用户名: 密码: 验证码:
黄土区超大型露天煤矿地貌重塑演变、水土响应与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以生态环境极度脆弱、人为干扰程度巨大,土地损毁极为严重的黄土区大型露天煤矿为研究对象,分析黄土区露天煤矿扰动地貌特征并对其进行分类;分析黄土区露天煤矿在“剥离-采掘-运输-排弃-整形-复垦”一体化工艺下的地貌演变机制及过程;选取地形指数,定量分析地貌重塑的时空演变规律;通过实地调查采样、分析化验、遥感解译及相关数据收集等,分析重塑地貌对土壤特性空间分异、植被立地条件、沟道河网时空变异及水灾风险性的影响;并在此基础上,进行地貌重塑优化研究,提出土地整形地貌重塑的建议,为黄土区大型露天煤矿地貌重塑、土壤重构、植被重建与生态重建提供一定的借鉴和参考,研究取得以下成果:
     宏观方面:(1)通过对黄土区及黄土区露天煤矿扰动地貌特征的分析,将黄土区露天煤矿扰动地貌划分为动态的开采地貌和趋于稳态的重塑地貌,其中开采地貌按开采过程分为剥离地貌、矿坑推进地貌和排弃地貌;重塑地貌按形态特征分为遗留矿坑地貌、外排土场地貌和内排土场地貌;(2)在总结黄土区大型露天煤矿区地貌演变的“剥-采-运-排-造-复”一体化工艺基础上,以平朔安家岭矿区为例,分析了矿区剥离开采的纵向工艺,运输排弃的横向过程,造地复垦的综合手段和地貌重塑的关键技术。
     地貌演变定量分析方面:(1)黄土区露天煤矿采、排、复地貌演变过程中地形因子指标呈现5种不同变化趋势;(2)确定黄土区大型露天煤矿地貌演变的2个主成分因子:起伏因子和扭曲因子;(3)将露天矿区地貌演变划分为四个阶段:矿坑与外排土场形成时期、矿坑推进与内排土场形成时期、内排土场推进时期、内排土场稳定时期,研究了不同阶段地形指标变化的差异性和阶段生态风险。
     对重塑地貌的响应方面;
     (1)重塑地貌是复垦土壤特性的重要决定因子,影响复垦重构土壤的发育特征和空间变异;不同坡位、坡度、坡向、复垦模式下的土壤特性存在显著差异;土壤水分和全氮与复垦因子、地形指数及遥感指数间存在较好的相关性,而土壤容重、有机质、全磷、全钾相关性低于预期值;运用回归克里格预测法进行了复垦土壤空间特性预测优化,提高了回归预测精度。
     (2)重塑地貌对植被立地条件、植被修复发育有较强影响,且不同的立地类型决定了植被恢复的难易程度、植被的配置类型及演替规律。其中,平台厚层黄土型、边坡土质中/下部坡型具有良好的立地条件,有利于植被恢复;将立地类型划分为平台、边坡2个立地小区:平台小区化分为9个立地类型组、13个立地类型;边坡小区化分为9个立地类型组、20个立地类型,为排土场立地条件改良、植被修复及生态恢复提供依据。
     (3)基于黄土区大型露天煤矿尺度提取河网沟道时,选取DEM分辨率为5m,汇流能力阂值为5000较为适宜;经过1990年与2013年水文地貌对比发现,剧烈扰动后沟道水文形态特征发生巨大改变,自相似性消失,而且汇水线密度和复杂度均降低,流域高差和坡降均增加,水文地貌整体呈单一化趋势;水灾风险性评价在未扰动前淹没指数分级明显,湿度指数和截留指数大小分布均匀,而扰动后三者均发生巨大改变,正负地形差别愈发明显,裸地、坡地增多,淹没指数分级分布不规律,湿度指数分布不均,截留指数总体降低,加大了矿区水灾的风险性和不确定性。
     地貌重塑优化方面:矿区仿自然地貌重塑是一个点、线布置到面的整体塑造过程,通过子流域和沟道的规划和设计、原地貌参数的提取和模型构建参数的优化,利用GeofluvTM模型构建仿自然地貌,使传统的平台-边坡-平台的设计,被凹形缓坡代替;传统的梯田式拾阶而下地貌,被弯曲式缓坡而下所代替;地貌由单一变成多样且多组合,由不考虑与周围景观协调的大型人工堆垫体变成与周围相互衔接的仿自然景观;沟道河网也进一步优化演变成一种蜿蜒自然的模式,沟道稳定性提高、水流冲击降低,最大程度的保证了汇流安全。
This paper summarized and classified the morphologic characteristics of open-pit coal mine in loess area through the research about the extremely fragile ecological en vironment, the huge human disturbance, and the seriously damaged land in the giantc oal mine, analyzed the mechanism and process of landform evolution in the integrated project, which consists of peeling, mining, transportation, dumping and reclamation, selected topographic index, quantificationally analyzed the space-time evolution laws about topography rebuilding, and then analyzed the impact on spatial variation of soil, site conditions of vegetations, variation of river channels and the corresponding hazar d through field survey sampling, laboratory analysis, remote sensing interpretation an d literature and related data collection, analysis remodeling spatial variation of soil to pography, vegetation site conditions, at last, put forward topography optimization rem odeling and suggestions for loess landform reshaping large surface area as the referen ce of loess landform rebuilding, soil reconstruction, revegetation and ecological establ ishment in the future, and got the following results:
     Macroscopic results were that open-pit coal mining landform is classified into dynamic mining landform, which consists of the stripping topography, the marching pit topography and the dumping topography, and recontruced landform becoming steady, which consists of the remaining pit topography, waste-dump topography and inner spoil dump topography, through analyzing the characteristics of disturbed topography on the loess area, and analyzed the longitudinal process of peeling and mining, transverse process of transportation and dumping, methods of reclamation and technology of landform reconstruction on open-pit coal mine in the Pingshuo mining area, through summarized the integration process, which consists of peeling, mining, transportation, dump, shaping and reclamation in the open-pit mines in loess area.
