用户名: 密码: 验证码:
铁氧化物及其复合纳米材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了磁性铁氧化物及其复合纳米材料的制备与性质研究。
     第一章绪论中,对铁氧化物的研究现状进行简单总结,详述了磁性铁氧化物的制备及应用;在第二章中,采用水热法合成了γ-Fe2O3磁性纳米材料,对产物进行了物相和形貌等表征,同时对γ-Fe2O3的磁学性质和比表面积进行了研究;在第三章中,将制备的γ-Fe2O3纳米材料用于以Cr6+为代表的重金属离子和以甲基橙为代表的有机染料的吸附,对吸附过程热力学和动力学进行了研究;在第四章中,尝试在水热条件下进行TiO2及α-Fe2O3/TiO2复合纳米材料的制备。在TiO2的制备过程中,通过调节溶剂中HCl的用量,可以得到不同相的TiO2;在制备复合材料时,通过调节反应物硝酸铁的用量,可以得到不同形貌的复合产物。且在相同条件下,α-Fe2O3/TiO2复合纳米材料对甲基橙的光催化降解效率高于TiO2。
The iron oxides of maghemite (y-Fe2O3) and magnetite (Fe3O4) are promising candidates in environmental issues. Magnetic iron oxides are widely reported with low cost, strong adsorption capacity, easy separation in wastewater treatment. Here, we report the assembly of y-Fe2O3nanoparticles into particulate nanosheets in solvothermal system, the magnetic adsorbents display extraordinary performance in removing Cr6+and methyl orange. Also, the synthesis and properties of α-Fe2O3/TiO2hybrid nanostructure are studied. The details are as follows:
     1. The possible polymorphous transformations of α-Fe2O3,β-Fe2O3, y-Fe2O3and ε-Fe2O3are reviewed. The structural, magnetic properties, methods of synthesis, and applications of y-Fe2O3are summarized. In addition, the toxicity of heavy metals and organic pollutants are discussed in detail.
     2. The maghemite particulate nanosheets are prepared in solvothermal system by connecting the nanoparticles in two-dimension. The reaction temperature, reaction time and the ratios of the solvents have direct influences on the product. When the reaction time is6h, the product is mainly composed of agglomerated nanoparticles. When the reaction time is prolonged to12h, more nanosheets are observed. A great number of nanosheets are obtained when the reaction time extended to24h. A two-stage growth process is proposed for the formation of the maghemite particulate nanosheets. N2adsorption-desorption isotherm curve are conducted to investigate the specific surface area. Our results suggest that the maghemite particulate nanosheets have more accessible surface area comparing with that of the nanoparticles. We also measured the magnetic properties of the maghemite particulate nanosheets and nanoparticles, both of them exhibit ferromagnetic characteristics at4K and superparamagnetic characteristics at300K. The γ-Fe2O3nanoparticles shows that the blocking temperatures is ca.75K, which is common for superparamagnetic nanoparticles. For the maghemite particulate nanosheets, the peak temperature shifts to a higher value of ca.170K comparing with that of γ-Fe2O3nanoparticles,
     3. The adsorption experiments of Cr6+and methyl orange onto the γ-Fe2O3nanoparticles and maghemite particulate nanosheets are performed at room temperature. The pH of the solution influences the surface properties of the adsorbent. Therefore, the adsorption process is critically associated with pH value. When the y-Fe2O3nanoparticles and maghemite particulate nanosheets are used in removal of Cr6+, the optimized pH value is3.0. The Cr6+removal process fit with Langmuir adsorption model with an adsorption capacity of20.41mg/g. The purified solution could reach a residual concentration of0.002mg/L for maghemite particulate nanosheets, which is much less than the concentration in the solution of0.249mg/L when the nanoparticles are used. The used MPNs are regenerated by immersing in NaOH and the removal efficiency could reach98.79%after ten cycles. In addition, the maghemite particulate nanosheets also exhibit excellent adsorption efficiency to methyl orange. The removal process fit with Langmuir adsorption model with an adsorption capacity of22.79mg/g.
     4. TiO2and α-Fe2O3/TiO2hybrid nanostructures are synthesized using hydrothermal method. For the preparation of TiO2, anatase and rutile TiO2could be obtained with different amount of HCl. For the synthesis of α-Fe2O3/TiO2hybrid nanostructures, by adjusting the amount of Fe(NO3)3·9H2O, we can get the hybrid nanostructures with different morphologies. The photocatalytic experiments are conducted using TiO2and a-Fe2O3/TiO2hybrid nanostructures, the Fe2O3/TiO2hybrid nanostructures exhibit higher photocatalytic properties compared with that of TiO2.
引文
[I]ASTRUC DIDIER. Nanoparticles and catalysis [M]. Wiley Online Library,2008.
    [2]KLABUNDE KENNETH J, RICHARDS RYAN. Nanoscale materials in chemistry [M]. Wiley Online Library,2001.
    [3]MCHENRY ME, LAUGHLIN DE. Nano-scale materials development for future magnetic applications [J]. Acta Materialia,2000,48(1):223-238.
    [4]BERRY CATHERINE C, CURTIS ADAM SG. Functionalisation of magnetic nanoparticles for applications in biomedicine [J]. Journal of Physics D:Applied Physics,2003,36(13):R198.
    [5]F JIAO P, Y ZHOU H, X CHEN L, et al. Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy [J]. Current Medicinal Chemistry,2011,18(14):2086-2102.
    [6]FORTINA PAOLO, KRICKA LARRY J, GRAVES DAVID J, et al. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer [J]. Trends in Biotechnology,2007,25(4):145-152.
    [7]HANS ML, LOWMAN AM. Biodegradable nanoparticles for drug delivery and targeting [J]. Current Opinion in Solid State and Materials Science,2002,6(4):319-327.
    [8]JAIN PRASHANT K, EL-SAYED IVAN H, EL-SAYED MOSTAFA A. Au nanoparticles target cancer [J]. Nano Today,2007,2(1):18-29.
    [9]KIM HYUN-JONG, AHN JI-EUN, HAAM SEUNGJOO, et al. Synthesis and characterization of mesoporous Fe/SiO2for magnetic drug targeting [J]. Journal of Materials Chemistry,2006,16(17):1617-1621.
    [10]KIM JAEYUN, KIM HOE SUK, LEE NOHYUN, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery [J]. Angewandte Chemie International Edition,2008,47(44):8438-8441.
    [11]FREY NATALIE A, PENG SHENG, CHENG KAI, et al. Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage [J]. Chemical Society Reviews,2009,38(9):2532-2542.
