用户名: 密码: 验证码:
奥氏体不锈钢热变形过程中的塑性失稳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢在热变形过程中会发生不均匀应变,这种应变集中在某一个区域会引起应变局部化,造成工件表面的局部几何失稳,甚至开裂。本文以Cr17Mn6Ni4Cu2N、Cr15Mn9Cu2Ni1N和304奥氏体不锈钢为研究对象,首先利用高温拉伸实验和高温拉伸卸载实验,结合用户自定义奥氏体不锈钢热变形材料模型的有限元分析方法,研究了高温变形条件下,奥氏体不锈钢的拉伸失稳特征,以及表面应变局部化的发展、演变机制;然后,利用改变变形温度、应变速率和应力状态的热变形实验,研究变形条件对几何失稳以及应变局部化演变的影响规律。认识了高温拉伸奥氏体不锈钢的几何失稳过程及机制;获得了不同应力状态下奥氏体不锈钢的几何失稳轨迹;提出了高温变形应变局部化的演变模型;确定了与变形条件相关的材料参数与几何失稳应变的关系,给出了降低热变形应变局部化的加工条件。
     高温变形条件下,奥氏体不锈钢的应变速率敏感性增大,使其在单轴拉伸变形过程中表现出了载荷失稳与几何失稳不同时发生的现象。同样,也因为应变速率敏感性的作用,载荷失稳后,试样上形成的应变速率增大,变形抗力增加,抑制了潜在几何失稳区的进一步发展,变形转移向其它位置,维持了试样的均匀变形,延迟了几何失稳的发生。
     几何失稳的发生与应变局部化区的最大长度Lmax和最大深度dmax有关。950℃拉伸试样几何失稳时的Lmax和dmaz分别达到9.8mmm和0.56mmm;1150℃拉伸试样几何失稳的Lmaz和dmaz分别达到11.1mm和0.82mm。受变形量和变形温度的影响,高温拉伸变形奥氏体不锈钢表面应变局部化区的数目、最大长度以及最大深度都在不断地变化。变形量增加,其数目先增大后减小,最大长度Lmax和最大深度dmax都增大;变形温度降低,其数目减少,但最大长度Lmax增大,最大深度dmax减小高温拉伸变形奥氏体不锈钢表面存在“活跃”的和“休眠”的两种应变局部化区。应变局部化的演变,实质上是就是“活跃”区分裂、合并邻近“休眠”区的过程。温度越高,这种分裂、合并的能力增强。以两个“活跃”区同时竞争合并“休眠”区建立的应变局部化演变模型,表明在应变速率敏感性的作用下,哪
     一个“活跃”区能对周围的“休眠”区进行合并,取决于这两个区域变形抗力的大小,变形抗力越大其合并能力越强。同时,变形抗力的大小由应变局部化区的横截面积和在同一时间内截面积的减小量决定。
     在950-1200℃温度范围内,温度升高奥氏体不锈钢的几何失稳应变增大,在0.01-10S1的应变速率范围内,应变速率降低,奥氏体不锈钢的几何失稳应变增大。分析材料参数与失稳应变的关系,发现加工硬化指数n控制了载荷失稳应变,应变速率敏感性系数m控制了载荷失稳到几何失稳阶段的应变。载荷失稳到几何失稳阶段的应变是几何失稳应变的主要构成,且随m值增大而增大。几何失稳应变与材料参数n、 m的关系为ε,=an+bnm,其中,6n=4.167+5.389n。n、m值与载荷失稳应变和载荷失稳到几何失稳阶段应变的关系分别为
     应变速率改变了几何失稳的形式,在0.1-2.5s-1的应变速率范围内,几何失稳是载荷失稳和几何失稳相分离的形式,而在10s-1时变为几何失稳和载荷失稳同时发生。应变速率也改变了奥氏体不锈钢应变局部化的演变过程机制,随着应变速率的增大,由同时存在几个“活跃”区域竞争对“休眠”局部化区域合并,转变为只存在唯一的“活跃”应变局部化区域合并“休眠”应变局部化区域。分析应变速率影响的材料性能发现,奥氏体不锈钢在低应变速率下既存在应变强化又存在应变速率强化,而在较高应变速率下,只存在应变强化。
     不同应力三轴度η和Lode参数μσ下,奥氏体不锈钢的几何失稳轨迹表明,几何失稳应变随η值和μσ心值的增大,先增大后减小,最大的几何失稳应变并不出现在单轴拉伸条件下,与材料所处的应力状态有关。几何失稳应变随η和μσ值的增大而减小是试样缺口中心和边部受力和变形的差异性加剧的结果。应力三轴度η值和Lode参数μ。的增大,使奥氏体不锈钢的几何失稳形式由载荷失稳与几何失稳分离转变为载荷失稳和几何失稳同时发生;也使缺口作为应变局部化区表现出的活跃性逐渐降低,由能够作为“活跃”应变局部化区域不断合并缺口以外其它应变局部化区域的状态转变为固定在缺口内部的“活跃”应变局部化区或者几何失稳区。
     本文对奥氏体不锈钢在高温变形条件下的几何失稳过程和应变局部化演变机制进行了全面的研究与分析,为认识材料的高温塑性失稳提供了实验和理论依据;提出在1000-1150℃温度范围和01-2.5s-1的应变速率范围对奥氏体不锈钢进行热加工能获得较大的延伸量和较好的表面质量,期望本文的研究结果能为实际生产中改进生产工艺提供帮助。
When the nonuniform strain which occurs in hot deformation of Austenitic stainless steel is concentrated in some region, it can cause strain localization and lead to local geometry instability on the surface of workpiece, and even cracking. In order to study the phenomenon, this paper, the Cr17Mn6Ni4Cu2N, Cr15Mn9Cu2Ni1N and304austenitic stainless steel are taken as the main research materials. The tensile instability characteristics of austenitic stainless steel and the evolution mechanism of surface strain localization have been investigated by the high temperature tenile test and high temperature tensile unloading test and the finite element analysis method which material model is defined by user. The influence of deformation condition on geometry instability and strain localization evolution rule have been investigationg by the hot deformation tests which deformation temperature, strain rate and stress state were changed. Have cognized the process and mechanism of geometry instability in high temperature tensile, obtained the geometry instability trajectory austenitic stainless steel in various stress states, put forward the model of strain localization evolution in high temperature, determined the relation between material parameters which have relationship with deformation conditions and geometry instability strain and given the processing conditions to reduce strain localization in high temperature deformation.