     The results of quantitative analysis of morphological evolution shows, that the process of mining, casting, reclamation in the large opencast mine on loess hilly region presents five kinds of trends; that there are two new single indicators of terrain evolution, fluctuation factors and distortion factors, whose contribution rate is93.94%, and their principal component values has been calculated; and that the opencast mining area landform evolution has been divided into four stages:mine pit and external dump forming, pit advancing and inner dump forming, pit disappearing and inner dump advancing and inner dump stabilizing, which reveals the terrain indicators'difference of different stages and phased ecological risk.
     The impact of remodeling topography:
     Reshaped landform, which is an important factor for reclaimed soil properties in large opencast coal mine in loess area, affects development characteristics and spatial variability of reclaimed soil;the characteristics of reclaimed soil in different slope positions, or different slope gradients, or different slope aspects, or different vegetation restoration patterns were significantly different; soil moisture content's and total nitrogen's correlations with vegetation restoration patterns, reshaped landform and remote sensing indexes are good, but volume weight of soil's, organic matter's, total phosphorus's, total potassium's are poor; through regression Kriging method,resuits of regression prediction of soil moisture content, organic matter, total nitrogen and total phosphorus are good, and then the results'residual errors are reduced.
     Reshaped landform has a strong impact on vegetation site conditions, restoration and development. Different site types determines the difficulty of vegetation restoration, vegetation configuration type and succession law. Among them, a thick layer of loess platform type, slope soil medium/lower part of the slope type have good site conditions to vegetation restoration; The study area was eventually divided into2site area:platform and slope; platform area was classified into9site type groups and13site types, while slope area into9site type groups and20site types. This provided basis for the improvement of mine site conditions, vegetation restoration and maintenance as well as the local ecosystem recovery.
     When getting the channels in the open-pit coal mines on loess area through DEM,the appropriate resolution ratio and threshold value of catchment are respectively5m and5000. Through comparing the hydrological landform in1990 with that in2013, results that after severe disturbance in mining area, hydrological characteristics changed greatly, which leads channels' self-similarity disappear, and the landform integrally has a simplification trend, which is that density and complexity of catchment lines reduced, and elevation difference and slope of drainage basin increased.Flood index has obvious hierarchy before mining disturbance, and humidity index and intercept index both have homogeneous distribution, but all three changed greatly after disturbance, which shows that flood index has no hierarchy, humidity index has uneven distribution and intercept index reduce integrally, and the flood risk index increases.