    [12]CAO CHANG-YAN, QU JIN, YAN WEN-SHENG, et al. Low-cost synthesis of flowerlike a-Fe2O3nanostructures for heavy metal ion removal: adsorption property and mechanism [J]. Langmuir,2012,28(9):4573-4579.
    [13]CHENG GANG, XIONG JINYAN, YANG HAO, et al. Facile solvothermal synthesis of uniform sponge-like Bi2SiO5hierarchical nanostructure and its application in Cr(VI) removal [J]. Materials Letters,2012,77:25-28.
    [14]HU JING, LO IRENE, CHEN GUOHUA. Performance and mechanism of chromate(VI) adsorption by δ-FeOOH-coated maghemite (y-Fe2O3) nanoparticles [J]. Separation and Purification Technology,2007,58(1):76-82.
    [15]SHEN HAOYU, PAN SHENGDONG, ZHANG YUN, et al. A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4magnetic polymers in Cu(II), Cr(VI) co-existing water system [J]. Chemical Engineering Journal,2012,183:180-191.
    [16]BHAUMIK MADHUMITA, MAITY ARJUN, SRINIVASU VV, et al. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4magnetic nanocomposite [J]. Journal of Hazardous Materials,2011,190(1):381-390.
    [17]LI XUEAI, ZHANG BIN, JU CHUNHUA, et al. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4nanostructures from iron alkoxide precursors [J]. The Journal of Physical Chemistry C,2011,115(25):12350-12357.
    [18]LI XIYAN, HUANG XIAOLEI, LIU DAPENG, et al. Synthesis of3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery [J]. The Journal of Physical Chemistry C,2011,115(44):21567-21573.
    [19]CUSHING BRIAN L, KOLESNICHENKO VLADIMIR L, O'CONNOR CHARLES J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chemical Reviews,2004,104(9):3893-3946.
    [20]HAO RUI, XING RUIJUN, XU ZHICHUAN, et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles [J]. Advanced Materials,2010,22(25):2729-2742.
    [21]DJOUIDER FATHI. Radiolytic formation of non-toxic Cr(III) from toxic Cr(VI) in formate containing aqueous solutions:A system for water treatment [J]. Journal of Hazardous Materials,2012,223:104-109.
    [22]PETERS ROBERT W. Chelant extraction of heavy metals from contaminated soils [J]. Journal of Hazardous Materials,1999,66(1):151-210.
    [23]TESTA JUAN J, GRELA MAR A A, LITTER MARTA I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2particles in the presence of oxalate:involvement of Cr(V) species [J]. Environmental Science&Technology,2004,38(5):1589-1594.
    [24]LIU XIAOWANG, HU QIYAN, FANG ZHEN, et al. Magnetic chitosan nanocomposites:a useful recyclable tool for heavy metal ion removal [J]. Langmuir,2008,25(1):3-8.
    [25]MATLOCK MATTHEW M, HOWERTON BROCK S, ATWOOD DAVID A. Chemical precipitation of heavy metals from acid mine drainage [J]. Water Research,2002,36(19):4757-4764.
    [26]CHEN QUANYUAN, LUO ZHOU, HILLS COLIN, et al. Precipitation of heavy metals from wastewater using simulated flue gas:Sequent additions of fly ash, lime and carbon dioxide [J]. Water Research,2009,43(10):2605-2614.
    [27]ZHONG L-S, HU J-S, LIANG H-P, et al. Self-assembled3D flowerlike iron oxide nanostructures and their application in water treatment [J]. Advanced Materials,2006,18(18):2426-2431.
    [28]FARAJI M, YAMINI Y, REZAEE M. Magnetic nanoparticles:synthesis, stabilization, functionalization, characterization, and applications [J]. Journal of the Iranian Chemical Society,2010,7(1):1-37.
    [29]DUGUET ETIENNE, VASSEUR S BASTIEN, MORNET ST PHANE, et al. Magnetic nanoparticles and their applications in medicine [J]. Nanomedcine,2006,1(2):157-168.
    [30]MANDEL KARL, HUTTER FRANK. The magnetic nanoparticle separation problem [J]. Nano Today,2012,7(6):485-487.
    [31]AN KWANGJIN, SOMORJAI GABOR A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis [J]. ChemCatChem,2012,4(10):1512-1524.
    [32]HAN LIHONG, CHEN YANCHANG, WEI YU. Hierarchical flower-like Fe3O4and γ-Fe2O3nanostructures:synthesis, growth mechanism and photocatalytic properties [J]. CrystEngComm,2012,14(14):4692-4698.
    [33]HOLMES JUSTIN D, JOHNSTON KEITH P, DOTY R CHRISTOPHER, et al. Orientation of solution-grown silicon nanowires [J]. Science,2000,287:1471.
    [34]HU CG, LIU HONG, DONG WT, et al. La(OH)3and La2O3nanobelts-synthesis and physical properties [J]. Advanced Materials,2007,19(3):470-474.
    [35]JIA CHUN-JIANG, SUN LING-DONG, LUO FENG, et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings [J]. Journal of the American Chemical Society,2008,130(50):16968-16977.
    [36]LI LIANG, YANG YOU-WEN, LI GUANG-HAI, et al. Conversion of a Bi nanowire array to an array of Bi-Bi2O3core-shell nanowires and Bi2O3nanotubes [J]. Small,2006,2(4):548-553.
    [37]LIM BYUNGKWON, XIA YOUNAN. Metal nanocrystals with highly branched morphologies [J]. Angewandte Chemie International Edition,2011,50(1):76-85.
    [38]KRUSIN-ELBAUM L, NEWNS DM, ZENG H, et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping [J]. Nature,2004,431(7009):672-676.
    [39]LAURENT SOPHIE, FORGE DELPHINE, PORT MARC, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chemical Reviews,2008,108(6):2064-2110.
    [40]LIN FANG-HSIN, CHEN WEI, LIAO YU-HSIANG, et al. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4(M=Ag, Au, Pt, Pd) heterostructures [J]. Nano Research,2011,4(12):1223-1232.
    [41]LIN YU-SHEN, WU SI-HAN, HUNG YANN, et al. Multifunctional composite nanoparticles:magnetic, luminescent, and mesoporous [J]. Chemistry of Materials,2006,18(22):5170-5172.
    [42]LIU JIAN, QIAO SHI ZHANG, HU QIU HONG. Magnetic nanocomposites with mesoporous structures:synthesis and applications [J]. Small,2011,7(4):425-443.
    [43]LOU XIONG WEN DAVID, ARCHER LYNDEN A, YANG ZICHAO. Hollow micro-/nanostructures:synthesis and applications [J]. Advanced Materials,2008,20(21):3987-4019.
    [44]MAJEWSKI PETER, THIERRY BENJAMIN. Functionalized magnetite nanoparticles-synthesis, properties, and bio-applications [J]. Critical Reviews in Solid State and Materials Sciences,2007,32(3-4):203-215.
