用户名: 密码: 验证码:
Cu_2O/Ag微纳米结构的制备及其表面增强拉曼散射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)活性基底匮乏以及应用范围有限等问题,因此对SERS基底的研究十分必要。本论文开展了对半导体Cu2O,贵金属Ag及其复合物纳微米结构基底的SERS性能的研究。此研究不仅丰富了SERS活性基底的种类,也拓宽了SERS光谱技术的应用领域。主要研究内容包括:
     1.用简单的水浴方法,在80℃条件下,以葡萄糖为还原剂,调节柠檬酸钠碳酸钠混合物浓度和反应时间,合成了一系列具有良好单分散性的不同形貌的Cu2O微/纳米颗粒。并且用较短时间获得了空心结构Cu2O纳米骨架,补充和改进了原位选择氧化刻蚀方法。
     2.采用Cu2O化学模板方法制备了由纳米薄片组装而成的空心Ag纳米颗粒。稀硝酸的浓度对空心Ag纳米颗粒的合成起重要作用,随着混合物中酸浓度的增加Cu2O含量逐渐减少,而Ag含量逐渐增多,最后当加入的稀硝酸浓度达到2mM时,Cu2O基本消失,形成了表面粗糙的由纳米薄片组装而成的空心Ag纳米颗粒。与其他样品对比空心Ag纳米颗粒表现出最好的SERS能力,增强因子达到3.3×104。我们认为是空心结构和特殊的粗糙表面共同增加了“拉曼热点”和罗丹明B探针分子的吸附,因而使空心Ag纳米颗粒相对于其它样品呈现出更高的拉曼信号。此外,还对空心Ag纳米颗粒基底的灵敏度与均一性进行了测试,发现当罗丹明B浓度低到1×10-8M时仍可得到明显的拉曼峰,并且样品具有很好的均一性,其相对标准方差低于9.6%。这些特性对拉曼基底的实际应用是十分重要的。
     3.采用原位还原方法,在截角八面体Cu2O和Cu2O纳米骨架上分别包覆Ag纳米粒子,制备了实心Ag-Cu2O复合物微米结构(Ag-Cu2O CMSs)和空心Cu2O/Ag复合物纳米骨架(Cu2O/Ag CNFs)。随着母液中AgNO3含量的提高,所得实心Ag-Cu2O CMSs和空心Cu2O/Ag CNFs中的Ag颗粒尺寸和在Cu2O表面包覆的密度均增大,并趋于包覆完整。在AgNO3用量为0.40mM时,两种复合微纳米结构中Ag颗粒在Cu2O表面包覆完整且均匀,两者之间是生长在一起,且此时Ag与Cu2O之间形成的有效肖特基结面积达到最大。
     4.以原位还原方法制备的实心Ag-Cu2O CMSs和空心Cu2O/Ag CNFs复合微纳米结构为SERS基底,以罗丹明B为探针分子。对两种复合微纳米结构SERS性能进行研究,发现均具有随着AgNO3浓度的增加,产物的SERS性能先提高后降低规律。并且,在加入0.40mM的AgNO3时所制备实心Ag-Cu2O CMSs和空心Cu2O/Ag(2) CNFs均获得各自最优的拉曼增强特性。增强因子分别可达到7.8×104和1.8×105,其相对标准方差分别低于9.3%和2.88%,后者空心结构优于前者。并且都显著优于相同尺寸纯Ag纳米颗粒产生的SERS性能。
     5.将空心Cu2O/Ag(2) CNFs复合微纳米结构获得显著增强SERS归因于:一方面,Cu2O/Ag(2) CNFs能吸附更多的目标分子,并在界面处产生了更多的拉曼热点;另一方面,Ag与Cu2O之间肖特基结的引入,除了金属Ag表面局域等离子体共振产生的放大的电磁场外,还在Ag纳米颗粒与Cu2O之间形成了较强电磁场。在这两部分放大的电磁场和“借SERS效应”的协同作用下,使更多的吸附在Cu2O/Ag(2) CNFs表面的探针分子的SERS性能得以增强。因而Cu2O/Ag(2) CNFs优于纯Ag纳米颗粒,表现出更好的SERS性质。
The lack of notable metal Surface-enhanced Raman scattering (SERS) substratelimits the breadth of practical applications. In this work, we had a study about Cu2Osemiconductor, Ag nanoparticle and Ag-Cu2O composite composite structure SERSsubstrate, which has an important and significance. The study enrichs the kinds ofthe SERS substrates, and also widen the application of SERS technique. The mainresearch works are listed as following:
     1. We reported a simple solution-phase route for synthesis of Cu2O crystals withdifferent morphologies at temperature of80℃. In our system, the morphologicalevolution of Cu2O crystals has been investigated by using different amounts ofsodium citrate and sodium carbonate mixed solution, and then Cu2O nanoframes areobtained in relatively shorter time by stirring the resulting solution in air for about12hours at room temperature. The condition/theory for synthesis of Cu2O nanoframesand nanocages in our previous work is supplemented. Finally, the morphologicalevolution and the growth mechanism are also explored.