     In the condition of high temperature deformation, it make the load instability and geometric instability do not occur at the same time in uniaxial tensile that the strain rate sensitivity of Austenitic stainless steel increase. As well, because of the reason strain rate sensitivity increase, it restrain the deformation of geometry instability region that the deformation resistance increase with the strain rate in potential geometry instability region which is formed in the specimen after the load instability and make it transfer to other positions. This maintains the sample homogeneous deformation and delay the geometric instability occurence.
     The occurrence of geometry instability relates with the maximum length Lmax and the maximum depth dmax of strain localization region. In950℃, the Lmax and dmax respectively is9.8mm and0.56mm when the geometry instability occur and in1150℃, the Lmax and dmax respectively is11.1mm and0.82mm when the geometry instability occur. Under the influence of elongation and deformation temperature, the number, the maximum length and the maximum depth of strain localization zone of austenitic stainless steel in high temperature tensile. With the increase of elongation, the number is first increases then decreases and the Lmax and dmax is increases. With the decrease of deformation temperature, the number is decreases and the Lmax is increases and dmax is increase.
     There are "active" and "sleep" two kinds of strain localization region in austenitic stainless steel surface in deformation tensile. In fact, the evolution of strain localization is the process that the "sleep" strain localization region is divided and merged by "active" strain localization region. With the temperature rise, the process is more obvious. The model that is built by the mechanism that two "active" strain localization regions merger "sleep" strain localization regions at the same time by competition showed it is determined by deformation resistance which one "active" strain localization region is able to merge the "sleep" strain localization around the region in the effect of strain rate sensitivity and the deformation resistance is greater and its ability stronger to merger. The deformation resistance depends on the size of the cross-sectional area of strain localization region and the amount of cross-sectional area to reduce.
     In950-1200℃temperature range, geometry instability strain of austenitic stainless steel is increase with temperature rise and in0.01to10s-1strain rate range, geometry instability strain of austenitic stainless steel is increase with strain rate reduce. Through the analysis of the relationship between material parameters and instability strain, found that strain hardening parameter index n control the load instability strain and strain rate sensitivity coefficient m control the strain from load instability to the geometric instability. This strain from load instability to the geometric instability is the main part of geometric instability strain, and is increase with the increase of m value. The relationship between the geometry instability strain and and material parameters isε1=an+bnm, and among themα,,=-0.153+1.268n, bn=4.167+5.389n. The relationship between、m valuesand load instability strain and the strain from load instability to geometric instability respectively isεn=en-1, ε1-εn=an+bnm-en-1.
