erosion behaviour of ferrous andnon-ferrous materials and correlation of erosion data with erosion models [J].Materials&Design,2008,29(9):1745-1754.
    [12]http://news.ifeng.com/mil/jsdg/detail_2010_11/01/2962157_4.shtml.
    [13]李春生.春季飞行当心风沙天气[N].中国气象报,2007-04-03.
    [14]Yang Q, Seo D Y, Zhao L R, et al. Erosion resistance performance of magnetronsputtering deposited TiAlN coatings [J]. Surface and Coatings Technology,2004,188-189:168-173.
    [15]吴小梅,李伟光,陆峰.固体颗粒冲蚀对钛合金ZrN涂层抗冲蚀性能的影响[J].航空材料学报,2006,26(6):26-29.
    [16]吴小梅,李伟光,陆峰.压气机叶片抗冲蚀涂层的研究及应用进展[J].材料保护,2007,40(10):54-57.
    [17]李春生.春季大风频繁,勿忘飞行安全[N].中国气象报,2004-2-19.
    [18]Harsha A, Jha S K. Erosive wear studies of epoxy-based composites at normalincidence [J]. Wear,2008,265(7-8):1129-1135.
    [19]Robert W L, Jacques X B. State-of-the-art review of erosion modeling in fluid solidssystems [J]. Progress in Energy and Combustion Science,2002,28(6):543-602.
    [20]Barkoula N M, Karger-Kocsis J. Review processes and influencing parameters of thesolid particle erosion of polymers and their composites [J]. Journal of MaterialsScience,2002,37(18):3807-3820.
    [21]O'Flynn D J, Bingley M S, Bradley M S A, et al. Amodel to predict the solid particleerosion rate of metals and its assessment using heat-treated steels [J]. Wear,2001,248(1-2):162-177.
    [22]Foley T, Levy A. The erosion of hea-treated steels [J]. Wear,1983,91(1):45-64.
    [23]朱韬,王树奇,纪秀林.0Cr17Ni7Al沉淀硬化不锈钢的冲蚀磨损性能研究[J].钢铁钒钛,2013,34(5):1-8.
    [24]Balan K P, Reddy AV, Vydehi J, et al. The influence of microstructure on the erosionbehaviour of cast irons [J]. Wear,1991,145(2):283-296.
    [25]McCabe L P, Sargent G A, Conrad H. Effect of microstructure on the erosion of steelby solid particles [J]. Wear,1985,105(3):257-277.
    [26]赵斌,萧国华,梁晨.27SiMn钢板条马氏体冲蚀磨损性能研究[J].热加工工艺,2013,42(12):223-224.
    [27]Li M X, He Y Z, Sun G X. Microstructure and wear resistance of laser cladcobalt-based alloy multi-layer coatings [J]. Applied Surface Science,2004,230(1):201-206.
    [28]Mann B S. High-energy particle impact wear resistance of hard coatings and theirapplication in hydroturbines [J]. Wear,2000,237(1):140-146.
    [29]Gachon Y, Ienny P, Forner A, et al. Erosion by solid particles of W/W-N multilayercoatings obtained by PVD process [J]. Surface and Coatings Technology,1999,113(1):140-148.
    [30]杨丽,周益春,齐莎莎.热障涂层的冲蚀破坏机理研究进展[J].力学进展,2012,42(6):704-721.
    [31]陈守良,刘俊友,刘芳,等.铁硅二元合金渗碳层的抗浆料冲蚀磨损性能研究[J].热加工工艺,2013,42(10):148-157.
    [32]Matikainen V, Niemi K, Koivuluoto H, et al. Abrasion, erosion and cavitationerosion wear properties of thermally sprayed alumina based coatings [J]. Coatings,2014,4(1):18-36.
    [33]Barkoula N M, Karger-Kocsis J. Effects of fibre content and relativefibre-orientation on the solid particle erosion of GF/PP composites [J]. Wear,2002,252(1):80-87.