     2. Uniform silver hollow nanoparticles assembled by nanosheets have beensynthesized by using Cu2O as chemical template at room temperature. It was foundthat the concentrations of acid were critical to the formation of perfect nanosheetassembled hollow silver nanoparticles. In the reaction system, the Ag+ions werereduced by Cu+ions released from Cu2O template. When the concentration of acidincreased to2mM, the Cu2O template dissolved completely, and perfect nanosheetassembled hollow silver nanoparticles were generated. The hollow silvernanoparticles show the optimum SERS properties with an enhancement factor of3.3×104. The relative standard deviation (RSD) of Raman intensity is lower than9.6%, which are important for practical assays. The reasons for the enhancement of theSERS performance are investigated in detail.
     3. Ag-Cu2O composite microstructures (Ag-Cu2O CMSs) and hollow Cu2O/Agcomposite nanoframes (Cu2O/Ag CNFs) with tunable silver content have beensynthesized by directly deposited Ag onto Cu2O truncated octahedra/Cu2Onanoframes. Ag contents on the surface of Cu2O can be tuned through the variation ofthe concentration of AgNO3. When0.40mM AgNO3is used, Ag are uniformly andcompactly coated on Cu2O, and the effective coverage area of Ag on Cu2O isenhanced significantly.
     4. When0.40mM AgNO3is used, the prepared Ag-Cu2O CMSs and Cu2O/AgCNFs show significantly improved SERS properties. Ag-Cu2O CMSs with anenhancement factor is7.8×104, the value of RSD for the sample is lower than9.3%;Cu2O/Ag CNFs with an enhancement factor is1.8×105, the value of RSD for thesample is lower than2.88%. Cu2O/Ag CNFs exhibit higher SERS signals thanAg-Cu2O CMSs, and then pure Ag.
     5. The Cu2O/Ag (2) CNFs exhibits the highest SERS performance, this may bedue to (1) more Raman hot spots are introduced not only due to the Ag hot spots butalso the hot spots formed at the interface between Ag NPs and the Cu2O.(2) Underthe irradiation of a suitable laser, Cu2O/Ag CNFs cause charge transfer from Ag NPsto Cu2O nanoframes, which induce a larger electromagnetic field, except that A largeelectromagnetic field caused by localized surface plasmon resonance (LSPR) inducedby metal Ag. The adsorbed RB molecules are located in two part of enhancedelectromagnetic field and consequently exhibit a stronger Raman signal.
引文
[1] Smekal A., Naturwissenshaften,1923,11:873.
    [2] Raman C. V., Krishnan K. S., Nature,1928,121:169.
    [3] Smith E, Dent G. Modern Raman Spectroscopy: A Practical Approach. New York:John Wiley&Sons,2005.
    [4] Long D. A., Raman Spectroscopy Mc Graw-hill, New York,1977.
    [5] Behringer J., Brandmuller J., Z. Elektrochem,1956,60:643.
    [6] M. Fleischmann, P. J. Hendra, A. J. Mcquillan, Raman-spectra of pyridineadsorbed at a silver electrode [J]. Chem. Phys. Lett.,1974,26:163-166.
    [7] D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectro-chemistry.Heterocyclic aromatic and aliphatic-amines adsorbed on anodized silverelectrode [J]. J. Electroanal. Chem.,1977,84:1-20.
    [8] M. G. Albrecht, J. A. Creighton, Anomalously intense Raman spectra of pyridineat a silver electrode [J]. J. Am. Chem. Soc.,1977,99:5215-5217.
    [9] S. Nie, R. Emory, Probing single molecules and single nanoparticles bysurface-enhanced Raman scattering [J]. Science,1997,275:1102-1106.
    [10] K. Kneipp, Y. Wang, H. Kneipp, et al. Single molecule detection usingsurface-enhanced Raman scattering [J]. Phys. Rev. Lett.,1997,78:1667-1670.
    [11] J. T. Krug, G. D. Wang, S. R. Emory, et al. Efficient Raman enhancementandintermittent light emission observed in single gold nanocrystals [J]. J. Am.Chem. Soc.,1999,121:9208-9214.
    [12] S. Zou, M. J. Weaver, Surface-enhanced Raman scattering on uniformtransition-metal films: Toward a versatile adsorbate vibrational strategy forsolid-nonvacuum interfaces [J]. Anal. Chem.,1998,70:2387-2395.
    [13] A. T. Bell, The impact of nanoscience on heterogeneous catalysis [J]. Science,2003,299:1688-1691.
    [14] K. Kneipp, H. Kneipp, I. Itzkan, et al. Ultrasensitive chemical analysis byRaman spectroscopy [J]. Chem. Rev.,1999,99:2957-2976.
    [15] S. Nie, Y. Xing, G. J. Kim, et al. Nanotechnology applications in cancer [J]. Ann.Rev. Biomed. Eng.,2007,9:257-288.