    [45]CORNELL ROCHELLE M, SCHWERTMANN UDO. The iron oxides: structure, properties, reactions, occurrences and uses [M]. John Wiley&Sons.2003.
    [46]MACHALA LIBOR, TUCEK JIRI, ZBORIL RADEK. Polymorphous transformations of nanometric iron(III) oxide:a review [J]. Chemistry of Materials,2011,23(14):3255-3272.
    [47]TUCEK JIRI, ZBORIL RADEK, NAMAI ASUKA, et al. ε-Fe2O3:An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling [J]. Chemistry of Materials,2010,22(24):6483-6505.
    [48]GUPTA AJAY KUMAR, GUPTA MONA. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26(18):3995-4021.
    [49]MACHALA LIBOR, ZBORIL RADEK, GEDANKEN AHARON. Amorphous iron(III) oxide:a review [J]. The Journal of Physical Chemistry B,2007,111(16):4003-4018.
    [50]MURAD E. Magnetic properties of microcrystalline iron (III) oxides and related materials as reflected in their Mossbauer spectra [J]. Physics and Chemistry of Minerals,1996,23(4-5):248-262.
    [51]ROC A ALEJANDRO G, MARCO JOSE F, MORALES MAR A DEL PUERTO, et al. Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles [J]. The Journal of Physical Chemistry C,2007,111(50):18577-18584.
    [52]ZBORIL RADEK, MASHLAN MIROSLAV, PETRIDIS DIMITRIS. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications [J]. Chemistry of Materials,2002,14(3):969-982.
    [53]TARTAJ PEDRO, GONZ LEZ-CARRE O TERESITA, SERNA CARLOS J. Magnetic behavior of γ-Fe2O3nanocrystals dispersed in colloidal silica particles [J]. The Journal of Physical Chemistry B,2003,107(1):20-24.
    [54]CAO HUAQIANG, WANG GUOZHI, ZHANG LEI, et al. Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals [J]. ChemPhysChem,2006,7(9):1897-1901.
    [55]GOVINDARAJ B, SASTRY NV, VENKATARAMAN A. Thermal and morphological studies on y-Fe2O3polystyrene composites and the affect of additives [J]. Journal of Applied Polymer Science,2004,93(2):778-788.
    [56]JANA NIKHIL R, CHEN YONGFEN, PENG XIAOGANG. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach [J]. Chemistry of Materials,2004,16(20):3931-3935.
    [57]KODAMA RH. Magnetic nanoparticles [J]. Journal of Magnetism and Magnetic Materials,1999,200(1):359-372.
    [58]MAHMOUDI MORTEZA, SAHRAIAN MOHAMMAD A, SHOKRGOZAR MOHAMMAD A, et al. Superparamagnetic iron oxide nanoparticles:promises for diagnosis and treatment of multiple sclerosis [J]. ACS Chemical Neuroscience,2011,2(3):118-140.
    [59]MAHMOUDI MORTEZA, SANT SHILPA, WANG BEN, et al. Superparamagnetic iron oxide nanoparticles (SPIONs):development, surface modification and applications in chemotherapy [J]. Advanced Drug Delivery reviews,2011,63(1):24-46.
    [60]MAHMOUDI M, SIMCHI A, IMANI M, et al. Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly (vinyl alcohol)[J]. Thin Solid Films,2010,518(15):4281-4289.
    [61]FLEUTOT SOLENNE, NEALON GARETH L, PAULY MATTHIAS, et al. Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle2D arrays and powders [J]. Nanoscale,2013,5(4):1507-1516.
    [62]LU AN-HUI, SALABAS E EMSP14L, SCH TH FERDI. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angewandte Chemie International Edition,2007,46(8):1222-1244.
    [63]WANG XUZHEN, ZHAO ZONGBIN, QU JIANGYING, et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal route [J]. Crystal Growth&Design,2010,10(7):2863-2869.
    [64]HYEON TAEGHWAN, LEE SU SEONG, PARK JONGNAM, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. Journal of the American Chemical Society,2001,123(51):12798-12801.
    [65]BEE AGNES, MASSART RENE, NEVEU SOPHIE. Synthesis of very fine maghemite particles [J]. Journal of Magnetism and Magnetic Materials,1995,149(1):6-9.
    [66]YAMAURA M, CAMILO RL, SAMPAIO LC, et al. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles [J]. Journal of Magnetism and Magnetic Materials,2004,279(2):210-217.
    [67]JOLIVET JEAN-PIERRE, CHAN AC CORINNE, TRONC ELISABETH. Iron oxide chemistry. From molecular clusters to extended solid networks [J]. Chemical Communications,2004(5):481-483.
    [68]TARTAJ PEDRO, GONZALEZ-CARRENO TERESITA, SERNA CARLOS J. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties [J]. Advanced Materials,2001,13(21):1620-1624.
    [69]KANG YOUNG SOO, RISBUD SUBHASH, RABOLT JOHN F, et al. Synthesis and characterization of nanometer-size Fe3O4and γ-Fe2O3particles [J]. Chemistry of Materials,1996,8(9):2209-2211.
    [70]SUN SHOUHENG, MURRAY CB, WELLER DIETER, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287(5460):1989-1992.
    [71]SUN SHOUHENG, ZENG HAO, ROBINSON DAVID B, et al. Monodisperse MFe2O4(M=Fe, Co, Mn) nanoparticles [J]. Journal of the American Chemical Society,2004,126(1):273-279.
    [72]CHEON JINWOO, KANG NAM-JUNG, LEE SANG-MIN, et al. Shape evolution of single-crystalline iron oxide nanocrystals [J]. Journal of the American Chemical Society,2004,126(7):1950-1951.
    [73]DENG Y, WANG L, YANG W, et al. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process [J]. Journal of Magnetism and Magnetic Materials,2003,257(1):69-78.
    [74]PILLAI V, KUMAR P, HOU MJ, et al. Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors [J]. Advances in Colloid and Interface Science,1995,55:241-269.
    [75]ZHOU ZH, WANG J, LIU X, et al. Synthesis of Fe3O4nanoparticles from emulsions [J]. J. Mater. Chem.,2001,11(6):1704-1709.
    [76]VIDAL-VIDAL J, RIVAS J, L PEZ-QUINTELA MA. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,288(1):44-51.
    [77]MASS ART REN Preparation of aqueous magnetic liquids in alkaline and acidic media [J]. Magnetics, IEEE Transactions on,1981,17(2):1247-1248.
    [78]CHIN ANG BEE, YAACOB ISKANDAR IDRIS. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure [J]. Journal of materials processing technology,2007,191(1):235-237.