    [34]Barkoula N M, Papanicolaou G C, Karger-Kocsis J. Prediction of the residual tensilestrengths of carbon-fiber epoxy laminates with and without interleaves after solidparticle erosion [J]. Composites Science and Technology,2002,62(1):121-130.
    [35]Mehmet B, Huseyin I. Application of Taguchi method on optimization of testingparameters for erosion of glass fiber reinforced epoxy composite materials [J].Materials&Design,2013,46:706-712.
    [36]邢志国,周新远,吕振林,等. SiC含量对环氧/SiC复合材料冲蚀磨损性能的影响[J].材料工程,2013,6:67-71.
    [37]Srimant K M, Sandhyarani B, Alok S. A study on processing, characterization anderosion wear behavior of silicon carbide particle filled ZA-27metal matrixcomposites [J]. Materials&Design,2014,55:958-965.
    [38]Hussainova I. Microstructure and erosive wear in ceramic-based composites [J].Wear,2005,258(1-4):357-365.
    [39]Lu Y X. Significance and progress of bionics [J]. Journal of Bionic Engineering,2004,1(1):1-3.
    [40]Ren L Q, Liang Y H. Biological couplings: function, characteristics andimplementation mode [J]. Science China Technological Sciences,2010,53(2):379-387.
    [41]Fratzl P, Weiner S. Bio-inspired materials-mining the old literature for new ideas [J].Advanced Materials,2010,22(41):4547-4550.
    [42]Ying J Y. Biocomposites: cells made of silica [J]. Nature Nanotechnology,2012,7(12):777-778.
    [43]Ren L Q, Wang Y P, Li J Q, et al. Flexible unsmoothed cuticles of soil animals andtheir characteristics of reducing adhesion and resistance [J]. Chinese ScienceBulletin,1998,43(2):166-169.
    [44]Ren L Q, Liang Y H. Biological couplings: classification and characteristic rules [J].Science in China Series E: Technological Sciences,2009,52(10):2791-2800.
    [45]袁训来,兰培胜,高虹等.神秘的生命起源[M].中国人民大学出版社,2004.
    [46]路甬祥.仿生学的意义与发展[J].科学中国人,2004,4:23-24.
    [47]Chen P Y, McKittrick J, Meyers M A. Biological materials: functional adaptationsand bioinspired designs [J]. Progress in Materials Science,2012,57(8):1492-1704.
    [48]Meyers M A, Chen P Y, Lin A Y M, et al. Biological materials: structure andmechanical properties [J]. Progress in Materials Science,2008,53(1):1-206.
    [49]Nosonovsky M, Bhushan B. Green tribology: principles, research areas andchallenges [J]. Philosophical Transactions of the Royal Society A-MathematicalPhysical and Engineering Sciences,2010,368(1929):4677-4694.
    [50]Nosonovsky M, Bhushan B. Thermodynamics of surface degradation,self-organization and self-healing for biomimetic surfaces [J]. PhilosophicalTransactions of the Royal Society A-Mathematical Physical and EngineeringSciences,2009,367(1893):1607-1627.
    [51]Nosonovsky M, Bhushan B. Multiscale friction mechanisms and hierarchicalsurfaces in nano-and bio-tribology [J]. Materials Science and Engineering: R:Reports,2007,58(3-5):162-193.
    [52]Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces forsuperhydrophobicity, self-cleaning, low adhesion, and drag reduction [J]. Progress inMaterials Science,2011,56:1-108.
    [53]任露泉,梁云虹.耦合仿生学[M].科学出版社,2012.
    [54]Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction ofterrain machines [J]. Science in China Series E: Technological Sciences,2009,52(2):273-284.
    [55]张成春,任露泉,王晶,等.旋成体仿生凹坑表面流场控制减阻仿真分析[J].兵工学报,2009,8:1066-1072.