    [16]X. Qian, X. H. Peng, D. O. Ansari, et al. In vivo tumor targeting andspectroscopic detection with surface-enhanced Raman nanoparticle tags [J]. Nat.Biotech.,2008,26:83-90.
    [17] D. Graham, K. Faulds, Quantitative SERRS for DNA sequence analysis [J].Chem. Soc. Rev.,2008,37:1042-1051.
    [18]S. Shanmukh, L. Jones, J. Driskell, et al. Rapid and sensitive detection ofrespiratory virus molecular signatures using a silver nanorod array SERSsubstrate [J]. Nano. Lett.,2006,6:2630-2636.
    [19] A. Otto, I. Mrozek, H. Grabhom, Surface-enhanced Raman scatting [J]. J.Phys.Condens. Matter.,1992,4:1143-1212.
    [20] M. Moskovits, Surface-enhanced spectroscopy [J]. Rev. Mod. Phys.,1985,57:3-828.
    [21] H. Metiu, Surface enhanced spectroscopy [J]. Prog. Surf. Sci.,1984,17:153-320.
    [22] J. R. Lombardi, R. L. Birke, A unified approach to surface-enhanced Ramanspectroscopy [J]. J. Phys. Chem C,2008,112:5605-5617.
    [23] M. Osawa, N. Matsuda, K. Yoshii, et al. Charge transfer resonance Ramanprocess in surface-enhanced Raman scattering from p-aminothiophenoladsorbed on silver: Herzberg-Teller contribution [J]. J. Phys. Chem.,1994,98:12702-12707.
    [24] L. Kliewer, R. Fuchs, Anomalous skin effect for specular electron scattering andoptical experiments at non-normal angles of incidence [J]. Phys. Rev.,1968,172:607-624.
    [25] S. Sibblad, C. G. Cotton. Reduction of cytochromec by halide-modified,laser-ablated silver colloids [J]. J. Phys. Chem.,1996,100(11):4672-4678.
    [26] C. L. Haynes, A. D. McFarland, R. P. Van Duyne, In situ kinetics ofself-assembly by surface plasmon resonance spectroscopy [J]. Langmuir,1996,12:4731-4740.
    [27] Gersten J. I., Nitzan A. Surface Enhanced Raman Scattering, Chang R. K.,Furtak T.E. Eds., Plenum Press: New Work,1982, p.35.
    [28] X. Lin, Y. Cui, Y. Xu, et al. Surface-enhanced Raman spectroscopy:substrate-related issues [J] Anal. Bioanalyt. Chem.2009,394:1729-1745.
    [29]丁松园,吴德印,杨志林.表面增强拉曼散射增强机理的部分研究进展[J]高等学校化学学报,2008,12,2569-2581.
    [30] Otto A., Mrozek I., Grabhorn H., et al. Surface-enhanced Raman scattering [J].Phys. Condens. Matter,1992,4:1143-1212.
    [31] Kambhampati P., Child C. M., Foster M. C., et al. On the chemical mechanismof surface enhanced Raman scattering: experiment and theory [J]. J. Chem.Phys.,1998,108:5013-5026.
    [32] Lombardi J. R., Birke R. L., Lu T., et al. Charge-transfer theory of surfaceenhanced Raman spectroscopy: Herzberg-Teller contributions [J]. J. Phys.Chem.,1986,90:4174-4180.
    [33] Jiang J., Bosnick K., Maillaid M. et al. Single molecular Raman spectroscopy atthe junctions of large Ag nanocrystals [J]. Journal of Physical Chemistry B,2003,107:9964-9972.
    [34] Demuth J. E., Christmann K., Sanda P. N. The vibrations and structure ofpyridine chemisorbed on Ag (111): the occurrence of a compressional phasetransformation [J]. Chemical Physics Letters,1980,76:201-206.
    [35] Cotton T. M., Kim J. H., Uphaus R.A., Spectroscopic and ElectrochemicalStudies of Oriented Monolayers on Electrode Surfaces [J]. MicrochemicalJournal,1990,42:44-71.
    [36] Tian Z. Q., Ren B., Li J. F., et al. Expanding generality of surface-enhancedRaman spectroscopy with borrowing SERS activity strategy [J]. Chem. Comm.,2007,3514-3534.
    [37] Matsui R, Verma P., Ichimura T., et al. Nanoanalysis of crystalline properties ofGaN thin film using tip-enhanced Raman spectroscopy [J]. Appl. Phys. Lett.2007,90:061906.
    [38] Jeon T Y, Park S-G, Lee S Y, et al. Shape Control of Ag Nanostructures forPractical SERS Substrates [J].ACS Appl. Mater. Interfaces,2013,5:243248.
    [39] Sun B, Jiang X, Dai S, et al. Single-crystal silver nanowires: Preparation andSurface-enhanced Raman Scattering (SERS) property [J]. Materials Letters,2009,63:2570–2573.
    [40] Si M Z, Kangc Y P, Zhang Z G, Surface-enhanced Raman scattering (SERS)spectra of chloramphenicol in Ag colloids prepared by microwave heatingmethod [J]. J. Raman Spectrosc.,2009,40:1319-1323.
