用户名: 密码: 验证码:
高效含铋复合光催化剂的设计、合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化在直接利用太阳能解决环境污染和能源短缺两大问题上表现出潜在的应用前景。在过去几十年里,这一领域正逐步地深入发展。光催化剂作为光催化的核心部分,研究和开发具有高活性的可见光催化剂成为光催化领域的难点和热点。目前光催化剂主要分为以氧化钛(TiO2)为代表的含TiO2光催化剂和不含TiO2的光催化剂两大类。这些光催化剂主要存在以下不足中的一点或者几点:(1)仅能吸收太阳光中的紫外光部分(仅占太阳光能量的4%),在可见光区几乎没有响应;(2)催化剂对光的吸收效率不高;(3)光生电子和空穴的分离效率低;(4)光催化剂的稳定性差,容易发生光腐蚀;(5)光催化剂的制备过程复杂,需要引入有毒有害溶剂或者结构导向剂;(6)光催化剂难以实现规模化生产;(7)在太阳光下活性不高等。因此,开发绿色、简单、容易规模化生产的光催化剂合成方法,制备高效、稳定的可见光催化剂,揭示光催化剂与光催化活性之间的构效关系,是当前光催化领域的主要发展方向。
     本文结合含铋光催化剂大多具有可见光响应的优点以及通过构建异质结能够有效提高光催化剂活性的特点,采用简单的方法制备了一系列具有异质结的铋基复合光催化剂。采用多种表征手段对催化剂的结构、组成、形貌等物理化学性质进行表征分析,以在可见光下降解难降解的有机染料作为模型反应考察所制备催化剂的活性,并关联催化剂的结构与活性之间的构效关系。主要的研究内容与结果如下:
     1)以L-赖氨酸作为表面活性剂,采用乙二醇-水混合溶剂热法首次制得花生状单斜BiVO4(m-BiVO4)和空心多孔花生状Bi2O3-BiVO4复合光催化剂。在350W氙灯下照射40min,Bi2O3-BiVO4复合光催化剂能够完全降解亚甲基蓝(MB,2×10-5mol/L),而BiVO4和Bi2O3对MB的光催化降解率仅为70%和20%,这可能是由于复合光催化剂多孔结构和粗糙表面有利于催化剂对光的吸收,有利于光生电子和空穴的产生;同时在Bi2O3和BiVO4间形成p-n结,能够有效地促进光生电子和空穴的分离,从而提高了BiVO4的可见光催化活性。
     2)在L-赖氨酸辅助溶剂热法制备花生状BiVO4的基础上,通过调变原料中的AgNO3量控制合成不同形貌和不同组成的复合物光催化剂,以期进一步改善BiVO4的光催化活性。当Ag的负载量为6.5wt%时,所得复合物为空心、多孔花生状,而且Ag颗粒均匀分布于BiVO4表面。Ag/BiVO4在可见光下催化降解亚甲基蓝和罗丹明-B (浓度均为2×10-5mol/L)的活性明显高于BiVO4以及Bi2O3-BiVO4复合光催化剂。这可能是由于Ag的引入不仅能够通过等离子体共振来扩展催化剂对可见光的吸收范围;而且由于Ag与BiVO4之间形成肖特基结(Schottky junction)能够有效地转移BiVO4上的光生电子,从而促进光生电子和空穴的有效分离。该一步法制备的Ag/BiVO4比采用传统光还原法制备的Ag/BiVO4具有更高的光催化活性,为制备贵金属负载纳米材料提供了新的方法。
     3)首先在无表面活性剂的情况下采用水热法制备空心管状Bi2O3,然后采用刻蚀-再生长法制备空心树状Bi2O3-Bi2S3复合光催化剂。该合成方法简单,无需引入有毒有害的有机溶剂或者结构导向剂等。所制备的复合催化剂在可见光下催化降解罗丹明-B的活性高于单独Bi2O3和Bi2S3。这可能是由于该复合光催化剂与Bi2O3基体相比其对可见光的吸收能力明显增强,而且存在Bi2O3-Bi2S3异质结有利于光生电子空穴的有效分离。
     4)采用乙二醇作溶剂,L-赖氨酸作结构导向剂,硫氰化钾和硫脲为硫源,采用一步溶剂热法制备出多孔海绵状和刺猬状的三维有序CuS-Bi2S3复合光催化剂。复合光催化剂能够有效提高Bi2S3在可见光下催化降解罗丹明-B等染料的光催化活性。这可能是由于复合物由超薄纳米片(20nm左右)或者长径比较大的纳米棒组成,有利于光生电子和空穴的迁移;另一方面形成的CuS-Bi2S3异质结能够有效抑制由于硫化铋价带和导带太近导致的光生电子和空穴的复合。此外,该复合光催化剂对含有罗丹明-B和结晶紫的混合染料溶液也具有较好的光催化活性。
     5)首次在室温下以水作溶剂、L-赖氨酸做结构导向剂快速合成了三维有序花状BiOX (X=Cl、Br、I),这为制备BiOX光催化剂提供了一种绿色、快速、节能且具有普适性的新方法;还在室温下以十六烷基三甲基溴化铵(CTAB)作表面活性剂,水作溶剂快速合成了花状Bi2O2CO3和BiOI-Bi2O2CO3复合光催化剂。复合光催化剂不仅在可见光下表现出比单独BiOI和Bi2O2CO3更高的活性;而且该复合光催化剂对多种染料均具有普遍适用性和良好的稳定性,催化剂重复使用十次其活性基本不变。这可能是由于在BiOI和Bi2O2CO3间形成异质结(p-n结),能够促进BiOI-Bi2O2CO3复合物中光生电子和空穴的有效分离。该合成方法简单,容易实现大规模生产,具有潜在的工业应用价值;该方法有望用于其他含铋非金属氧化物光催化剂的合成。