     In0.1-2.5s-1strain rate range, load instability and geometrical instability is separation in the process of geometry instability, and geometric instability and the load instability occurs at the same time in10s-1.The evolution mechanism of strain localization has also changed with the strain rate change. At low strain rate, there are a few "active" strain localization regions in specimen, and they merger "sleep" localized region by competition, however, at high strain rate, there are only one "active" strain localization region in specimen to merger "sleep" localized region. To analyse the material's parameter in various strain rate, found there are strain strengthening and strain rate strengthening at low strain rate and there are only strain strengthening at higher strain rate in austenitic stainless steel.
     The trajectorys of geometry instability in various triaxial stess degree7and Lode parameter μ6show that the geometry instability strain is first increases then decreases with η and μ6value increase and the maximum geometry instability strain is not in where η value equals to0.333and μ6value equals to-1. The increase of nonuniform of stress and deformation in specimen is the main reason that geometry instability strain decrease with with77and μ6value increase. With η and μ6value increase, the form of geometry instability change by load instability and geometrical instability separation to geometric instability and the load instability occurs at the same time. With77and μ6value increase, the gap that was taken as strain localization region change from "active" strain localization regions to the "active" strain localization region that is fixed inside the gap or direct geometric instability region.
     In this paper, the geometry instability process and evolvement mechanism of strain localization of austenitic stainless steel has benn carried on the comprehensive research and analysis in high temperature. The work provides experimen and theoretical foundation to recognize the plastic instability of matrial in high temperature, and expect the results of the work can help to improve the manufacturing technique in thermal deformation.
引文
[1]严旺生.200系列(锰系)不锈钢发展前景.中国锰业,2004,22(2):8-12
    [2]陆世英,张廷凯,康喜范等.不锈钢.北京:原子能出版社,1998,161
    [3]柳学胜,杨凡,朱瑞金等00Cr14Ni14Si4奥氏体不锈钢中微量铝硫与锻造裂纹.理化检验:物理分册,1997,33(11):3-8
    [4]戴护民lCr18Ni9Ti不锈钢热镦成形工艺的研究.武汉船舶职业技术学院学报,2003,3:19-21
    [5]崔光洙,高德福,才金正Cr18Mn18N奥氏体不锈钢热镦裂纹分析和高温塑性研究.塑性工程学报,1996,3(4):3-6
    [6]Cho J Y, Czerwinski F, Szpunar J A. The effect of reheating conditions and chemical composition on 8-ferrite content in austenitic stainless steel slabs. Journal of Materials Science,2000,35(8):1997-2003
    [7]索忠林.金属塑性与超塑性拉伸失稳及力学解析:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2006
    [8]Considere M. Memoire sur l'emploi du fer et de l'acier dans les constructions. Ann Ponts Chaussees 1885,9:574
    [9]史丽萍,赫晓东等EBPVD法制备NiCrAlY/ZrO2-8Y2O3微层复合板的拉伸力学性能研究.宇航材料工艺,2003,6:57-59
    [10]Nichols F A. Overview No.7 Plastic instabilities and uniaxial tensile ductilities. Acta Metallurgica 1980,28:663-673
    [11]Jonas J J, Holt R A, Coleman C E. Plastic stability in tension and compression. Acta Metallurgica, 1976,24:911-918
    [12]Ghosh A K. Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metallurgica,1977,25:1413-1424