    [79]GIRI S, SAMANTA S, MAJI S, et al. Magnetic properties of a-Fe2O3nanoparticle synthesized by a new hydrothermal method [J]. Journal of Magnetism and Magnetic Materials,2005,285(1):296-302.
    [80]WANG XUN, ZHUANG JING, PENG QING, et al. A general strategy for nanocrystal synthesis [J]. Nature,2005,437(7055):121-124.
    [81]WANG JUN, SUN JINGJUN, SUN QIAN, et al. One-step hydrothermal process to prepare highly crystalline Fe3O4nanoparticles with improved magnetic properties [J]. Materials Research Bulletin,2003,38(7):1113-1118.
    [82]ZHENG YUAN-HUI, CHENG YAO, BAO FENG, et al. Synthesis and magnetic properties of Fe3O4nanoparticles [J]. Materials Research Bulletin,2006,41(3):525-529.
    [83]DAOU TJ, POURROY G, BEGIN-COLIN S, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles [J]. Chemistry of Materials,2006,18(18):4399-4404.
    [84]CAO SHAO-WEN, ZHU YING-JIE. Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures [J]. The Journal of Physical Chemistry C,2008,112(32):12149-12156.
    [85]LU JIAN, JIAO XIULING, CHEN DAIRONG, et al. Solvothermal synthesis and characterization of Fe3O4and γ-Fe2O3nanoplates [J]. The Journal of Physical Chemistry C,2009,113(10):4012-4017.
    [86]BULTE JEFF WM, KRAITCHMAN DARA L. Iron oxide MR contrast agents for molecular and cellular imaging [J]. NMR in Biomedicine,2004,17(7):484-499.
    [87]CHERTOK BEATA, MOFFAT BRADFORD A, DAVID ALLAN E, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors [J]. Biomaterials,2008,29(4):487-496.
    [88]CUNNINGHAM CHARLES H, ARAI TAKAYASU, YANG PHILLIP C, et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles [J]. Magnetic Resonance in Medicine,2005,53(5):999-1005.
    [89]ITO AKIRA, SHINKAI MASASHIGE, HONDA HIROYUKI, et al. Medical application of functionalized magnetic nanoparticles [J]. Journal of Bioscience and Bioengineering,2005,100(1):1-11.
    [90]JAIN PRASHANT K, HUANG XIAOHUA, EL-SAYED IVAN H, et al. Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing, biology, and medicine [J]. Accounts of Chemical Research,2008,41(12):1578-1586.
    [91]KIM BYUNG HYO, LEE NOHYUN, KIM HYOUNGSU, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1magnetic resonance imaging contrast agents [J]. Journal of the American Chemical Society,2011,133(32):12624-12631.
    [92]KIM DK, VOIT W, ZAPKA W, et al. Biomedical application of ferrofluids containing magnetite nanoparticles [C]. MRS Proceedings. Cambridge University of Cambridge Press,2001.
    [93]KIM JAEYUN, PIAO YUANZHE, HYEON TAEGHWAN. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy [J]. Chemical Society Reviews,2009,38(2):372-390.
    [94]LANGER ROBERT. Drug delivery and targeting [J]. Nature,1998,392(6679Suppl):5-10.
    [95]LEE HAERIM, LEE EUNHYE, KIM DO KYUNG, et al. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging [J]. Journal of the American Chemical Society,2006,128(22):7383-7389.
    [96]GAO JINHAO, GU HONGWEI, XU BING. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications [J]. Accounts of Chemical Research,2009,42(8):1097-1107.
    [97]UCHIDA MASAKI, TERASHIMA MASAHIRO, CUNNINGHAM CHARLES H, et al. A human ferritin iron oxide nano-composite magnetic resonance contrast agent [J]. Magnetic Resonance in Medicine,2008,60(5):1073-1081.
    [98]ANASTAS PAUL T, KIRCHHOFF MARY M. Origins, current status, and future challenges of green chemistry [J]. Accounts of Chemical Research,2002,35(9):686-694.
    [99]CLARK JAMES H, MACQUARRIE DUNCAN J. Handbook of green chemistry and technology [M]. John Wiley&Sons,2008.
    [100]LANCASTER MIKE. Green chemistry:An introductory text [M]. Royal Society of Chemistry,2010.
    [101]MATLACK ALBERT. Introduction to green chemistry [M]. CRC Press,2001.
    [102]BARUWATI BABITA, POLSHETTIWAR VIVEK, VARMA RAJENDER S. Magnetically recoverable supported ruthenium catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds [J]. Tetrahedron Letters,2009,50(11):1215-1218.
    [103]DIMITRATOS NIKOLAOS, LOPEZ-SANCHEZ JOSE ANTONIO, HUTCHINGS GRAHAM J. Green catalysis with alternative feedstocks [J]. Topics in Catalysis,2009,52(3):258-268.
    [104]KURINOBU S, TSURUSAKI K, NATUI Y, et al. Decomposition of pollutants in wastewater using magnetic photocatalyst particles [J]. Journal of Magnetism and Magnetic Materials,2007,310(2):e1025-e1027.
    [105]LEWIS LARRY N. Chemical catalysis by colloids and clusters [J]. Chemical Reviews,1993,93(8):2693-2730.
    [106]AU LESLIE, ZHENG DESHENG, ZHOU FEI, et al. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells [J]. Acs Nano,2008,2(8):1645-1652.
    [107]HU MIN, CHEN JINGYI, LI ZHI-YUAN, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications [J]. Chemical Society Reviews,2006,35(11):1084-1094.
    [108]ISHIDA TAMAO, HARUTA MASATAKE. Gold catalysts:towards sustainable chemistry [J]. Angewandte Chemie International Edition,2007,46(38): 7154-7156.
    [109]CHANG YANG-CHUANG, CHEN DONG-HWANG. Catalytic reduction of4-nitrophenol by magnetically recoverable Au nanocatalyst [J]. Journal of Hazardous Materials,2009,165(1):664-669.
    [110]BEYDOUN DONIA, AMAL ROSE. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst [J]. Materials Science and Engineering:B,2002,94(1):71-81.
    [111]KAMAT PRASHANT V, MEISEL DAN. Nanoscience opportunities in environmental remediation [J]. Comptes Rendus Chimie,2003,6(8):999-1007.
    [112]GAWANDE MANOJ B, BRANCO PAULA S, VARMA RAJENDER S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies [J]. Chemical Society Reviews,2013,42(8):3371-3393.
    [113]AMBASHTA RITU D, SILLANP MIKA. Water purification using magnetic assistance:a review [J]. Journal of Hazardous Materials,2010,180(1):38-49.