     Through planning and design of drainage basins and channels, extraction of original geomorphic parameters and optimizing parameters of constructing model, GeoFluvTM constructed a model imitated the natural landform. The design of the model is a constructing process of from points, lines to surface, traditional design of platform-slope-platform is replaced by concave gentle slope, traditional landform, which has ladders, is replaced by deviously gentle slople, landform changed from single to multiple, and the dump that is inharmonious with surrounding is replaced by imitated-nature landform which is connected with surrounding. Through construction of landform in GeoFluvTM, the drainage basins, channels and hillslopes would be tending towards stability, and the channels would become wriggle, which slow down the speed of stream, and incease stability of channels.
引文
Booth A M, Roering J Ja, Perron J T. Automated landslide mapping using spectral analysis and high-resolution topographic data:Puget Sound lowlands, Washington, and Portland Hills,
    Oregon [J]. Geomorphology,2009,109(3-4):132-147.
    Canton Y, Sol-Benet A, Domingo F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain.Journal of Hydrology,2004,285 (1/4):199-214.
    Edward Batschelet. Circular statistics in biology [M].Academic Press,1981.
    Florinsky I V, Eilers R G, Manning G R, et al. Prediction of soil properties by digital terrain modelling[J].Environmental Modelling & Software,2002,17(3):295-311.
    Fu B J,Chen L D,Ma K M. The effect of land use change on the regional environment in the YangJuanGou catchment in the loess plateau of China.Acta Geographica Sinica,1999,54(3)
    241-246.
    Gessler P E, Moore I D, Mckenzie N J, Ryan P J.Soil-landscape modeling and spatial prediction of soil attributes. Int. J. Geographical Information Systems,1995.4:421-432.
    Grenon M, Laflamme AJ. Slope orientation assessment for open-pit mines, using GIS-based algorithms. Computers and Geosciences,2011. doi:10.1016/j.cageo.2010.12.006.
    Horton R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology [J]. Geological society of America bulletin,1945,56(3): 275-370.
    Hughes M W, Schmidt J, Almond P C. Automatic landform stratification and environmental correlation for modelling loess landscapes in North Otago, South Island, New Zealand [J]. Geoderma,2009,149(1-2):92-100.
    Jenny H. Factors of soil formation[M]. New York, NY, USA:McGraw-Hill Book Company, 1941.
    Li Xi-guang, Li Zhi-yong, Zeng Zuo-xun. Curvature Analysis and Geometric Description of Landforms Using MATLAB [C].2nd Conference on Environmental Science and Information Application Technology,2010,712-715.
    Lucieer A, Stein A. Texture-based landform segmentation of LiDAR imagery [J].International Journal of Applied Earth Observation and Geoinformation,2005,6(3-4): 261-270.
    MA,柯克拜,MJ.坡面形态与形成过程.窦葆璋译.北京:科学出版社,1987.
    Mars J C, Crow ley J K. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data [J]. Remote Sensing of Environment,2003,84(3):422-436.
    McNamara J P, Kane D L, Hinzman L D. An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska:a nested watershed approach[J]. Journal of Hydrology,1998, 206(1):39-57.
    Moore I D, Gessler P E, Nielsen G A, et al. Soil attribute prediction using terrain analysis[J]. Soil Science Society of America Journal,1993,57(2):443-452.
    NishaBao, Baoying Ye and ZhongkeBai. Rehabilitation of Vegetation Mapping of ATB Opencast Coal-Mine Based on GIS and RS. SENSOR LETTERS.Vol.10,1-7,2012.
    Pinto V, Font X, Salgot M, et al. Using 3-D structures and their virtual representation as a tool for restoring opencast mines and quarries [J]. Engineering Geology,2002,63(1):121-129.
    Riha S J, James B R, Senesac G P, et al. Spatial variability of soil pH and organic matter in forest plantations[J]. Soil Science Society of America Journal,1986,50(5):1347-1352.