    [13]Jonas J J, Christodoulou N, G'Sell C. The onset of flow localization in tensile samples containing geometric and metallurgical defects. Scripta Metallurgica,1978,12:565-570
    [14]宋玉泉,刘术梅,侯磊.超塑性拉伸均匀应变值的定量判定.科学通报,2002,9:717-720
    [15]Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids,1975,23:371-94
    [16]Rice J. Theoretical and applied mechanics. North Holland, Amsterdam, 1977:207-220
    [17]Needledan A, Rice J. Mechanics of sheet metal forming. Plenum Press, New York, 1978:237-267
    [18]束德林.工程材料力学性能.北京:机械工业出版社,2005,20-21
    [19]汤泽军,何祝斌,苑世剑.内高压成形过程塑性失稳起皱分析.机械工程学报,2008,44(5):35-38
    [20]常东华,杨敏,周晓等.深拉延值的测定及其在薄板成形中的应用.理化检验-物理分册,2008,44(6):306-308
    [21]Yoshida K.Acta Meta.1974,6:474-482
    [22]Hutchinson J, Neale K. Plastic instability. Paris:Presses Ponts et Chaussees,1985, 71-78
    [23]Hart E W. Theory of the tensile test. Acta Metallurgica, 1967, 15:351-355
    [24]Lin I-H, Hirth J P, Hart E W. Plastic instability in uniaxial tension tests. Acta Metallurgica, 1981,29:819-827
    [26]Ghosh A K. Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metallurgica, 1977,25:1413-1424
    [27]Hutchinson J W, Neale K W. Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metallurgica, 1977,25:839-846
    [28]Li Chuan Chung, Jung-Ho Cheng. The analysis of instability and strain concentration during superplastic deformation. Materials Science and Engineering, 2001, A308: 153-160
    [29]Caceres C H, Din T, Rashid A K M B etal. Effect of aging on quality index of an Al-Cu casting alloy. Materials Science and Technology,1999,15(6):711-716
    [30]Ning Z L, Wang G J, Cao F Y, et al. Tensile deformation of a Mg-2.54Nd-0.26Zn-0.32Zr alloy at elevated temperature. J Mater Sci,2009, 44(16): 4264-4269
    [31]Seetharaman V, Semiatin S L. Plastic-flow and microstructure evolution during hot deformation of a Gamma Titanium Aluminide alloy. Metall Mater Trans A, 1997,28(11):2309-2321
    [32]Taleff Eric M, Nevland Peter J. The high-temperature deformation and tensile ductility of Al alloys. Deformation and Ductility,1999,51(1):34-36
    [33]宋玉泉.测定超塑性应变速率敏感性指数m的新公式—用长度及其增量测定m值.吉林工大学报,1984(4):116-120
    [34]Aghaie-Khafri M. Mahmudi R. Flow localization and plastic instability during the tensile deformation of Al alloy sheet. Journal of Materials Science,1998, 50(11):50-52
    [35]Wu Horng-yu,Wei-chien Hsu. Tensile flow behavior of fine-grained AZ31B magnesium alloy thin sheet at elevated temperatures. Journal of Alloys and Compounds,2010,493:590-594
    [36]宋玉泉,索忠林,管志平等.材料参数对拉伸失稳影响的力学解析.金属学报,2006,42(4):337-340
    [37]Guven U. On determination of the instability strain of material considering the effect of elastic deformation. Meccanica, 2009,5:online
    [38]Hasani G H, Mahmudi R. Tensile properties of hot rolled Mg-3Sn-1Ca alloy sheets at elevated temperature. Materials and Design,2011,32:3736-3741
    [39]Wang Wei, Yan Wei, Yang Ke, et al. Temperature dependence of tensile behaviorsof nitrogen-alloyed austenitic stainless steels. Journal of Materials Engineering and Performance,2010,19(8):1214-1219
    [40]Huang C X, Yang G, Gao Y L, et al. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP. Materials Science and Engineering A,2007:online
    [41]Byun T S, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Materialia,2004,52: 3889-3899