    [114]CARABANTE IVAN, GRAHN MATTIAS, HOLMGREN ALLAN, et al. Adsorption of As(V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,346(1):106-113.
    [115]HU JING, CHEN GUOHUA, LO IRENE. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles [J]. Water Research,2005,39(18):4528-4536.
    [116]FAN FANG-LI, QIN ZHI, BAI JING, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2composite particles [J]. Journal of Environmental Radioactivity,2012,106:40-46.
    [117]WHITE BRIANNA R, STACKHOUSE BRANDON T, HOLCOMBE JAMES A. Magnetic γ-Fe2O3nanoparticles coated with poly-1-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II)[J]. Journal of Hazardous Materials,2009,161(2):848-853.
    [118]GIRGINOVA PENKA I, DANIEL-DA-SILVA ANAL, LOPES CL UDIA B, et al. Silica coated magnetite particles for magnetic removal of Hg2+from water [J]. Journal of Colloid and Interface Science,2010,345(2):234-240.
    [119]KIM YOUNGHUN, LEE BYUNGHWAN, YI JONGHEOP. Preparation of functionalized mesostructured silica containing magnetite (MSM) for the removal of copper ions in aqueous solutions and its magnetic separation [J]. Separation Science and Technology,2003,38(11):2533-2548.
    [120]HUANG SHIH-HUNG, CHEN DONG-HWANG. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent [J]. Journal of Hazardous Materials,2009,163(1):174-179.
    [121]LI XIAO-QIN, ZHANG WEI-XIAN. Iron nanoparticles:the core-shell structure and unique properties for Ni(II) sequestration [J]. Langmuir,2006,22(10):4638-4642.
    [122]YUAN PENG, FAN MINGDE, YANG DAN, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions [J]. Journal of Hazardous Materials,2009,166(2):821-829.
    [123]MAHDAVIAN ALI REZA, MIRRAHIMI MONIR AL-SADAT. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification [J]. Chemical Engineering Journal,2010,159(1):264-271.
    [124]NEMEROW NELSON LEONARD, DASGUPTA AVIJIT. Industrial and hazardous waste treatment [M]. Van Nostrand Reinhold,1991.
    [125]MI LIWEI, HAN MINLE, LI ZHEN, et al. Transformation of a zinc inclusion complex to wurtzite ZnS microflowers under solvothermal conditions [J]. Crystal Research and Technology,2010,45(9):973-976.
    [126]EL-ASHTOUKHY E-SZ, AMIN NK, ABDELWAHAB O. Removal of lead(II) and copper(II) from aqueous solution using pomegranate peel as a new adsorbent [J]. Desalination,2008,223(1):162-173.
    [127]CARLSON ROGER W, BAZZAZ FA, ROLFE GL. The effect of heavy metals on plants:II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and T1[J]. Environmental Research,1975,10(1):113-120.
    [128]DONG JIE, XU ZHENGHE, KUZNICKI STEVEN M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents [J]. Environmental Science&Technology,2009,43(9):3266-3271.
    [129]HUTTON M. Human health concerns of lead, mercury, cadmium and arsenic [J]. Lead, Mercury, Cadmium and Arsenic in the Environment. TC Hutchinson and KM Meema, Eds. John Wiley and Sons, Ltd., NY, Toronto,1987.
    [130]AKESSON AGNETA, BERGLUND MARIKA, SCH TZ ANDREJS, et al. Cadmium exposure in pregnancy and lactation in relation to iron status [J]. American Journal of Public Health,2002,92(2):284-287.
    [131]GUPTA VINOD K, GUPTA MONIKA, SHARMA SAURABH. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste [J]. Water Research,2001,35(5):1125-1134.
    [132]AKTER KAZI FARZANA, OWENS GARY, DAVEY DAVID E, et al. Arsenic speciation and toxicity in biological systems [M]. New York:Springer,2005.
    [133]BERG MICHAEL, TRAN HONG CON, NGUYEN THI CHUYEN, et al. Arsenic contamination of groundwater and drinking water in Vietnam:a human health threat [J]. Environmental Science&Technology,2001,35(13):2621-2626.
    [134]BISSEN MONIQUE, FRIMMEL FRITZ H. Arsenic-a review. Part I: occurrence, toxicity, speciation, mobility [J]. Acta Hydrochimica et Hydrobiologica,2003,31(1):9-18.
    [135]CHOONG THOMAS SY, CHUAH TG, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water:an overview [J]. Desalination,2007,217(1):139-166.
    [136]ENGEL ROBERT R, HOPENHAYN-RICH CLAUDIA, RECEVEUR OLIVIER, et al. Vascular effects of chronic arsenic exposure:a review [J]. Epidemiologic Reviews,1994,16(2):184-209.
    [137]FERGUSON JOHN F, GAVIS JEROME. A review of the arsenic cycle in natural waters [J]. Water Research,1972,6(11):1259-1274.
    [138]JAIN CK, ALI I. Arsenic:occurrence, toxicity and speciation techniques [J]. Water Research,2000,34(17):4304-4312.
    [139]MOHAN DINESH, PITTMAN JR CHARLES U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water [J]. Journal of Hazardous Materials,2006,137(2):762-811.
    [140]ALI IMRAN, GUPTA VK. Advances in water treatment by adsorption technology [J]. Nature Protocols,2007,1(6):2661-2667.
    [141]CLIFFORD DENNIS, SUBRAMONIAN SURESH, SORG THOMAS J. Water treatment processes. III. Removing dissolved inorganic contaminants from water [J]. Environmental Science&Technology,1986,20(11):1072-1080.
    [142]FU FENGLIAN, WANG QI. Removal of heavy metal ions from wastewaters:a review [J]. Journal of Environmental Management,2011,92(3):407-418.
    [143]GUPTA VINOD KUMAR, ALI IMRAN, SALEH TAWFIK A, et al. Chemical treatment technologies for waste-water recycling-an overview [J]. Rsc Advances,2012,2(16):6380-6388.
    [144]KRISHNANI KK, AYYAPPAN S, Heavy metals remediation of water using plants and lignocellulosic agrowastes [M] Reviews of Environmental Contamination and Toxicology. New York:Springer,2006:p59-p84.
    [145]KUMAR UPENDRA. Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater:A review [J]. Scientific Research and Essays,2006,1(2):33-37.
    [146]HUISMAN JACCO L, SCHOUTEN GERARD, SCHULTZ CARL. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry [J]. Hydrometallurgy,2006,83(1):106-113.
    [147]BALTPURVINS KA, BURNS RC, LAWRANCE GA, et al. Effect of electrolyte composition on zinc hydroxide precipitation by lime [J]. Water Research,1997,31(5):973-980.