Photocatalysis, one important potential method for environmental remediation andclean energy production by using solar energy, has been developing quickly in the pastdecades. Photocatalyst is the core part of photocatalysis. Development of highly efficientand visible light driven photocatalysts is still a big challenge and has being a hot topic inthe field of photocatalysis. Many photocatalysts have been developed in the past decadesand can be divided into two categories: TiO2or TiO2-containing photocatalysts,non-TiO2-containing photocatalysts. However, the reported photocatalysts have one ormore disadvantages below:(1) only be excited by ultraviolet light which takes only4%of the solar energy;(2) low light absorption efficiency;(3) low efficiency in chargecarriers separation;(4) unstable and serious photocorrosion;(5) complicated preparationmethods, requirement of toxic solvent and/or structure-directing agent;(6) difficulty inlarge-scale synthesis;(7) low photocatalytic activity under the irradiation of solar light.So developing of green and facile methods for scale-up synthesis of high-efficiency,stable and visible-light-driven photocatalysts is a great issue in photocatalysis technique.What’s more, the study on the relationship between photocatalytic performances andstructures of catalysts is another great issue.
     Considering that most of the bismuth-containing photocatalysts can be excited undervisible light and construction of heterojunctions can enhance photocatalytic activities. Aseries of bismuth-containing composite photocatalysts with heterojunctions weresynthesized by facile methods in this thesis. The physical and chemical properties of theas-prepared samples were characterized by various techniques. The photocatalyticactivities were evaluated by degradation of organic dyes under visible light irradiationand the relationship between strucutures and catalytic performances was invesitigated.Listed below are the results:
     1) By a simple solvothermal method using ethylene glycol and water as solutionand L-lysine as surfactant, peanut-like BiVO4and hollow, porous Bi2O3-BiVO4composite were successfully synthesized. The Bi2O3-BiVO4composite showed highactivity towards methylene blue (MB,2×10-5mol/L) degradation under a Xe lamp (350W), much higher than BiVO4and Bi2O3. This could be ascribed to the porous andunsmooth surface of the Bi2O3-BiVO4composite, which is favorable for light absorptionand thus enhance the amount of photogenerated charges. Then the charge carriers could be efficiently separated on the p-n junctions between Bi2O3and BiVO4.