    [41] Fan M, Lai F-J, Chou H-L, Lu W-T, et al. Surface-enhanced Raman scattering(SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe[J]. Chem. Sci.,2013,4:509-515.
    [42] Fang J, Lebedkin S, Yang S, Hahn H, A new route for the synthesis ofpolyhedral gold mesocages and shape effect in single-particle surface-enhancedRaman spectroscopy [J]. Chem. Commun.,2011,47:5157-5159.
    [43] C. Kong, S. Sun, X. Zhang, et al. Nanoparticle-aggregated hollow coppermicrocages and their surface-enhanced Raman scattering activity [J].CrystEngComm,2013,15:6136-6139.
    [44] E. B. Santos, F. A. Sigoli and I. O. Mazali, Metallic Cu nanoparticles dispersedinto porous glass: A simple green chemistry approach to prepare SERSsubstrates [J]. Mater. Lett.,2013,108:172-175.
    [45] D. Tsoutsi, L. Guerrini, J. M. Hermida-Ramon, V. Giannini, et al. SimultaneousSERS detection of copper and cobalt at ultratrace levels [J]. Nanoscale,2013,5:5841-5846.
    [46] B. Ren, X. F. Lin, J. W. Yan, et al. Electrochemically Roughened RhodiumElectrode as a Substrate for Surface-enhanced Raman Spectroscopy [J]. J. Phys.Chem. B,2003,107:899-902.
    [47] Z. Liu, Z. L. Yang, L. Cui, et al. Electrochemically Roughened PalladiumElectrodes for Surface-Enhanced Raman Spectroscopy: Methodology,Mechanism, and Application [J]. J. Phys. Chem. C,2007,111:1770-1775.
    [48] Yamada H, Yamamoto Y, Tani N. Surface-enhanced raman scattering (SERS) ofadsorbed molecules on smooth surfaces of metals and a metal oxide [J]. Chem.Phys. Lett.,1982,86:397-400.
    [49]Yamada H, Yamamoto Y. Surface enhanced Raman scattering (SERS) ofchemisorbed species on various kinds of metals and semiconductors [J]. SurfSci,1983,134:71-90.
    [50] Liao L B, Zhou H Y, Xiao X. M. RETRACTED: Surface enhanced Ramanscattering at single crystal TiO2[J]. Chem. Phys.,2005,316:164-170.
    [51] Perez Leon C, Kador L, Peng B, et al. Characterization of the Adsorption ofRu-bpy Dyes on Mesoporous TiO2Films with UV Vis, Raman, and FTIRSpectroscopies [J]. J. Phys. Chem. B,2006,110:8723-8730.
    [52] Hayashi S, Koh R, IchiyamaY, et al. Phys. Rev. Lett.[J],1988,60:1085-1088.
    [53] Potts J. E, Merlin R, Partin D. L. Phys. Rev. B [J],1983,27:3095-3098.
    [54] Zhang P, Wang Y H, He T J, et al. SERS of pyridine,1,4-dioxane and1-ethyl-3′-methyl-2-thiacyanine iodide adsorbed on α-Fe2O3colloids [J]. Chem.Phys. Lett.,1988,153:215-222.
    [55] Wen H, He T J, Xu C. Y, et al. Identification and Characterization of the MouseObesity Gene tubby: A Member of a Novel Gene Family [J]. Mol. Phys.,1996,88:281-290.
    [56] Sun Z. H, Zhao B, Lombardi J. R. ZnO nanoparticle size-dependent excitationof surface Raman signal from adsorbed molecules: Observation of acharge-transfer resonance [J]. Appl Phys. Lett.,2007,91:221106(1-3).
    [57] Wang Y. F, Sun Z. H, Wang Y. X, et al. Raman scattering study of moleculesadsorbed on ZnS nanocrystals [J]. J. Raman Spectrosc.,2007,38:34-38.
    [58] Kudelski A, Grochala W, Janik-Czachor M, et al. Surface-enhanced Ramanscattering (SERS) at Copper (I) oxide [J]. J. Raman Spectrosc.,1998,29:431-435.
    [59] Wang Y. F, Hu H. L, Jing S. Y, et al. Enhanced Raman Scattering as a Probe for4-Mercaptopyridine Surface-modified Copper Oxide Nanocrystals [J]. Anal Sci,2007,23:787-791.
    [60] Blajiev O, Terryn H, Hubin A, et al. Adsorption of some benzohydroxamic acidderivatives on copper oxide: assignment and interpretation of SERS spectra [J].J. Raman Spectrosc.,2006,37:777-788.
    [61]Quagliano L. G. Observation of Molecules Adsorbed on III-V SemiconductorQuantum Dots by Surface-Enhanced Raman Scattering [J]. J. Am. Chem. Soc.,2004,126:7393-7398.
    [62]Wang Y. F, Sun Z. H, Wang Y. X, et al. Surface-enhanced Raman scattering onmercaptopyridine-capped CdS microclusters [J]. Spectrochimca Acta A,2007,66:1199-1203.