    [42]Liu Jin lai, Jiang Yu Jin, Jin Tao, et al. Influence of temperature on tensile behavior and deformation mechanism of Re-containing single crystal superalloy. Transactions of Nonferrous Metals Society of China,2011,21:1518-1523
    [43]Wlodzimierz Bochniak. Strain localization and superplastic-like flow in copper at high temperature.Materials Science and Engineering A,1995,190:81-86
    [44]曾立英,赵永庆,李丹柯等.低温超塑性钛合金的超塑性研究.航空材料学报,2006,26(5):6-9
    [45]Ghosh Amit K. A numerical analysis of the tensile test for sheet metals. Metallurgical Transactions A,1977,8A:1221-1232
    [46]李伟,宋卫东,宁建国等.应变速率对TP-650钛基复合材料拉伸力学行为的影响.中国有色金属学报,2010,20(6):1131-1136
    [47]孙坚,傅云义,石荣等.不同应变速率条件下Al67Ti25Mn8金属间化合物的高温拉伸力学行为.金属学报,1998,34(5):526-530
    [48]羊军,胡伟,王武荣等.1000MPa级DP钢的准静态拉伸行为与应变速率的关系.钢铁研究学报,2011,23(7):39-42
    [49]刘杨,王磊,乔雪璎等.应变速率对电场处理GH4199合金拉伸变形行为的影响.稀有金属材料与工程,2008,37(1):66-71
    [50]Wray P J. Strain-rate dependence of the tensile failure of a polycrystalline material at elevated temperatures. Journal of Applied Physics,1969,40(10): 4018-4029
    [51]Zhu Hao, Zhu Liang, Chen Jian Hong, et al. Deformation and damage mechanism of aluminium alloy under different stress states. Transactions of Nonferrous Metals Society of China,2006,1279-1284
    [52]Li Feng, Wang Li Liang, Yuan Shi Jian, et al. Evaluation of Plastic Deformation During Metal Forming by Using Lode Parameter. Journal of Materials Engineering and Performance,2009,18(9):1151-1156
    [53]李峰,苑世剑,何祝斌.导流角对挤压变形中金属流动与缺陷的影响.材料科学与工艺,2007,15(1):15-18
    [54]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995,9
    [55]徐秉业.结合塑性加工发展塑性力学-王仲仁教授在塑性理论方面的贡献.塑性工程学报,2004,11(2):1-8
    [56]王仲仁.塑性加工力学基础.北京:国防工业出版,1989
    [57]王仲仁,苑世剑,胡连喜.弹性与塑性力学基础.哈尔滨:哈尔滨工业大学出版社,1997
    [58]王仲仁,何祝斌.塑性成形理论与实践的创新—王仲仁文选.北京:科学出版社,2007
    [59]Wang Zhong Ren, He Y X. Proc 4th Int Conf on Technology of Plasticity. Beijing:international Academic Press,1993,3
    [60]王仲仁,戴昆.一点的剪应力图及其与金属变形类型的对应关系.金属学报,2000,36(1):46-50
    [61]何祝斌,王仲仁,苑世剑.作用于一点的正应力和剪应力三维图形及其在金属成形分析中的应用.金属学报,2004,40(3):319-325
    [62]李洪洋,王仲仁.应力莫尔圆变化分析及其在典型液力塑性成形中的应用.应用基础与工程科学学报,2006,14(1):59-68
    [63]王仲仁,张琦.偏应力张量第二及第三不变量在塑性加工中的作用.塑性工程学报,2006,13(3):1-5
    [64]王仲仁.Lode参数的物理实质及其对塑性流动的影响.固体力学学报,2006,27:277-283
    [65]苑世剑,李峰,何祝斌.塑性变形类型与罗德系数的关系.哈尔滨工业大学学报,2008,40:61-65
    [66]李峰,苑世剑,刘钢.带内锥冲头挤压过程中金属变形流动行为研究.航空材料学报,2006,26(3):83-87
    [67]Duly D, Lenard J G, Schey J A. Applicability of indentation tests to assess ductility in the hot rolling of aluminium alloys. Journal of Materials Processing Technology,1998,5:143-151
    [68]Ervasti Esa, Stahlberg Ulf. Transversal cracks and their behaviour in the hot rolling of steel slabs. Journal of Materials Processing Technology,2000,101: 312-321
    [69]Bridgman P W. Studies in large plastic flow and fracture. New York: McGraw-Hill,1952
    [70]Hancock J W, Brown D K. On the role of strain and stress state in ductile failure. Journal of the Mechanics and Physics of Solids, 1983,31(1):1-24
    [71]Clausing D P. Effect of plastic strain state on ductility and toughness. International Journal of Fracture Mechanics,1970,6:71-85
    [72]Kleemola H J, Pelkkikangas M T. Effect of predeformation and strain path on the forming limits of steel, copper and brass. Sheet Metal Ind.,1977,63 (6):591
    [73]祝洪川,李荣锋,严龙.试样发生颈缩和破裂对FLC测量结果的影响.钢铁研究,2007,35(1):27-29Xue Liang.