     2) Ag-doped BiVO4composites with hollow and porous structures were preparedby keeping the Ag amount at6.5wt%. The hollow and porous Ag/BiVO4showed highervisible-light-driven catalytic activity than BiVO4towards degradation of dyes(rhodamine B and methylene blue,2×10-5mol/L, respectively). The results could beowing to the enhancement of visible light absorption ability by multiple scattering oflight and plasma resonance of Ag on the surface. What’s more, the schottky junctionbetween Ag metal and BiVO4can promote charges separation. It also showed muchhigher activity than Ag/BiVO4composite prepared by traditional method (namely aphotoreduction method for Ag doping).
     3) The hollow and branched Bi2O3-Bi2S3composite was synthesized from Bi2O3microtubes by a so-called corrosion-regrowth method. The preparation process is simpleand environmental-friendly, without using any organic solvent or toxic surfactants. Thecomposite showed higher activity than Bi2O3and Bi2S3towards Rh-B degradation undervisible light irradiation. It was deduced that the good photocatalytic activity is closelyrelated to high visible light absorption ability of the composite and the presence ofheterojunctions between Bi2O3and Bi2S3.
     4) Porous spongy-like and urchin-like CuS-Bi2S3composites were successfullysynthesized using Bi(NO3)3·5H2O as Bi source, potassium thiocyanate (PT) and thiourea(TU) as sulfur sources, respectively. The porous spongy-like composites were composedfrom ultrathin nanoplates (about20nm) which intercrossed with each other, and theurchin-like ones composed from nanoneedles radially grown from a center. Thevisible-light-driven photocatalytic activity of Bi2S3towards dyes decomposition (Rh-B,crystal violet and a mixture of them) was greatly improved by coupling with CuS.Because the ultrathin nanoplates as well as the nanoneedles are favorable for chargestransfer; the recombination of photogenerated electrons and holes on Bi2S3can be greatlyprevented due to the presence of heterojunctions between CuS and Bi2S3.
     5) For the first time, flower-like BiOX (X=Cl, Br, I), Bi2O2CO3andBiOI-Bi2O2CO3composites were fast synthesized at room temperature using water assolvent, L-lysine and cetyltrimethyl ammonium bromide (CTAB) as surfactant,respectively. It provides a green, fast, energy-saving and universal way for thepreparation of BiOX photocatalyst or other bismuth-containing oxides. TheBiOI-Bi2O2CO3composite showed much higher activity for dyes degradation undervisible light than BiOI and Bi2O2CO3, since the p-n junctions were formed, and thevisible light absorption and charges separation abilities of the compoiste were enhanced. It also showed good reusability and stability, there is no apparent loss of activity after10cycles. The composite photocatalyst will find wide applications in wastewater treatmentdue to its high activity, stability and simple for scale-up preparation prodedure.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode, Natrue,1972,238(1):37-38
    [2] Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytichydrogen generation. Chemical Reviews,2010,110(11):6503-6570
    [3] Matthews R W. Photooxidation of organic impurities in water using thin films oftitanium dioxide. The Journal of Physical Chemistry,1987,91(12):3328-3333
    [4] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications ofsemiconductor photocatalysis. Chemical Reviews,1995,95(1):69-96
    [5] Kubacka A, Fernandez-Garcia M, Colon G. Advanced nanoarchitectures for solarphotocatalytic applications. Chemical Reviews,2012,112(3):1555-1614
    [6] Teoh W Y, Scott J A, Amal R. Progress in heterogeneous photocatalysis: fromclassical radical chemistry to engineering nanomaterials and solar reactors. TheJournal of Physical Chemistry Letter,2012,3(5):629-639