    [56]丛茜,封云,任露泉.仿生非光滑沟槽形状对减阻效果的影响[J].水动力学研究与进展A辑,2006,21(2):232-238.
    [57]戴振东,佟金,任露泉.仿生摩擦学研究及发展[J].科学通报,2007,51(20):2353-2359.
    [58]任露泉,陈德兴,胡建国,等.仿生推土板减粘降阻机理初探[J].农业工程学报,1990,6(2):13-20.
    [59]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学E辑,2009,38(9):1353-1364.
    [60]任露泉.生物表面仿生工程及其应用研究进展与展望[C].第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集,2006.
    [61]王淑杰,任露泉,韩志武,等.典型生物非光滑理论及其仿生应用[J].农机化研究,2005,1:209-210.
    [62]弯艳玲,丛茜,齐迎春,等.凹槽形仿生针头减阻试验及机理分析[J].中国机械工程,2013,24(007):922-925.
    [63]张琰,黄河,任露泉.挖掘机仿生斗齿土壤切削试验与减阻机理研究[J].农业机械学报,2013,44(001):258-261.
    [64]Walsh M J. Riblets as a viscous drag reduction technique [J]. AIAA Journal,1983,21(4):485-486.
    [65]刘庆萍.水-固界面系统二元仿生耦合减阻研究[D].长春:吉林大学博士学位论文,2013.
    [66]Ball P. Engineering shark skin and other solutions [J]. Nature,1999,400(6744):507-509.
    [67]张琰.蝼蛄触土部位生物耦合特性研究[D].长春:吉林大学硕士学位论文,2008.
    [68]杨卓娟.凹坑形仿生非光滑轧辊耐磨性研究[D].长春:吉林大学博士学位论文,2006.
    [69]杨卓娟,张启光.仿生非光滑耐磨表面与激光毛化轧辊耐磨技术[J].吉林工程技术师范学院学报工程技术版,2003,9:1-3.
    [70]韩志武,许小侠,任露泉.凹坑形非光滑表面微观摩擦磨损试验回归分析[J].摩擦学学报,2006,25(6):578-582.
    [71]杨卓娟,韩志武,任露泉.激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性研究[J].摩擦学学报,2005,25(4):374-378.
    [72]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J].摩擦学学报,2004,24(4):289-293.
    [73]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [74]M Srinivasarao. Nano-optics in the biological world: beetles, butterflies, birds, andmoths [J]. Chemical Reviews,1999,99(7):1935-1962.
    [75]Zi J, Yu X D, Li Y Z, et al. Coloration strategies in peacock feathers [J]. Proceedingsof the National Academy of Sciences,2003,100(22):12576-12578.
    [76]刘峰.甲虫的结构色与结构变色研究[D].上海:复旦大学博士学位论文,2008.
    [77]Han Z W, Wu L Y, Qiu Z M, et al. Microstructure and structural color in wing scalesof butterfly Thaumantis diores [J]. Chinese Science Bulletin,2009,54(4):535-540.
    [78]Han Z W, Wu L Y, Qiu Z M, et al. Structural colour in butterfly Apatura Ilia scalesand the microstructure simulation of photonic crystal [J]. Journal of BionicEngineering,2008,5S:14-19.
    [79]Wu L Y, Han Z W, Qiu Z M, et al. The microstructures of butterfly wing scales innortheast of China [J]. Journal of Bionic Engineering,2007,4(1):47-52.
    [80]Chung K, Yu S, Heo C J, et al. Flexible, angle-independent, structural colorreflectors inspired by Morpho Butterfly wings [J]. Advanced Materials,2012,24(18):2375-2379.
    [81]Khannoon E R, Endlein T, Russell A P, et al. Experimental evidence forfriction-enhancing integumentary modifications of chameleons and associatedfunctional and evolutionary implications [J]. Proceedings of the Royal Society B:Biological Sciences,2014,281(1775):20132334.