    [148]CHARERNTANYARAK LERTCHAI. Heavy metals removal by chemical coagulation and precipitation [J]. Water Science and Technology,1999,39(10):135-138.
    [149]KONGSRICHAROERN N, POLPRASERT C. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater [J]. Water Science and Technology,1995,31(9):109-117.
    [150]OZVERDI ARZU, ERDEM MEHMET. Cu2+, Cd2+and Pb2+adsorption from aqueous solutions by pyrite and synthetic iron sulphide [J]. Journal of Hazardous Materials,2006,137(1):626-632.
    [151]CAVACO SOFIA A, FERNANDES SANDRA, QUINA MARGARIDA M, et al. Removal of chromium from electroplating industry effluents by ion exchange resins [J]. Journal of Hazardous Materials,2007,144(3):634-638.
    [152]KANG SO-YOUNG, LEE JONG-UN, MOON SEUNG-HYEON, et al. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+by IRN-77cation exchange resin in synthesized wastewater [J]. Chemosphere,2004,56(2):141-147.
    [153]ALY Z BILGE, VELI SEVIL. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins [J]. Journal of Hazardous Materials,2009,167(1):482-488.
    [154]GODE FETHIYE, PEHLIVAN EROL. Removal of chromium (III) from aqueous solutions using Lewatit S100:the effect of pH, time, metal concentration and temperature [J]. Journal of Hazardous Materials,2006,136(2):330-337.
    [155]ABO-FARHA SA, ABDEL-AAL AY, ASHOUR IA, et al. Removal of some heavy metal cations by synthetic resin purolite C100[J]. Journal of Hazardous Materials,2009,169(1):190-194.
    [156]GUO XUEYAN, ZHANG SHUZHEN, SHAN XIAO-QUAN. Adsorption of metal ions on lignin [J]. Journal of Hazardous Materials,2008,151(1):134-142.
    [157]ALI IMRAN. New generation adsorbents for water treatment [J]. Chemical Reviews,2012,112(10):5073-5091.
    [158]GUPTA VK, SRIVASTAVA SK, MOHAN D, et al. Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions [J]. Waste Management,1997,17(8):517-522.
    [159]HAMERLINCK Y, MERTENS DH, VANSANT EF. Activated carbon principles in separation technology [J]. Elsevier, New York,1994.
    [160]MONSER LOTFI, ADHOUM NAFA Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater [J]. Separation and Purification Technology,2002,26(2):137-146.
    [161]PARK HYUN GYU, KIM TAE WON, CHAE MYEONG YUN, et al. Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics [J]. Process Biochemistry,2007,42(10):1371-1377.
    [162]U ER A, UYANIK A, AYG N SF. Adsorption of Cu (II), Cd (II), Zn (II), Mn (II) and Fe (III) ions by tannic acid immobilised activated carbon [J]. Separation and Purification Technology,2006,47(3):113-118.
    [163]YANAGISAWA HIROKI, MATSUMOTO YUKI, MACHIDA MOTOI. Adsorption of Zn (II) and Cd (II) ions onto magnesium and activated carbon composite in aqueous solution [J]. Applied Surface Science,2010,256(6):1619-1623.
    [164]AHN CHI K, PARK DONGHEE, WOO SEUNG H, et al. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants [J]. Journal of Hazardous Materials,2009,164(2):1130-1136.
    [165]BAILEY SUSAN E, OLIN TRUDY J, BRICKA R MARK, et al. A review of potentially low-cost sorbents for heavy metals [J]. Water Research,1999,33(11):2469-2479.
    [166]GUPTA VK, SHRIVASTAVA AK, JAIN NEERAJ. Biosorption of chromium(VI) from aqueous solutions by green algae spirogyra species [J]. Water Research,2001,35(17):4079-4085.
    [167]APIRATIKUL RONBANCHOB, PAVASANT PRASERT. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera [J]. Bioresource Technology,2008,99(8):2766-2777.
    [168]AMAN TEHSEEN, KAZI ASRAR AHMAD, SABRI MUHAMMAD USMAN, et al. Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent [J]. Colloids and Surfaces B:Biointerfaces,2008,63(1):116-121.
    [169]KACZALA FABIO, MARQUES MARCIA, HOGLAND WILLIAM. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust [J]. Bioresource Technology,2009,100(1):235-243.
    [170]PARK HEUNG JAI, JEONG SEONG WOOK, YANG JAE KYU, et al. Removal of heavy metals using waste eggshell [J]. Journal of Environmental Sciences,2007,19(12):1436-1441.
    [171]AMUDA OS, ADELOWO FE, OLOGUNDE MO. Kinetics and equilibrium studies of adsorption of chromium(Ⅵ) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells [J]. Colloids and Surfaces B: Biointerfaces,2009,68(2):184-192.
    [172]OLIVEIRA LEANDRO S, FRANCA ADRIANA S, ALVES THIAGO M, et al. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters [J]. Journal of Hazardous Materials,2008,155(3):507-512.
    [173]SCHIEWER SILKE, PATIL SANTOSH B. Modeling the effect of pH on biosorption of heavy metals by citrus peels [J]. Journal of Hazardous Materials,2008,157(1):8-17.
    [174]WANG HONGJUAN, ZHOU AILIN, PENG FENG, et al. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II)[J]. Journal of Colloid and Interface Science,2007,316(2):277-283.
    [175]KABBASHI NASSERELDEEN A, ATIEH MUATAZ A, AL-MAMUN ABDULLAH, et al. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution [J]. Journal of Environmental Sciences,2009,21(4):539-544.
    [176]KUO CHAO-YIN, LIN HAN-YU. Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment [J]. Desalination,2009,249(2):792-796.
    [177]PILLAY K, CUKROWSKA EM, COVILLE NJ. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution [J]. Journal of Hazardous Materials,2009,166(2):1067-1075.
    [178]LI YANHUI, LIU FUQIANG, XIA BING, et al. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites [J]. Journal of Hazardous Materials,2010,177(1):876-880.
    [179]KANDAH MUNTHER ISSA, MEUNIER JEAN-LUC. Removal of nickel ions from water by multi-walled carbon nanotubes [J]. Journal of Hazardous Materials,2007,146(1):283-288.
    [180]FERELLA FRANCESCO, PRISCIANDARO MARINA, DE MICHELIS IDA, et al. Removal of heavy metals by surfactant-enhanced ultrafiltration from wastewaters [J]. Desalination,2007,207(1):125-133.
    [181]LANDABURU-AGUIRRE JUNKAL, GARC A VER NIC A, PONGR CZ EVA, et al. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration:statistical design of experiments [J]. Desalination,2009,240(1):262-269.