    [74]Localization conditions and diffused necking for damage plastic solids. Engineering Fracture Mechanics,2010,77:1275-1297
    [75]Bai Yuan Li. Tomasz Wierzbicki. A new mmodel of metal plasticity and fracture with pressure and lode dependence. International Journal of Plasticity,2008,24: 1071-1096
    [76]张娟.锻压成型过程不均匀变形控制与利用研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学,2009,4-5
    [77]Vladimirov V I andRomanov A E, Disclinations in Crystals. Leningrad:Nauka, 1986
    [78]Presnyakov A A, Localization of Plastic Strain. Moscow:Mashinostroenie,1983
    [79]申智华.有色金属塑性加工原理.北京:冶金工业出版社,2008,53
    [80]康永林,李耀戚,王先进等.薄板单向拉伸表面粗糙度的变化及其对失稳应变的影响.金属科学与工艺,1990,9(2):82-88
    [81]Stoudt M R, Hubbard J B, Iadicala M A, et al. A study of the fundamental relationships between deformation-induced surface roughness and strain localization in aa5754. Metallurgical and Materials Transactions a,2009,40(7): 1611-1622
    [82]李炎.多晶体钛拉伸变形表面褶皱的形成及晶粒变形.中国有色金属学报,2004,14(7):1078-1083
    [83]Kim Kyeong-suk, Hong Dong-pyo. Surface roughness pattern measurement of tensile specimen by using digital holography. Manufacturing Science and Engineering,2010,97-101:4387-4392
    [84]霍世军.拉伸速率和表面粗糙度在高温下对GH4033拉伸性能的影响.红旗技术,2001,9(3):8-17
    [85]Bruno Guelorget. Strain rate measurement by electronic speckle pattern interferometry:A new look at the strain localization onset. Materials Science and Engineering A,2006,415(1-2):234-241
    [86]Plekhov O A, Naimark O B. Theoretical and experimental study of energy dissipation in the course of strain localization in iron. Journal of Applied Mechanics and Technical Physics,2009,50(1):127-136
    [87]Montay G, Francois M, Tourneix M. Analysis of plastic strain localization by a combination of the speckle interferometry with the bulge test. Optics and Lasers in Engineering,2007,45(1):222-228
    [88]Wattrisse B, Chrysochoos A. Analysis of strain localization during tensile tests by digital image correlation. Experimental Mechanics,2001,41(1):29-39
    [89]Poletika T M, Narimanova G N, Kolosov S V. Plastic strain localization and necking in zr-nb alloy. Technical Physics,2006,51(3):336-341
    [90]B. Haddag, F. Abed-Meraim, T. Balan. Strain localization and damage prediction during sheet metal forming. International Journal of Material Forming,2008,1(1):229-232
    [91]Panin V E, Egorushkin V E, Panin A V, et al. On the nature of plastic strain localization in solids. Technical Physics,2007,52(8):1024-1030
    [92]Pietrzyk M, Pidvysotskyy V, Packo M. Flow stress model accounting for the strain localization during plastic deformation of metals. CIRP Annals,2004, 53(1):235-238
    [93]Bychkov A A, Karpinskii D N. Numerical analysis of necking conditions in a thermoviscoplastic rod in tension. Journal of Applied Mechanics and Technical Physics,1998,39(4):634-638
    [94]Tang C Y, Fan J P, T C Lee. Simulation of necking using a damage coupled finite element method. Journal of Materials Processing Technology,2003,139: 510-513
    [95]Mansoo Jouna, Insu Choi, Jaegun Eom, et al. Finite element analysis of tensile testing with emphasis on necking. Computational Materials Science,2007,41: 63-69
    [96]Yang S Y, Tong W. A finite element analysis of a tapered flat sheet tensile speciment. Experimental Mechanical,2009,49:317-330
    [97]汤泉,嵇醒,殷家驹.圆棒试件颈缩的有限元分析.西安交通大学学报,1981,15(5):111-118
    [98]Jin Weon Kim, Thak Sang Byun. Analysis of tensile deformation and failure in austenitic stainless steels:Part I - Temperature dependence. Journal of Nuclear Materials,2010,396:1-9
    [99]Inal K, Wu P D, Neale K W. Instability and localized deformation in polycrystalline solids under plane-strain tension. International Journal of Solids and Structures,2002,39(4):983-1002
    [100]Yang S Y, Tong W. A finite element analysis of a tapered flat sheet tensile speciment. Experimental Mechanical,2009,49:317-330
    [101]Chen W H. Necking of a Bar.Int. J. Solids & Struct.1971,7:685-717
    [102]Kruijf N E de, Peerlings R H J, Geers M G D. An analysis of sheet necking under combined stretching and bending. Int J Mater Form,2009,2:845-848