    [82]Yamamoto Y, Inui M, Koguchi H. Adhesion analysis considering van der Waalsforce in a nanosized region using the boundary element method [J]. TribologyLetters,2014,53(1):225-235.
    [83]Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature,2000,405(6787):681-685.
    [84]Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Waals adhesion in geckosetae [J]. Proceedings of the National Academy of Sciences,2002,99(19):12252-12256.
    [85]Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachmentdevices [J]. Proceedings of the National Academy of Sciences,2003,100(19):10603-10606.
    [86]Tsai P C, Jeng Y R, Mao C P, et al. Effects of surface morphology, size effect andwettability on interfacial adhesion of carbon nanotube arrays [J]. Thin Solid Films,2013,545:401-407.
    [87]Tian Y, Wan J, Pesika N, et al. Bridging nanocontacts to macroscale gecko adhesionby sliding soft lamellar skin supported setal array [J]. Scientific Reports,2013,3(1382):1-6.
    [88]Li J, Jing Z J, Yang Y X, et al. Reversible low adhesive to high adhesivesuperhydrophobicity transition on ZnO nanoparticle surfaces [J]. Applied SurfaceScience,2014,2014(289):1-5.
    [89]Hossfeld C K, Schneider A S, Arzt E, et al. Detachment behavior ofmushroom-shaped fibrillar adhesive surfaces in peel testing [J]. Langmuir,2013,29(49):15394-15404.
    [90]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta,1997,202(1):1-8.
    [91]Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces from natural to artificial [J].Advanced Materials,2002,14(24):1857-1860.
    [92]Blossey R. Self-cleaning surfaces—virtual realities [J]. Nature Materials,2003,2(5):301-306.
    [93]Liu K, Du J, Wu J, et al. Superhydrophobic gecko feet with high adhesive forcestowards water and their bio-inspired materials [J]. Nanoscale,2012,4(3):768-772.
    [94]Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration[J]. Nano Today,2011,6(2):155-175.
    [95]Gao X, Jiang L. Water-repellent legs of water striders [J]. Nature,2004,6(2):155-175.
    [96]Yao X, Song Y, Jiang L. Applications of bio-inspired special wettable surfaces [J].Advanced Materials,2011,23(6):719-734.
    [97]Miljkovic N, Preston D J, Enright R, et al. Electric-field-enhanced condensation onsuperhydrophobic nanostructured surfaces [J]. Acs Nano,2013,7(12):11043-11054.
    [98]Bixler G D, Bhushan B. Rice-and butterfly-wing effect inspired self-cleaning andlow drag micro/nanopatterned surfaces in water, oil, and air flow [J]. Nanoscale,2014,6(1):76-96.
    [99]Tao M, Xue L, Liu F, et al. An intelligent superwetting PVDF membrane showingswitchable transport performance for oil/water separation [J]. Advanced Materials,2014, DOI:10.1002/adma.201305112.
    [100] Liu Y, Liu J, Li S, et al. Fabrication of biomimetic super-hydrophobic surface onaluminum alloy [J]. Journal of Materials Science,2014,49(4):1624-1629.
    [101] Baumgartner W, Saxe F, Weth A, et al. The sandfish's skin: morphology, chemistryand reconstruction [J]. Journal of Bionic Engineering,2007,4(1):1-9.
    [102] Rechenberg I, El Khyari A R. The sandskink of the Sahara-a model for frictionand wear reduction [C]. Proceedings of the International Conference of BionicEngineering ICBE,2006,213-216.
    [103] http://www.bionik.tu-berlin.de/.
    [104]高峰,黄河,任露泉.新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验[J].吉林大学学报(工学版),2008,38(3):586-590.
    [105]高峰,任露泉,黄河,等.沙漠蜥蜴体表抗冲蚀磨损的生物耦合特性[J].农业机械学报,2009,40(1):180-183.
    [106] Huang H, Zhang Y, Ren L Q. Particle erosion resistance of bionic samples inspiredfrom skin structure of desert lizard, Laudakin stoliczkana [J]. Journal of BionicEngineering,2012,9(4):465-469.