    [63]Wang Y. F, Zhang J. H, Jia H. Y, et al. Mercaptopyridine Surface-FunctionalizedCdTe Quantum Dots with Enhanced Raman Scattering Properties [J]. J. Phys.Chem. C,2008,112:996-1000.
    [64] Zhang C, Abdijalilov K, Grebel H. Surface enhanced Raman with anodizedaluminum oxide films [J]. J. Chem. Phys.,2007,127:044701(1-5).
    [65] Zhang C, Smirnov A. I, Hahn D, et al. Surface enhanced Raman scattering ofbiospecies on anodized aluminum oxide films [J]. Chem. Phys. Lett.,2007,440:239-243.
    [66] Wang X. Q, Wen H, He T. J, et al. Surface-enhanced Raman scattering fromcitrate, azobenzene, pyridine and cyanine dyes adsorbed on Ag2O colloids [J].Spectrochim. Acta A,1997,53:1411-1417.
    [67] Wang Y. F, Zhang J. H, Jia H. Y, et al. Mercaptopyridine Surface-FunctionalizedCdTe Quantum Dots with Enhanced Raman Scattering Properties [J]. J. Phys.Chem. C,2008,112:996-1000.
    [68] X X Xue, W Ji, Z Mao, et al. Raman Investigation of Nanosized TiO2: Effect ofCrystallite Size and Quantum Confinement [J]. Journal of Physical Chemistry C.2012,116:8792-8797.
    [69] Wang W, Li Z, Gu B, et al. Ag@SiO2core-shell nanoparticles for probingspatial distribution of electromagnetic field enhancement via surface-enhancedRaman scattering [J]. ACS Nano,2009,3:3493–3496.
    [70]Wang W, Feng Z, Jiang W, et al. Electrospun porous CuO–Ag nanofibers forquantitative sensitive SERS detection [J]. CrystEngComm,2013,15:1339–1344.
    [71] Song, W, Wang, Y, Zhao, B. Surface-enhanced Raman scattering of4-mercaptopyridine on the surface of TiO2nanofibers coated with Agnanoparticles [J]. J. Phys. Chem. C,2007,111:12786-12791.
    [72] Gao Q, Zhao A, Gan Z, et al. Facile fabrication and growth mechanism of3Dflower-like Fe3O4nanostructures and their application as SERS substrates [J].CrystEngComm,2012,14:4834–4842.
    [73] C. W. Cheng, B. Yan, Sh. M. Wong, et al. Fabrication and SERS performance ofsilver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays [J]. ACS Appl.Mater. Interfaces,2010,2:1824-1828.
    [74] L. M. Chen, L. B. Luo, Zh. H. Chen, et al. ZnO/Au composite nanoarrays assubstrates for surface-enhanced Raman scattering detection [J]. J. Phys. Chem.C,2010,114:93-100.
    [75] L. B. Yang, X. Jiang, W. D. Ruan, et al. Observation of enhanced Ramanscattering for molecules adsorbed on TiO2nanoparticles: Charge-transfercontribution [J]. J. Phys. Chem. C,2008,112:20095-20098.
    [76] Z. H. Sun, Z. Bing, J. R. Lombardi, et al. ZnO nanoparticle size-dependentexcitation of surface Raman signal from adsorbed molecules; Observation of acharge-transfer esonance [J]. Appl. Phys. Lett.,2007,91:221106.
    [77] Yang Z, Sun S, Kong C, et al. Designated-Tailoring on {100} Facets of Cu2ONanostructures: From Octahedral to Its Different Truncated Forms. Journal ofNanomaterials, Volume2010, Article ID710584,11pages, doi:10.1155/2010/710584.
    [78] S. D. Sun, X. Z. Zhang, X. P. Song, et al. Bottom-up assembly of hierarchicalCu2O nanospheres: controllable synthesis, formation mechanism and enhancedphotochemical activities [J]. CrystEngComm,2012,14:3545-3553.
    [79] S. D. Sun, F. Y. Zhou, L. Q. Wang, et al. Template-Free Synthesis ofWell-Defined Truncated Edge Polyhedral Cu2O Architectures [J]. Cryst.Growth Des.,2010,10:541.
    [80] S. D. Sun, C. C. Kong, S. C. Yang, et al. Highly symmetric polyhedral Cu2Ocrystals with controllable-index planes [J]. CrystEngComm,2011,13:2217-2221.
    [81] S. D. Sun, D. C. Deng, C. C. Kong, et al. Seed-mediated synthesis of polyhedral50-facet Cu2O architectures [J]. CrystEngComm,2011,13:5993-5997.
    [82] S. D. Sun, X. P. Song, Y. X. Sun, et al. The crystal-facet-dependent effect ofpolyhedral Cu2O microcrystals on photocatalytic activity [J]. Catal. Sci.Technol.,2012,2:925-930.
    [83] S. D. Sun, H. Zhang, X. P. Song, et al. Polyhedron-aggregated multi-facet Cu2Ohomogeneous structure [J]. CrystEngComm,2011,13:6040-6044.