    [103]Shahbeyk Sharif, Rahiminejad Davood, Petrinic Nik. Local solution of the stress and strain fields in the necking section of cylindrical bars under uniaxial tension. European Journal of Mechanics A/Solids,2010,29:230-241
    [104]牛济泰.材料和热加工领域的物理模拟技术.北京:国防工业出版社,1999,146-157
    [105]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics,1985,21(1):31-48
    [106]Mackenzie A C, Hancock J W, Brown D K. On the influence of state of stress on ductile failure initiation in high strength steels. Engineering Fracture Mechanics,1977,9(1):167-168
    [107]索中林,刘颖.带缺陷试样的稳定性与颈缩解析.长春大学学报,2006,16(4):1-4
    [108]庄茁译ABAQUS/Standard有限元软件入门指南.北京:清华大学出版社,1998
    [109]李平,庄茁,李殿中等.板带钢热连轧及微观组织演变非线性三维仿真.力学与实践,2002,24:35-38
    [110]Jung Gyoo-Dong, Youn Sung-Kie, Kim Bong-Kyu. A three-dimensional nonlinear viscoelastic constitutive model of solid propellant. International Journal of Solids and Structures,2000,37:4715-4732
    [111]Lee Kyunghoon, Ghosh Somnath. Small deformation multi-scale analysis of heterogeneous materials with the voronoi cell finite element model and homogenization theory. Computational Materials Science,1996,7:131-146
    [112]Brunig M. Nonlinear finite element analysis based on a large strain deformation theory of plasticity. Computer and Structure,1998,69(1):117-128
    [113]Dumoulin S, Tabourot L, Chappuis C, et al. Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. Journal of Materials Processing Technology,2003,133(1-2):79-83
    [114]Datta T K, Banerjee D. A numerical analysis of neck formation in tensile specimens. Journal of Materials Processing Technology,1995,54(1-4): 303-313
    [115]Joun Mansoo, Choi Insu, Eom Jaegun, et al. Finite element analysis of tensile testing with emphasis on necking. Computational Materials Science,2007,41: 63-69
    [116]Hill R. Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids, 1975,23:236-264
    [117]Pascon F, Habraken A M. Finite element study of the effect of some local defects on the risk of transverse cracking in continuous casting of steel slabs. Comput. Methods Appl. Mech. Engrg,2007,196:2285-2299
    [118]Needleman A. A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Solids,1972,20:111-127
    [119]Chen W H. Necking of a bar.Int. J. Solids & Struct.1971,7:685-717
    [120]Norris Jr D M, Moran B, Scudder J K, et al. A compute simulation of the tension. J. Mech. Phys. Solids,1978,26(1):1-19
    [121]Tarboton J N, Matthews L M, Sutcliffe A, et al. The hot workability of cromanite, a high nitrogen austenitic stainless steel. Materials science forum, 1999,318-320:777-784
    [122]Eenugopal S V, Sivaprasad P V. A journey with prasad's processing maps. Journals of materials engineering and performance,2003,12(6):674-686
    [123]Zong Y Y, Shan D B, Xu M, et al. Flow softening and micro-structural evolution of tell titanium alloy during hot deformation. Journal of materials processing technology,2009,209(4):1988-1994
    [124]Pietrzyk M, Pidvy V, Packo M. Flow stress model accounting for the strain localization during plastic deformation of metals. Manufacture technology, 2004,53(1):235-238
    [125]Aghaie-Khafri M. Mahmudi R. Flow localization and plastic instability during the tensile deformation of Al alloy sheet. Journal of Materials Science,1998, 50(11):50-52
    [126]Wu Horng Yu,Wei-chien Hsu. Tensile flow behavior of fine-grained AZ31B magnesium alloy thin sheet at elevated temperatures. Journal of Alloys and Compounds,2010,493:590-594
    [127]Hasani G H, Mahmudi R. Tensile properties of hot rolled Mg-3Sn-lCa alloy sheets at elevated temperature. Materials and Design,2011,32:3736-3741
    [128]朱亮,张孝平,侯国清Cr15Mn9Cu2Ni1N奥氏体不锈钢的热变形本构特性.塑性工程学报,2009,16(5):96-100
    [129]Hill R. A General Theory of Uniqueness and Stability in Elastic-plastic Solids. Journal of the Mechanics and Physics of Solids,1958,6(3):236-249
    [130]Rice J R. The Localization of Plastic Deformation. Theory of Applied Mechanics,1976,1:207-220
    [131]Bai Y L. Thermo-plastic Instability in Simple Shear. Journal of the Mechanics and Physics of Solids,1982,30(4):195-207
    [132]Fressengeas C, Molinari A. Inertia and Thermal Effects on the Localization of Plastic Flow. Acta Metallurgica,1985,33(3):387-396