    [107] Han Z W, Zhang J Q, Ge C, et al. Erosion resistance of bionic functional surfacesinspired from desert scorpions [J]. Langmuir,2012,28(5):2914-2921.
    [108] Han Z W, Zhang J Q, Ge C, et al. Anti-erosion function in animals and itsbiomimetic application [J]. Journal of Bionic Engineering,2010,7(S):50-58.
    [109] Zhang J Q, Han Z W, Ma R F, et al. Scorpion back inspiring sand-resistant surfaces[J]. Journal of Central South University,2013,20(4):877-888.
    [110] Zhang J Q, Han Z W, Yin W, et al. Numerical experiment of the solid particleerosion of bionic configuration blade of centrifugal fan [J]. Acta Metallurgica Sinica(English Letters),2013,26(1):16-24.
    [111]戈超.离心风机叶片抗冲蚀磨损仿生研究[D].长春:吉林大学硕士学位论文,2011.
    [112]张道远,尹林克,潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256.
    [113]刘景涛,郑明倩.华北北部黑风暴的气候特征[J].气象,1998,24(2):39-44.
    [114]王学强,董春艳,杜爱萍,等.1961-2009年锡林郭勒盟气温突变特征分析[J].内蒙古气象,2011,1:22-24.
    [115]姚正毅,王涛,周俐,等.近40年阿拉善高原大风天气时空分布特征[J].干旱区地理,2006,29(2):207-212.
    [116]蒋进,高海峰.柽柳属植物抗旱性排序研究[J].干旱区研究,1992,9(4):41-45.
    [117]刘家琼,蒲锦春,刘新民.我国沙漠中部地区主要不同类型植物的水分和旱生结构的比较研究[J].植物学报,1987,29(6):662-673.
    [118]张道远,杨维康,潘伯荣,等.刚毛柽柳群落特征及其生态、生理适应性[J].中国沙漠,2003,23(4):446-451.
    [119] Zhu J H, Li J S. A study on desertification of west Jilin province based on remotesensing and GIS techniques [J]. Chinese Geographical Science,2002,12(1):73-79.
    [120]裘善文,张柏,王志春.吉林省西部土地荒漠化现状,特征与治理途径研究[J].地理科学,2003,23(2):188-192.
    [121] http://www.fk.gov.cn/10033/10033/00019/2006/25113.htm.
    [122]徐海量,陈亚宁.塔里木盆地风沙灾害危险性评价[J].自然灾害学报,2003,12(2):35-39.
    [123]张瑞波,魏文寿,袁玉江,等.树轮记录的历史时期阿克苏河流域沙尘天气变化[J].中国沙漠,2010,30(5):1040-1046.
    [124] Weinkamer R, Fratzl P. Mechanical adaptation of biological materials-theexamples of bone and wood [J]. Materials Science and Engineering: C,2011,31(6):1164-1173.
    [125] Fratzl P, Weinkamer R. Nature's hierarchical materials [J]. Progress in MaterialsScience,2007,52(8):1263-1334.
    [126] Stokes A, Berthier S. Irregular heartwood formation in Pinus pinaster Ait. is relatedto eccentric, radial, stem growth [J]. Forest Ecology and Management,2000,135(1):115-121.
    [127] Telewski F W. Is windswept tree growth negative thigmotropism?[J]. PlantScience,2012,184:20-28.
    [128] Malik I, Wistuba M. Dendrochronological methods for reconstructing massmovements—an example of landslide activity analysis using tree-ring eccentricity[J]. Geochronometria,2012,39(3):180-196.
    [129] Berthier S, Kokutse A D, Stokes A, et al. Irregular heartwood formation inmaritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulictree functioning [J]. Annals of Botany,2001,87(1):19-25.