    [84] S. D. Sun, X. P. Song, C. C. Kong, et al. Selective-etching growth of urchin-likeCu2O architectures [J]. CrystEngComm,2011,13:6616-6620.
    [85] S. D. Sun, H. J. You, C. C. Kong, et al. Etching-limited branching growth ofcuprous oxide during ethanol-assisted solution synthesis [J]. CrystEngComm,2011,13:2837-2840.
    [86] F. Hong, S. D. Sun, H. J. You, et al. Cu2O Template Strategy for the Synthesis ofStructure-Definable Noble Metal Alloy Mesocages [J]. Cryst. Growth Des.,2011,11:3694-3697.
    [87] S. D. Sun, X. P. Song, C. C. Kong, et al. Unique polyhedral26-facet CuShollow architectures decorated with nanotwinned, mesostructural and singlecrystalline shells [J]. CrystEngComm,2011,13:6200-6205.
    [88] S. D. Sun, D. C. Deng, C. C. Kong, et al. Twins in polyhedral26-facet Cu7S4cages: Synthesis, characterization and their enhancing photochemical activities[J]. Dalton Trans.,2012,41:3214-3222.
    [89] S. D. Sun, X. P. Song, D. C. Deng, et al. Nanotwins in polycrystalline Cu7S4cages: highly active architectures for enhancing photocatalytic activities [J].Catal. Sci. Technol.,2012,2;1309-1314.
    [90]S. D. Sun, X. P. Song, C. C. Kong, et al. Copper sulfide cages wholly exposedwith nanotwinned building blocks [J]. CrystEngComm,2012,14:67-70.
    [91] S. D. Sun, C. C. Kong, D. C. Deng, et al. Nanoparticle-aggregated octahedralcopper hierarchical nanostructures [J]. CrystEngComm,2011,13:63-66.
    [92] S. D. Sun, C. C. Kong, H. J. You, et al. Facet-selective growth of Cu–Cu2Oheterogeneous architectures [J]. CrystEngComm,2012,14:40-43.
    [93] S. D. Sun, C. C. Kong, L. Q. Wang, et al. Nanoparticle-aggregated paddy-likecopper dendritic nanostructures [J]. CrystEngComm,2011,13:1916-1921.
    [94] W. Z. Wang, G. H. Wang, X. S. Wang, et al. Synthesis and Characterization ofCu2O Nanowires by a Novel Reduction Route [J], Adv. Mater,2002,14:67.
    [95] M. H. Cao, C. W. Hu, Y. H. Wang, et al. A controllable synthetic route to Cu,Cu2O, CuO nanotubes and nanorods [J]. Chem. Commun,2003,1884.
    [96] C. Hwee, B. Ng, W. Y. Fan. Shape Evolution of Cu2O Nanostructures viaKinetic and Thermodynamic Controlled [J]. Growth. J. Phys. Chem. B.,2006,110:20801.
    [97] H. L. Xu, W. Z. Wang. Template Synthesis of Multishelled Cu2O HollowSpheres with a Single-Crystalline Shell Wall [J]. Angew. Chem., Int. Ed.,2007,46:1489-1492.
    [98] C. H. Lu, L. M. Qi, J. H. Yang, et al. One-Pot Synthesis of Octahedral Cu2ONanocages via a Catalytic Solution Route [J]. Adv. Mater.,2005,17:2562-2567.
    [99] C. H. Kuo, M. H. Huang. Fabrication of truncated rhombic dodecahedral Cu2Onanocages and nanoframes by particle aggregation and acidic etching [J]. J. Am.Chem. Soc.,2008,130:12815-12820.
    [100]H. Liu, Y. Zhou, S. A. Kulinich, et al. Scalable synthesis of hollow Cu2Onanocubes with unique optical properties via a simple hydrolysis-basedapproach [J]. J. Mater. Chem. A,2013,1:302-307.
    [101] Y. M. Sui, W. Fu, Y. Zeng, et al. Synthesis of Cu2O Nanoframes andNanocages by Selective Oxidative Etching at Room Temperature [J]. Angew.Chem., Int. Ed.,2010,49:4282.
    [102]Z. Y. Gao, J. L. Liu, J. L. Chang, et al. Mesocrystalline Cu2O hollow nanocubes:synthesis and application in non-enzymatic amperometric detection of hydrogenperoxide and glucose [J]. CrystEngComm,2012,14:6639-6646.
    [103]M. J. Siegfried, K-S. Choi. Electrochemical Crystallization of Cuprous Oxidewith Systematic Shape Evolution [J]. Adv. Mater.,2004,16:1743.
    [104]赵文燕. Cu2O、ZnO纳微结构薄膜的制备及其光电性能研究[D].长春:吉林大学原子与分子物理研究所,2011.
    [105]F. Sun, Y. Guo, W. Song, et al. Morphological control of Cu2Omicro-nanostructure film by electrodeposition [J]. J. Cryst. Growth,2007,304:425.