    [133]Marchand A, Duffy J. An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel. Journal of the Mechanics and Physics of Solids,1988,36(3):251-283
    [134]Swift H W. Plastic Instability under Plane Stress. Journal of the Mechanics and Physics of Solids,1952,1(1):1-18
    [135]Zdzislaw Marciniak, Kazimierz Kuczynski. Limit Strains in the Process of Stretch Forming Sheet Metal. International Journal of Mechanical Sciences, 1967,9(9):613-620
    [136]Zuev L B. Wave Phenomena in Low-rate Plastic Flow of Solids. Annalen der Physik,2001,10(11-12):965-984
    [137]Almeida L H de, May ILe, Emygdio P R O. Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels. Materials Characterization,1998, 41(4):137-150
    [138]Garstecki A, Glema A, Lodygowski T. Sensitivity of plastic strain localization zones to boundary and initial conditions. Computational Mechanics,2003, 30(2):164-169
    [139]Tarboton J N, Matthews L M, Sutcliffe A, et al. The hot workability of Cromanite, a high nitrogen austenitic stainless steel. Materials science forum, 1999,318-320:777-784
    [140]Thovnik F, VodoPivec F, Kosec L. Hot ductility of austenitic stainless steel with a solidification structure. Materiali in Tehnologije,2006,40(4):129
    [141]Parsa M H, Ahmadabadi M N, Shirazi H. Evaluation of micro-structure change and hot workability of high nickel high strength steel using wedge test. Journal of Materials Processing Technology,2008,199(1-3):304
    [142]Krieg R. Failure strains and proposed limit strains for a reactor pressure vessel under severe accident conditions. Nuclear Engineering and Design,2005,235: 199-212
    [143]Jeschke J, Ostermann D, Krieg R. Critical strains and necking phenomena for different steel sheet specimens under uniaxial loading. Nuclear Engineering and Design,2011,241:2045-2052
    [144]Wlodzimierz Bochniak. Strain localization and superplastic-like flow in copper at high temperature. Materials Science and Engineering A,1995,190:81-86
    [145]Thovnik F, VodoPivec F, Kosec L. Hot ductility of austenitic stainless steel with a solidification structure. Materiali in Tehnologije,2006,40(4):129
    [146]Han Zhi Yuan, Luo Hong Yun, Wang Hong Wei. Effects of strain rate and notch on acoustic emission during the tensile deformation of a discontinuous yielding material. Materials Science and Engineering A,2011,528:4372-4380
    [147]Isaac Samuel E, Choudhary B K, Bhanu Sankara Rao K. Influence of temperature and strain rate on tensile work hardening behaviour of type 316 LN austenitic stainless steel. Scripta Materialia,2002,46:507-512
    [148]Abbodb M F, Sellars C M, Tanaka A, et al. Effect of changing strain rate on flow stress during hot deformation of Type 316L stainless steel. Materials Science and Engineering,2008,491A:290-296
    [149]任建斌,宋志刚,郑文杰.254SMo超级奥氏体不锈钢的热变形行为.钢铁研究学报.2012,24(5):42-46
    [150]唐正柱,陈佩寅,吴伟.Nb对镍基合金高温失塑裂纹敏感性的影响机理.焊接学报,2008,29(11):109-113
    [151]McQueen H J, Yue S, Ryan N D. Hot working characteristics of steels in austenitic state. Journal of Materials Processing Technology.1995,53:293-310
    [152]Ryan N D, McQueen H J. Comparison of dynamic softening in 301,304,316 and 317 stainless steels. High Temperature Technology,1990,8(3):185-200
    [153]Ryan N D, McQueen H J, Jonas J J. The deformation behavior of types 304, 316, and 317 austenitic stainless steels during hot torsion. Canadian Metallurgical Quarterly,1983,22(3):369-378
    [154]Tan S P, Wang Z H, Cheng S C. Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel. Materials Science and Engineering A,2009,517(1-2):312-315
    [155]Jorge-Badiola D, Iza-Mendia A. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel. Materials Science and Engineering A,2005,394(1-2):445-454
    [156]Ghosh A K. The influence of strain hardening and strain-rate sensitivity on sheet metal forming. J Eng Mater Technol,1977,99(3):264-274
    [157]Mahmudi R. Forming limits in biaxial stretching of aluminum sheets and foils. J Mater Process Tech,1993,37(1-4):203-216
    [158]Bai Y L. Effect of Loading History on Necking and Fracture:[Degree of Doctor in Mssachusetts Institute of Technology. Cambridge:Mssachusetts Institute of Technology,2008,44-56
    [159]陈平昌,朱六妹,李赞.材料成形原理.北京:机械工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700