    [130] Wardrop A B, Davies G W. The nature of reaction wood. VIII. the structure anddifferentiation of compression wood [J]. Australian Journal of Botany,1964,12(1):24-38.
    [131]李坚,王清文,方桂珍,等.木材波谱学[M].北京:科学出版社,2003.
    [132] Várhegyi G, Szabó P, Till F, et al. TG, TG-MS, and FTIR characterization ofhigh-yield biomass charcoals [J]. Energy&Fuels,1998,12(5):969-974.
    [133]徐卫林.红外技术与纺织材料[M].北京:化学工业出版社,2005.
    [134]陈红,费本华,程海涛,等.不同化学处理方法对竹纤维化学成分的影响[J].林产工业,2013,40(3):49-51.
    [135] Schwanninger M, Rodrigues J C, Pereira H, et al. Effects of short-time vibratoryball milling on the shape of FT-IR spectra of wood and cellulose [J]. VibrationalSpectroscopy,2004,36(1):23-40.
    [136] kerholm M, Salmén L. The oriented structure of lignin and its viscoelasticproperties studied by static and dynamic FT-IR spectroscopy [J]. Holzforschung,2003,57(5):459-465.
    [137] Pandey K K, Pitman AJ. FTIR studies of the changes in wood chemistry followingdecay by brown-rot and white-rot fungi [J]. International Biodeterioration&Biodegradation,2003,52(3):151-160.
    [138]张双燕.化学成分对木材细胞壁力学性能影响的研究[D].北京:中国林业科学研究院博士学位论文,2001.
    [139]邹华红,胡坤,桂柳成,等.一水草酸钙热重-差热综合热分析的最优化表征方法[J].广西科学院学报,2011,27(1):17-21.
    [140] Finnie I. Erosion of surfaces by solid particles [J]. Wear,1960,3(2):87-103.
    [141] Loubet J L, Georges J M, Marchesini O, et al. Vickers indentation curves ofmagnesium oxide (MgO)[J]. Journal of Tribology,1984,106(1):43-48.
    [142] Doerner M F, Nix W D. A method for interpreting the data from depth-sensingindentation instruments [J]. Journal of Materials Research,1986,1(04):601-609.
    [143] Hehn L, Zheng C, Mecholsky Jr J J, et al. Measurement of residual stresses inAl2O3/Ni laminated composites using an X-ray diffraction technique [J]. Journal ofMaterials Science,1995,30(5):1277-1282.
    [144] Gupta B P. Hole-drilling technique: modifications in the analysis of residualstresses [J]. Experimental Mechanics,1973,13(1):45-48.
    [145] Treuting R G, Read Jr W T. Amechanical determination of biaxial residual stress insheet materials [J]. Journal ofApplied Physics,2004,22(2):130-134.
    [146] Marshall D B, Lawn B R. An indentation technique for measuring stresses intempered glass surfaces [J]. Journal of the American Ceramic Society,1977,60(1-2):86-87.
    [147] Pethicai J B, Hutchings R, Oliver W C. Hardness measurement at penetrationdepths as small as20nm [J]. Philosophical Magazine A,1983,48(4):593-606.
    [148] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus byinstrumented indentation: advances in understanding and refinements tomethodology [J]. Journal of Materials Research,2004,19(1):3-20.
    [149] Suresh S, Giannakopoulos A E. A new method for estimating residual stresses byinstrumented sharp indentation [J]. Acta Materialia,1998,46(16):5755-5767.
    [150] Oliver W C, Pharr G M. An improved technique for determining hardness andelastic modulus using load and displacement sensing indentation experiments [J].Journal of Materials Research,1992,7(06):1564-1583.
    [151] Khan M K, Fitzpatrick M E, Hainsworth S V, et al. Effect of residual stress on thenanoindentation response of aerospace aluminium alloys [J]. ComputationalMaterials Science,2011,50(10):2967-2976.
    [152] Baskin T. Anisotropic expansion of the plant cell wall [J]. Annual Review of Celland Developmental Biology,2005,21:203-222.