    [106]M. J. Siegfried, K-S. Choi. Directing the Architecture of Cuprous OxideCrystals during Electrochemical Growth [J], Angew. Chem.,2005,117:3282–3287.
    [107]R. Costi, A. E. Saunders, U. Banin. Colloidal Hybrid Nanostructures: A NewType of Functional Materials [J]. Angew. Chem. Int. Ed.,2010,49:4878-4897.
    [108]N. Tian, Z. Y. Zhou, S. G. Sun, et al. Synthesis of tetrahexahedral platinumnanocrystals with high-index facets and high electro-oxidation activity [J].Science,2007,316:732-735.
    [109]A. R. Tao, S. Habas, P. D. Yang. Shape Control of Colloidal MetalNanocrystals [J]. Small,2008,4:310-325.
    [110]Y. N. Xia, P. D. Yang, Y. G. Sun, Y et al. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J]. Adv. Mater.,2003,15:353-389.
    [111]A. O. Musa, T. Akomolafe, M. J. Carter. Production of cuprous oxide, a solarcell material, by thermal oxidation and a study of its physical and electricalproperties [J]. Sol. Energy Mater. Sol.Cells,1998,51:305-316.
    [112]P. E. de Jongh, D. l. Vanmaekelbergh, J. J. Kelly. Cu2O: a catalyst for thephotochemical decomposition of water?[J]. Chem. Commun.,1999,1069-1070.
    [113] J. T. zhang, J. F. Liu, Q. Peng, X. Wang and Y. Li, Nearly Monodisperse Cu2Oand CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors[J]. Chem. Mater.,2006,18:867-871.
    [114]H. Xu, W. Wang, W. Zhu. Shape Evolution and Size-Controllable Synthesis ofCu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties[J]. J. Phys. Chem. B,2006,110:13829.
    [115]C.-H. Kuo, C.-H. Chen, M. H. Huang. Seed-Mediated Synthesis ofMonodispersed Cu2O Nanocubes with Five Different Size Ranges from40to420nm [J]. Adv. Funct. Mater.,2007,17:3773-3780.
    [116]M. Hara, T. Kondo, M. Komoda, et al. Cu2O as a photocatalyst for overallwater splitting under visible light irradiation [J]. Chem. Commun.,1998,357-358.
    [117]J. H. Zhong, G. R. Li, Z. L. Wang, et al. Facile Electrochemical Synthesis ofHexagonal Cu2O Nanotube Arrays and Their Application [J]. Inorg. Chem.,2011,50:757-763.
    [118]L. Gou, C. J. Murphy. Solution-Phase Synthesis of Cu2O Nanocubes [J]. NanoLett.,2003,3:231-234.
    [119]M. J. Siegfried, K.-S. Choi. Elucidating the Effect of Additives on the Growthand Stability of Cu2O Surfaces via Shape Transformation of Pre-GrownCrystals [J]. J. Am. Chem. Soc.,2006,128:10356-10357.
    [120]W. Wang, G. Wang, X. Wang, et al. Synthesis and Characterization of Cu2ONanowires by a Novel Reduction Route [J]. Adv. Mater.,2002,14:67-69.
    [121]Y. M. Sui, W. Fu, H. B. Yang. Low Temperature Synthesis of Cu2O Crystals:Shape Evolution and Growth Mechanism [J]. Crystal Growth&Design,2010,10:99-108.
    [122]Y. M. Sui, W. Fu, Y. Zeng. Synthesis of Cu2O Nanoframes and Nanocages bySelective Oxidative Etching at Room Temperature [J]. Angew. Chem. Int. Ed.2010,49:4282-4285.
    [123]隋永明.氧化亚铜纳米结构制备及性能研究[D].长春:吉林大学原子分子物理研究所,2010.
    [124]Z. W. Quan, C. X. Li, X. M. Zhang, et al. Polyol-Mediated Synthesis of PbSCrystals: Shape Evolution and Growth Mechanism [J]. Cryst Growth Des.,2008,8:2384-2392.
    [125]S. D. Sun, F. Y. Zhou, L. Q. Wang, et al. Template-Free Synthesis ofWell-Defined Truncated Edge Polyhedral Cu2O Architectures [J]. Cryst.Growth Des.,2010,10:541-547.
    [126]S. W. Chou, C. L. Zhu, S. Neeleshwar, et al. Controlled Growth and MagneticProperty of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, andCube [J]. Chem. Mater.,2009,21:4955-4961.
    [127]G. Pablo Etchegoin, C. Eric Le Ru, Matthias Meyer. Evidence of naturalisotopic distribution from single-molecule SERS [J]. J. Am. Chem. Soc.,2009,131:2713-2716.
    [128]A. Campion, P. Kambhampati. Surface-enhanced Raman scattering [J]. Chem.Soc. Rev.,1998,27:241-250.
    [129]Y. N. Xia, N. J. Halas. Shape-controlled synthesis and surface plasmonicproperties of metallic nanostructures [J]. MRS Bull.2004,30:338-348.