    Strahler A N. Dynamic basis of geomorphology[J]. Geological Society of America Bulletin, 1952,63(9):923-938. Veltri M,Veltri P, Maiolo M. On the fractal description of natural channel networks[J]. Journal of hydrology,1996,187(1):137-144. ZHANG Yan, LIUBao-Yuan, ZHANG Qing-Chun. Effect of Different Vegetation Types on Soil Erosion by Water[J]. Acta Botanica Sinica 2003,5 (10):1204-1209.白晓永,王世杰,陈起伟,等.贵州土地石漠化类型时空演变过程及其评价[J].地理学报,2009,64(5):609-618.白中科,付梅臣,赵中秋.论矿区土壤环境问题[J].生态环境,2006,15(5):1122-1125.白中科,付梅臣,赵中秋.论矿区土壤环境问题[J].生态环境,2006,15(5):1122-1125.白中科,郭青霞,王改玲,等.矿区土地复垦与生态重建效益演变与配置研究[J].自然资源学报,2001,16(6):525-530.白中科,胡振华.露天矿排上场人为加速侵蚀及分类研究[J].土壤侵蚀与水土保持学报,1998,4(1):34-40.
    白中科,赵景逵,李晋川,等.大型露天煤矿生态系统受损研究—以平朔露天煤矿为例[J].生态学报,1999,19(6):870-875.
    白中科,赵景逵.工矿区土地复垦、生态重建与可持续发展[J].科技导报,2001(9):49-52.
    白中科,赵景逵.关于露天矿土地复垦与生态重建的几个问题[J].冶金矿山设计与建设,2000,32(1):33-37.
    白中科,吕春娟,王金满,等.矿区岩土侵蚀控制及水资源利用[M].北京:中国大地出版社:2012.
    白中科.认知复垦从事复垦传承复垦——与导师赵景逵先生对话[J].中国土地,2008(12):41-44.
    卞正富.我国煤矿区土地复垦与生态重建研究[J].资源与产业,2005,7(2):18-24.
    曹敏,汤国安,张芳,等.基于元胞自动机的黄土小流域地形演变模拟[J].农业工程学报,2012,22:024.
    曹银贵,白中科,张耿杰,等.山西平朔露天矿区复垦农用地表层土壤质量差异对比[J].农业环境科学学报,2013,32(12):2422-2428.
    陈浩,蔡强国,胡文生,等.晋西黄土高原小流域地貌演化特征与水沙过程的动态监测[J].水土保持研究,2004,11(2):1-3.
    邓送求,闫家锋,关庆伟,等.基于聚类分析的风景林立地类型划分[J].南京林业大学学报(自然科学版),2009,33(03):73-74.
    杜国明,陈晓翔,吴超羽,等.长时间尺度珠江口河网水下地形演变过程三维可视化实现及分析[J].水科学进展,2005,16(2):181-184.
    樊华,赵方莹,孙保平,等.北京市门头沟区植被恢复立地类型划分[J].中国水土保持SWCC,2007(08):29.
    樊文华,白中科,李慧峰,等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354.
    樊文华,白中科,李慧峰,等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354.
    冯全洲,徐恒力.土地复垦的覆土厚度及覆土基质确定[J].安徽农业科学,2009,37(25):12091.
    高华端,林泽北,罗婷,等.贵州省强度石漠化区立地分类系统研究[J].水土保持研究,2011(2):26-28.
    高永年,高俊峰,张万昌,等.地形效应下的区域蒸散遥感估算[J].农业工程学报,2010,26(10).
    郭逍宇,张金屯,宫辉力,等.安太堡矿区复垦地植被恢复过程多样性变化[J].生态学报,2005,25(04):764-768.
    韩蕊莲,侯庆春.黄土丘陵典型地区植被建设中有关问题的研究-Ⅱ、立地条件类型划分及小流域造林种草布局模式[J].水土保持研究,2000,07(02):12-115.
    郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报,2003,23(08):1470.
    何福红,黄明斌,党廷辉.黄土高原沟壑区小流域土壤水分空间分布特征[J].水土保持通报,2002,22(4):6-9.
    胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法①[J].土壤(Soils),2005,37(1):8-12.
    胡振琪.露天煤矿复垦土壤物理特性的空间变异性[J].中国矿业大学学报,1992,21(4):31-37.
    黄元仿,周志宇,苑小勇,等.干旱荒漠区土壤有机质空间变异特征.生态学报,2004,24(12)3776-2781.