    [182]MOLINARI RAFFAELE, POERIO TERESA, ARGURIO PIETRO. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process [J]. Chemosphere,2008,70(3):341-348.
    [183]FORGACS ESTHER, CSERHATI TIBOR, OROS GYULA. Removal of synthetic dyes from wastewaters:a review [J]. Environment International,2004,30(7):953-971.
    [184]GUPTA GS, SHUKLA SP, PRASAD G, et al. China clay as an adsorbent for dye house wastewaters [J]. Environmental Technology,1992,13(10):925-936.
    [185]T NAY O, KABDASLI I, ORHON D, et al. Use and minimization of water in leather tanning processes [J]. Water Science and Technology,1999,40(1):237-244.
    [186]KABDASLI I, T NAY O, ORHON D. Wastewater control and management in a leather tanning district [J]. Water Science and Technology,1999,40(1):261-267.
    [187]SHUKLA SP, GUPTA GS. Toxic effects of omega chrome red ME and its treatment by adsorption [J]. Ecotoxicology and Environmental Safety,1992,24(2):155-163.
    [188]GRZECHULSKA JOANNA, MORAWSKI ANTONI WALDEMAR. Photocatalytic decomposition of azo-dye acid black1in water over modified titanium dioxide [J]. Applied Catalysis B:Environmental,2002,36(1):45-51.
    [189]MORENO-CASTILLA CARLOS. Adsorption of organic molecules from aqueous solutions on carbon materials [J]. Carbon,2004,42(1):83-94.
    [190]CHEN JIN M, HAO OLIVER J. Microbial chromium(VI) reduction [J]. Critical Reviews in Environmental Science and Technology,1998,28(3):219-251.
    [191]KOTAS J, STASICKA Z. Chromium occurrence in the environment and methods of its speciation [J]. Environmental Pollution,2000,107(3):263-283.
    [192]GODE FETHIYE, PEHLIVAN EROL. Sorption of Cr (III) onto chelating b-DAEG-sporopollenin and CEP-sporopollenin resins [J]. Bioresource Technology,2007,98(4):904-911.
    [193]BLOWES DAVID W, PTACEK CAROL J, JAMBOR JOHN L. In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies [J]. Environmental Science&Technology,1997,31(12):3348-3357.
    [194]CIESLAK-GOLONKA MARIA. Toxic and mutagenic effects of chromium(VI). A review [J]. Polyhedron,1996,15(21):3667-3689.
    [195]FRUCHTER JONATHAN. Peer Reviewed:In-situ treatment of chromium-contaminated groundwater [J]. Environmental Science&Technology,2002,36(23):464A-472A.
    [196]IRWIN RJ, MOUWERIK MVN, STEVENS L, et al. Environmental contaminants encyclopedia chromium(VI)(hexavalent chromium) entry [J]. National Park Service Water,1997.
    [197]KAPIL VIKAS, WIGINGTON PAMELA S, OLIN ANNE A. Chromium
    toxicity [M]. US Department of Health and Human Services, Agency for Toxic
    Substances and Disease Registry, Division of Health Education and Promotion,2000.[198] ORGANIZATION WORLD HEALTH. Guidelines for drinking-water
    quality:recommendations [M]. World Health Organization,2004.[199] PALMER CARL D, PULS ROBERT W, Natural attenuation of hexavalent
    chromium in groundwater and soils.1994,5-94.[200] BABEL SANDHYA, KURNIAWAN TONNI AGUSTIONO. Low-cost
    adsorbents for heavy metals uptake from contaminated water:a review [J]. Journal of
    Hazardous Materials,2003,97(1):219-243.[201] AKMAR ZAKARIA ZAINUL, SURATMAN MARLINI, MOHAMMED
    NURFADILAH, et al. Chromium(VI) removal from aqueous solution by untreated
    rubber wood sawdust [J]. Desalination,2009,244(1):109-121.[202] GAO HUI, LIU YUNGUO, ZENG GUANGMING, et al. Characterization
    of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw
    [J]. Journal of Hazardous Materials,2008,150(2):446-452.[203] GHOSH GARGI, BHATTACHARYA PRASHANT K. Hexavalent
    chromium ion removal through micellar enhanced ultrafiltration [J]. Chemical
    Engineering Journal,2006,119(1):45-53.[204] HASSAN SAAD SM, AWWAD NASSER S, ABOTERIKA AWAAD HA.
    Removal of chromium(VI) from wastewater using Sorel's cement [J]. Journal of
    Radioanalytical and Nuclear Chemistry,2006,269(1):135-140.[205] KOZLOWSKI CEZARY A, WALKOWIAK WLADYSLAW. Removal of
    chromium(VI) from aqueous solutions by polymer inclusion membranes [J]. Water
    Research,2002,36(19):4870-4876.[206] MIRETZKY P, CIRELLI A FERNANDEZ. Cr(VI) and Cr(III) removal
    from aqueous solution by raw and modified lignocellulosic materials:a review [J].
    Journal of Hazardous Materials,2010,180(1):1-19.[207] MOHAMMADI TORAJ, MOHEB AHMAD, SADRZADEH MOHTADA,
    et al. Modeling of metal ion removal from wastewater by electrodialysis [J].
    Separation and Purification Technology,2005,41(1):73-82.[208] OH YOUNG JU, SONG HOCHEOL, SHIN WON SIK, et al. Effect of
    amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron [J].
    Chemosphere,2007,66(5):858-865.
    [209]PATTERSON JAMES W. Waste water treatment technology [M]. Ann Arbor Science,1975.
    [210]TIRAVANTI G, PETRUZZELLI D, PASSINO R. Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery [J]. Water Science and Technology,1997,36(2):197-207.
    [211]RENGARAJ S, YEON KYEONG-HO, MOON SEUNG-HYEON. Removal of chromium from water and wastewater by ion exchange resins [J]. Journal of Hazardous Materials,2001,87(1):273-287.
    [212]SHAALAN HF, SOROUR MH, TEWFIK SR. Simulation and optimization of a membrane system for chromium recovery from tanning wastes [J]. Desalination,2001,141(3):315-324.
    [213]ROUNDHILL D MAX, KOCH H FRED. Methods and techniques for the selective extraction and recovery of oxoanions [J]. Chemical Society Reviews,2002,31(1):60-67.
    [214]OZAKI HIROAKI, SHARMA KUSUMAKAR, SAKTAYWIN WILASINEE. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal:effects of interference parameters [J]. Desalination,2002,144(1):287-294.
    [215]BABEL SANDHYA, KURNIAWAN TONNI AGUSTIONO. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere,2004,54(7):951-967.
    [216]BANSAL ROOP CHAND, GOYAL MEENAKSHI. Activated carbon adsorption [M]. CRC press,2010.