    [130]J. B. Jackson, N. J. Halas. Silver nanoshells: variations in morphologies andoptical properties [J]. J. Phys. Chem. B,2001,105:2743-2746.
    [131]B. Erez, E. Uri, S. Yoav. DNA-templated assembly and electrode attachment ofa conducting silver wire [J]. Nature,1998,391:775-778.
    [132]Y. Wang, T. Gao, K. Wang. Template-assisted synthesis of uniformnanosheet-assembled silver hollow microcubes [J]. Nanoscale,2012,4:7121-7126.
    [133]G. V. P. Kumar, S. Shruthi, B. Vibha. Hot spots in Ag core–Au shellnanoparticles potent for surface-enhanced Raman scattering studies ofbiomolecules [J]. J. Phys. Chem. C,2007,111:4388–4392.
    [134]J. Fang, S. Lebedkin, S. Yang. A new route for the synthesis of polyhedral goldmesocages and shape efect in single-particle surface-enhanced Ramanspectroscopy [J]. Chem. Commun.,2011,47:5157–5159.
    [135]Y. Qin, R. Che, C. Liang. Synthesis of Au and Au–CuO cubic microcages viaan in situ sacrificial template approach [J]. J. Mater. Chem.,2011,21:3960–3965.
    [136]Z. Wang, D. Luan, C. M. Li. Engineering Nonspherical Hollow Structures withComplex Interiors by Template-Engaged Redox Etching [J]. J. Am. Chem. Soc.,2010,132:16271–16277.
    [137]J. Li, Q. Kan, C. Wang. Chin. Opt. Lett.,2011,9:090501–090504.
    [138]U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters [J]. Springer,Berlin,1995.
    [139]C. Fang, A. V. Ellis, N. H. Voelcker. Electrochemical synthesis of silver oxidenanowires, microplatelets and application as SERS substrate precursors [J].Electrochim. Acta,2012,59:346-353.
    [140]Y. Nishi, T. Miyata, T. Minami. The impact of heterojunction formationtemperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells[J]. Thin Solid Films,5282013,528:72–76.
    [141]A. Kudelski, W. Grochala, M. Janik-Czachor. Surface-enhanced Ramanscattering (SERS) at Copper (I) oxide [J]. J. Raman Spectrosc.,1998,29:431-435.
    [142]C. Qiu, Y. Bao, N. L. Netzer. Structure evolution and SERS activation ofcuprous oxide microcrystals via chemical etching [J]. J. Mater. Chem. A,2013,1,8790-8797.
    [143]R. C. Wang, H. Y. Lin. Efficient surface enhanced Raman scattering from Cu2Oporous nanowires transformed from CuO nanowires by plasma treatments [J].Mater. Chem. Phys.,2012,136:661-665.
    [144]L. Jiang, T. You, P. Yin. Surface-enhanced Raman scattering spectra ofadsorbates on Cu O nanospheres: charge-transfer and electromagneticenhancement [J]. Nanoscale,2013,5:2784-2789.
    [145]S. Feng, D. Lin, J. Lin. Blood plasma surface-enhanced Raman spectroscopyfor non-invasive optical detection of cervical cancer [J]. Analyst,2013,138:3967-3974.
    [146]A. M. Mohs, M. C. Mancini, S. Singhal, et al. Hand-held Spectroscopic Devicefor In Vivo and Intraoperative Tumor Detection: Contrast Enhancement,Detection Sensitivity, and Tissue Penetration [J]. Anal. Chem.,2010,82:9058-9065.
    [147]T. Takahashi, S. Kuroiwa, T. Ogura, et al. Probing the Oxygen ActivationReaction in Intact Whole Mitochondria through Analysis of MolecularVibrations [J]. J. Am. Chem. Soc.,2005,127:9970-9971.
    [148]S. D. Hudson, G. Chumanov. Bioanalytical applications of SERS(surface-enhanced Raman spectroscopy)[J]. Anal. Bioanal. Chem.,2009,394,679-686.
    [149] Y. C. Cao, R. Jin, J. M. Nam, et al. Raman dye-labeled nanoparticle probes forproteins [J]. J. Am. Chem. Soc.,2003,125,14676-146767.
    [150] S. L. Kleinman, R. R. Frontiera, A.-I. Henry, et al. Creating, characterizing,and controlling chemistry with SERS hot spots [J]. Phys. Chem. Chem. Phys.,2013,15:21–36.
    [151]L. L. Li, X. B. Chen, Y. Wu, Pd-Cu2O and Ag-Cu2O Hybrid ConcaveNanomaterials for an Effective Synergistic Catalyst [J]. Angew. Chem., Int. Ed.,2013,52:11049-11053.
    [152] G. Shan, L. Xu, G. Wang, et al. Enhanced Raman Scattering of ZnO QuantumDots on Silver Colloids [J]. J. Phys. Chem. C,2007,111:3290-3293.
    [153] H. Zhang, D. F. Zhang, L. Guo, et al. One-Pot Assembly of Cu2O Chain-LikeHollow Structures [J]. J. Nanosci. Nanotechnol.,2008,8:6332-6337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700