    [153] Cui K, He C, Zhang J, et al. Temporal and spatial profiling of internodeelongation-associated protein expression in rapidly growing culms of bamboo [J].Journal of Proteome Research,2012,11(4):2492-2507.
    [154] Song X Q, Lin J Z, Zhao J F, et al. Research on reducing erosion by adding ribs onthe wall in particulate two-phase flows [J]. Wear,1996,193(1):1-7.
    [155] Lin J, Shen L, Zhou Z. The effect of coherent vortex structure in the particulatetwo-phase boundary layer on erosion [J]. Wear,2000,241(1):10-16.
    [156] Ding L, Shi W, Luo H. Numerical simulation of viscous flow over non-smoothsurfaces [J]. Computers&Mathematics with Applications,2011,61(12):3703-3710.
    [157] Liu Y, Cui J, Li W Z, et al. Effect of surface microstructure on microchannel heattransfer performance [J]. Journal of Heat Transfer,2011,133(12):124501.
    [158] Jin T, Luo K, Wu F, et al. Numerical investigation of erosion on a staggered tubebank by particle laden flows with immersed boundary method [J]. Applied ThermalEngineering,2014,62(2):444-454.
    [159] Pathak M, Khan M K. Inter-phase slip velocity and turbulence characteristics ofmicro particles in an obstructed two-phase flow [J]. Environmental Fluid Mechanics,2013,13(4):371-388.
    [160] McCafferty P. Instant petrified wood [J]. Popular Science,1992,10:56-57.
    [161]彭海源,崔永志,孙铁华,等.速生杨木增硬处理初报[J].东北林学院学报,1985,13(1):144-147.
    [162] Onoda Y, Anten N P R. Challenges to understand plant responses to wind [J]. PlantSignaling&Behavior,2011,6(7):1057-1059.
    [163] Anten N P R, Alcalá-Herrera R, Schieving F, et al. Wind and mechanical stimulidifferentially affect leaf traits in Plantago major [J]. New Phytologist,2010,188(2):554-564.
    [164] Tilly G P. Atwo stage mechanism of ductile erosion [J]. Wear,1973,23:87-96.
    [165] Baig A A, Fox J L, Young R A, et al. Relationships among carbonated apatitesolubility, crystallite size, and microstrain parameters [J]. Calcified TissueInternational,1999,64(5):437-449.
    [166] Jiang H G, Rühle M, Lavernia E J. On the applicability of the X-ray diffraction lineprofile analysis in extracting grain size and microstrain in nanocrystalline materials[J]. Journal of Materials Research,1999,14(02):549-559.
    [167] Klug H P, Alexander L E. X-ray diffraction procedures for polycrystalline andamorphous materials [M]. New York, John Wiley&Sons,2n edn,1974.
    [168] Murphy E B, Wudl F. The world of smart healable materials [J]. Progress inPolymer Science,2010,35(1):223-251.
    [169] Koch K, Bhushan B, Ensikat H J, et al. Self-healing of voids in the wax coating onplant surfaces [J]. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2009,367(1894):1673-1688.
    [170] Nosonovsky M, Bhushan B. Surface self-organization: from wear to self-healing inbiological and technical surfaces [J]. Applied Surface Science,2010,256(12):3982-3987.
    [171] Trask R S, Bond I P. Biomimetic self-healing of advanced composite structuresusing hollow glass fibres [J]. Smart Materials and Structures,2006,15(3):704-710.
    [172] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymercomposites [J]. Nature,2001,409(6822):749-797.
    [173] Toohey K S, Sottos N R, Lewis J A, et al. Self-healing materials withmicrovascular networks [J]. Nature Materials,2007,6(8):581-585.
    [174] Wojtecki R J, Meador M A, Rowan S J. Using the dynamic bond to accessmacroscopically responsive structurally dynamic polymers [J]. Nature Materials,2011,10(1):14-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700