    [217]DIAS JO ANA M, ALVIM-FERRAZ MARIA, ALMEIDA MANUEL F, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment:a review [J]. Journal of Environmental Management,2007,85(4):833-846.
    [218]MOHAN DINESH, SINGH KUNWAR P, SINGH VINOD K. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth [J]. Industrial&Engineering Chemistry Research,2005,44(4):1027-1042.
    [219]MOHAN DINESH, SINGH KUNWAR P, SINGH VINOD K. Trivalent chromium removal from wastewater using low cost activated carbon derived from
    agricultural waste material and activated carbon fabric cloth [J]. Journal of Hazardous
    Materials,2006,135(1):280-295.[220] MCAFEE BRENDA J, GOULD W DOUGLAS, NADEAU JENNIFER C,
    et al. Biosorption of metal ions using chitosan, chitin, and biomass of rhizopus oryzae
    [J]. Separation Science and Technology,2001,36(14):3207-3222.[221] ELSON CLIVE M, DAVIES DONALD H, HAYES ERNEST R. Removal
    of arsenic from contaminated drinking water by a chitosan/chitin mixture [J]. Water
    Research,1980,14(9):1307-1311.[222] MCKAY GORDON. Use of adsorbents for the removal of pollutants from
    wastewater [M]. CRC press,1995.[223] HUANG LI, XIAO CONGMING, CHEN BINGXIA. A novel starch-based
    adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution [J]. Journal
    of Hazardous Materials,2011,192(2):832-836.[224] LI XUE-MEI, XU GAOJIE, LIU YUE, etal. Magnetic Fe3O4nanoparticles:
    Synthesis and application in water treatment [J]. Nanoscience&
    Nanotechnology-Asia,2011,1(1):14-24.[225] VARANDA LC, JAFELICCI JR M, TARTAJ P, et al. Structural and
    magnetic transformation of monodispersed iron oxide particles in a reducing
    atmosphere [J]. Journal of Applied Physics,2002,92(4):2079-2085.[226] NAKATA KAZUYA, HU YING, UZUN OKTAY, et al. Chains of
    superparamagnetic nanoparticles [J]. Advanced Materials,2008,20(22):4294-4299.[227] MILL AN A, URTIZBEREA A, SILVA NJO, et al. Surface effects in
    maghemite nanoparticles [J]. Journal of Magnetism and Magnetic Materials,2007,
    312(1):L5-L9.[228] DENG YONGHUI, CAI YUE, SUN ZHENKUN, et al. Magnetically
    responsive ordered mesoporous materials:a burgeoning family of functional
    composite nanomaterials [J]. Chemical Physics Letters,2011,510(1):1-13.[229] LIU JIAN, QIAO SHI ZHANG, BUDI HARTONO SANDY, et al.
    Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for
    delivery vehicles and nanoreactors [J]. Angewandte Chemie,2010,122(29):
    5101-5105.[230] COEY JMD, KHALAFALLA D. Superparamagnetic y-Fe2O3[J]. Physica Status Solidi (a),1972,11(1):229-241.
    [231]CAMPBELL CHARLES T, PARKER STEPHEN C, STARR DAVID E. The effect of size-dependent nanoparticle energetics on catalyst sintering [J]. Science,2002,298(5594):811-814.
    [232]PENN R LEE, BANFIELD JILLIAN F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science,1998,281(5379):969-971.
    [233]PENN R LEE, BANFIELD JILLIAN F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases:Insights from nanocrystalline TiO2[J]. Am. Mineral,1998,83(9-10):1077-1082.
    [234]LEE YOUJIN, LEE JINWOO, BAE CHE JIN, et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions [J]. Advanced Functional Materials,2005,15(3):503-509.
    [235]HANSEN MIKKEL FOUGT, M RUP STEEN. Estimation of blocking temperatures from ZFC/FC curves [J]. Journal of Magnetism and Magnetic Materials,1999,203(1):214-216.
    [236]PIEROTTI RA, ROUQUEROL J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [238]CARVALHO J, ARAUJO J, CASTRO F. Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste:an overview [J]. Waste and Biomass Valorization,2011,2(2):157-167.
    [239]GUPTA VK, CARROTT PJM, RIBEIRO CARROTT MML, et al. Low-cost adsorbents:growing approach to wastewater treatment-a review [J]. Critical Reviews in Environmental Science and Technology,2009,39(10):783-842.
    [240]GUPTA VINOD K, MOHAN DINESH, SHARMA SAURABH, et al. Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash-a sugar industry waste material [J]. Environmentalist,1998,19(2):129-136.
    [241]MALKOC EMINE, NUHOGLU YASAR. Potential of tea factory waste for chromium(VI) removal from aqueous solutions:thermodynamic and kinetic studies [J]. Separation and Purification Technology,2007,54(3):291-298.
    [242]BRAME JONATHON, LI QILIN, ALVAREZ PEDRO JJ. Nanotechnology-enabled water treatment and reuse:emerging opportunities and challenges for developing countries [J]. Trends in Food Science&Technology,2011,22(11):618-624.
    [243]HO YUH-SHAN, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry,1999,34(5):451-465.
    [244]DING Z, ZHU HY, LU GQ, et al. Photocatalytic properties of titania pillared clays by different drying methods [J]. Journal of Colloid and Interface Science,1999,209(1):193-199.
    [245]WANG RONG, HASHIMOTO KAZUHITO, FUJISHIMA AKIRA, et al. Light-induced amphiphilic surfaces [J]. Nature,1997,388:431-432.
    [246]HASHIMOTO KAZUHITO, IRIE HIROSHI, FUJISHIMA AKIRA. TiO2photocatalysis:a historical overview and future prospects [J]. Japanese Journal of Applied Physics,2005,44(12R):8269.
    [247]HU CHE-CHIA, TENG HSISHENG. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting [J]. Journal of Catalysis,2010,272(1):1-8.
    [248]JANG JUM SUK, CHOI SUN HEE, PARK HYUNWOONG, et al. A composite photocatalyst of CdS nanoparticles deposited on TiO2nanosheets [J]. Journal of Nanoscience and Nanotechnology,2006,6(11):3642-3646.
    [249]KANG MISOOK, CHOUNG SUK-JIN, PARK JONG YUL. Photocatalytic performance of nanometer-sized FexOy/TiO2particle synthesized by hydrothermal method [J]. Catalysis Today,2003,87(1):87-97.
    [250]PAL BONAMALI, SHARON MAHESHWAR, NOGAMI GYOICHI. Preparation and characterization of TiO2/Fe2O3binary mixed oxides and its photocatalytic properties [J]. Materials Chemistry and Physics,1999,59(3):254-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700