    江红南,丁建丽,徐佑成.新疆渭干河灌区土地盐渍化时空变化影响因子分析[J].干旱区地理,2008,31(6):885-891.
    赖挺.四川巨桉人工林立地类型研究[D].四川农业大学,2005.
    李晋川,白中科.露天煤矿土地复垦与生态重建—平朔露天矿的研究与实践[M].科学出版社,2000.
    李晋川,白中科等.露天煤矿土地复垦与生态重建[M].北京.科学出版社,2000.
    李钜章.中国地貌形态基本类型数量指标初探[J].地理学报,1982,37(1):17-26.李天文,刘学军,陈正江,等.规则格网DEM坡度坡向算法的比较分析[J].干旱区地理,2004,27(3).
    李志,刘文兆,王秋贤.黄土塬区不同地形部位和土地利用方式对土壤物理性质的影响[J].应用生态学报,2008,19(6):1303-1308.
    李子君,于兴修.冀北土石山区坡面尺度径流特征及其影响因素[J].农业工程学报,2012,28(17):109-116.
    连纲,郭旭东,傅伯杰,等.黄土高原县域土壤养分空间变异特征及预测—以陕西省横 山县为例[J].土壤学报,2008,45(4):577-584.
    刘世梁,郭旭东,连纲,等.黄土高原土壤养分空间变异的多尺度分析—以横山县为例[J].水土保持学报,2005,19(05):105-108.
    罗勇,陈家宙,林丽蓉,等.基于土地利用和微地形的红壤丘岗区土壤水分时空变异性[J].农业工程学报,2009,25(2):36-41.
    吕爱锋,陈嘻,王纲胜.基于DEM的流域水系分维估算方法探讨[J].干旱区地理,2002,25(4):315-320.
    吕春娟,白中科,陈卫国,等.黄土区露天矿排土场水分调控技术研究[J].水土保持通报,2011,31(01):161-163.
    吕春娟,白中科,秦俊梅,等.黄土区大型排土场岩土侵蚀特征研究—以平朔矿区排土场为例[J].水土保持研究,2006,13(04):234-236.
    吕春娟,路琼.矿区复垦植被土壤涵养水源功能的研究[J].水土保持学报,2009,23(03):186-187.
    缪韧,水文学原理,[M].北京:中国水利水电出版社,2007.
    彭俊,陈沈良,李谷祺,等.黄河三角洲岸线及现行河口区水下地形演变[J].地理学报,2012,67(003):368-376.
    秦伟,朱清科,赵磊磊,等.基于RS和GIS的黄土丘陵沟壑区浅沟侵蚀地形特征研究[J].农业工程学报,2010(006):58-64.
    邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤物理性质的空间变异[J].地理学报,2002,57(5):587-594.
    芮孝芳,水文学原理,[M].北京:中国水利水电出版社,2004.
    陕永杰,张美萍,白中科,等.平朔安太堡大型露天矿区土壤质量演变过程分析[J].干旱区研究,2005,22(4):565-568.
    石莎,冯金朝,邹学勇.不同地形条件对沙漠植物生长和沙地土壤水分的影响[J].干旱区地理,2007,30(6):846-851.
    苏时雨,李钜章.地貌制图[M].北京:测绘出版社,1998.
    孙孝林,赵玉国,赵量,等.应用土壤-景观定量模型预测土壤属性空间分布及制图[J].土壤(Soils),2008,40(5):837-842.
    唐飞,陈曦,程维明.基于DEM的准噶尔盆地及其西北山区地势起伏度研究[J].干旱区地理,2006,29(3):388-392.
    唐将,李勇,邓富银,等.三峡库区土壤营养元素分布特征研究[J].土壤学报,2005,42(3):473-478.
    田涛.北京典型边坡立地条件类型划分研究[D].北京林业大学,2011.
    王德安,郭仕涛,孙大庆,等.青岛市大陆基岩海岸宜林地立地类型的划分[J].山东林业科技,1996(04):43-45.
    王富,李红丽,董鲁光,等.淄博市周边破坏山体立地类型划分[J].山东林业科技,2009(03):41-43.
    王富,李红丽,董智,等.城市周边破坏山体的立地条件类型划分及其植被恢复措施—以山东淄博市为例[J].中国水土保持科学,2009,07(01):93-94.
    王洪明,杨勤科,姚志宏.小流域尺度土壤水分与地形湿度指数的相关性分析[J].水土保持通报,2009(4):110-113.
    王金满,白中科,罗明等.基于专业序列的中国多层次土地复垦标准体系[J].农业工程学报,2010,26(5):312-315.
    王金满,杨睿璇,白中科.草原区露天煤矿排土场复垦土壤质量演替规律与模型[J].农业工程学报,2012,28(14):229-235.
    王雷,汤国安,刘学军,等.DEM地形复杂度指数及提取方法研究[J].水土保持通报,2004,24(4):55-58.
    王文英,李晋川,卢崇恩,等.矿区废弃地植被重建技术[J].山西农业科学,2002,30(3):82-86.
    王治国,白中科.黄土高原土地破坏与复垦的流域管理[J].中国土地科学,1994,8(2):37-40.
    魏忠义,胡振琪,白中科.露天煤矿排土场平台“堆状地面”士壤重构方法[J].煤炭学报,2001,26(1):18-21.
    魏忠义,王云凤,李晓雷,等.露天矿区景观恢复与整治措施探讨[J].金属矿山,2012(01):144.
    闫德仁,赵丽.华北落叶松兴安杨树人工林对土壤养分变化的影响[J].东北林业大学学报2013,41(01):27-31.
    杨延君,白中科,周伟等.露天采石场密集区复垦模式研究[J].中国土地科学,2010,24(7):36-40.
    杨永川,达良俊.丘陵地区地形梯度上植被格局的分异研究概述[J].植物生态学报, 2006,30(3):504-513.
    姚荣江,杨劲松,陈小兵,等.苏北海涂围垦区耕层土壤养分分级及其模糊综合评价[J].中国土壤与肥料,2009(04):17-18.
    姚雪玲,傅伯杰,吕一河.黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J].生态学报,2012,32(16):4961-4968.
    易亮,李凯荣,张冠华,等.渭北黄土高原经济林地土壤养分特征研究[J].水土保持研究,2009,16(02):187-188.
    张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展[J].地理科学进展,2005,24(6):116-123.
    张宏芝,朱清科,王晶,等.陕北黄土坡面微地形土壤物理性质研究[J].水土保持通报,2011,31(6):55-58.
    张前进,白中科,郝晋珉,等.黄土区大型露天矿农业用地格局演变的分析[J].农业工程学报,2006,22(11):98-103.
    张素梅,王宗明,张柏,等.利用地形和遥感数据预测土壤养分空间分布[J].农业工程学报,2010(005):188-194.
    张永民.基于RS和GIS的土地利用格局模拟与分析——以河北省沽源县丰元店乡为例[J].干旱区地理,2007,30(6):981-987.
    张召,白中科,贺振伟,等.基于RS与GIS的平朔露天矿区土地利用类型与碳汇量的动态变化[J].农业工程学报,2012,28(3):230-236.
    张召.特大型露天煤矿排土场复垦规划设计案例研究——以平朔矿区为例[D].中国地质大学(北京),2013.
    赵飞.淄博市四宝山破坏立地条件分类与评价研究[D].山东农业大学,2008.
    赵荟,朱清科,王晶,等.黄土区阳坡不同立地植被恢复研究[J].干旱区资源与环境,2012(03):117-121.
    赵鹏祥,徐国策,王鸿哲,等.基于GIS的陕北农牧交错带立地类型划分研究[J].西北农林科技大学学报(自然科学版),2009,37(10):77-79.
    周启鸣,刘学军.数字地形分析[J].北京:科学出版社,2013.
    周伟,白中科,袁春,等.DEM在平朔露天矿区地形演变研究中的应用[J].矿业研究与开发,2008,5:021.
    周伟,白中科,袁春,等.山西平朔露天煤矿区地形演变分析[J].金属矿山,2008,4: 022.
    周应书,何兴辉,谢永贵,等.毕节喀斯特山地植被恢复立地类型划分[J].林业科学,2012(12):123-127.
    宗永强,林晓东,黄光庆,等.地貌统计[M].广州:科学普及出版社广州分社,1989.
    左丽君,徐进勇,张增祥,等.渤海海岸带地区土地利用时空演变及景观格局响应[J].遥感学报,2011,15(3):604-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700