    [7] Barry T I, Stone F S. The reactions of oxygen at dark and irradiated zinc oxidesurfaces. Proceedings of the Royal Society,1960,255:124-144
    [8] Doerfler W, Hauffe K. Heterogeneous photocatalysis I. the influence of oxidizingand reducing gases on the electrical conductivity of dark and illuminated zincoxide surfaces. Journal of Catalysis,1964,3(2):156-170
    [9] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results. Chemical Reviews,1995,95(3):735-758
    [10] Diebold U. The surface science of titanium dioxide. Surface Science Reports,2003,48(5-8):53-229
    [11] Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic andinorganic compounds through aqueous phase photocatalysis: a review. IndustryEngineering Chemistry&Research,2004,43(24):7683-7696
    [12] Henderson M A. A surface science perspective on TiO2photocatalysis. SurfaceScience Reports,2011,66(6-7):185-297
    [13] Kumar S G, Devi L G. Review on modified TiO2photocatalysis under UV/visiblelight: selected results and related mechanisms on interfacial charge carriertransfer dynamics. The Journal of Physical Chemistry A,2011,115(46):13211-13241
    [14] Kamat P V. Meeting the clean energy demand: nanostructure architectures forsolar energy conversion. The Journal of Physical Chemistry C,2007,111(7):2834-2860
    [15] Kitano M, Matsuoka M, Ueshima M, et al. Recent developments in titaniumoxide-based photocatalysts. Applied Catalysis A: General,2007,325(1):1-14
    [16] He H, Liu C, Dubois K D, et al. Enhanced charge separation in nanostructuredTiO2materials for photocatalytic and photovoltaic applications. IndustrialEngineering Chemistry&Research,2012,51(37):11841-11849
    [17] Hashimoto K, Irie H, Fujishima A. TiO2photocatalysis: a historical overviewand future prospects. Japanese Journal of Applied Physics,2005,44(12):8269-8285
    [18] Roy S C, Varghese O K, Paulose M, et al. Toward solar fuels: photocatalyticconversion of carbon dioxide to hydrocarbons. ACS Nano,2010,4(3):1259-1278
    [19] Joshi U A, Palasyuk A, Arney D, et al. Semiconductiong oxides to facilitate theconversion of solar energy to chemical fuels. The Journal of Physical ChemistryLetters,2010,1(18):2719-2726
    [20] Indrakanti V P, Kubicki J D, Schobert H H. Photoinduced activation of CO2onTi-based heterogeneous catalysts: current state, chemical physics-based insightsand outlook. Energy&Environmental Science,2009,2:745-758
    [21] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis innitrogen-doped titanium oxide. Science,2001,293(5528):269-271
    [22] In S, Orlov A, Berg R, et al. Effective visible light activated B-doped andB,N-codoped TiO2photocatalysts. The Journal of American Chemistry Society,2007,129(45):13790-13791
    [23] Hu C C, Teng H S. Structural features of p-type semiconducting NiO as aco-catalyst for photocatalytic water splitting. Journal of Catalysis,2010,272(1):1-8
    [24] Li Q Y, Kako T, Ye J H. WO3modified titanate network film: highly efficientphoto-mineralization of2-propanol under visible light irradiation. ChemicalCommunications,2010,46(29):5352-5354
    [25] Jang J S, Choi S H, Park H, et al. A composite photocatalyst of CdSnanoparticles deposited on TiO2nanosheets. Journal of Nanoscience andNanotechnology,2006,6(11):3642-3646
    [26] Dibbell R S, Youker D G, Watson D F. Dxcited-state electron transfer from CdSquantum dots to TiO2nanoparticles via molecular linkers with phenylene bridges.The Journal of Physical Chemistry C,2009,113(43):18643-18651
    [27] Zhou Y, Frumeich F, Heel A, et al. One-step hydrothermal coatingy approach tophotocatalytically active oxide composites. Dalton Transactions,2010,39(26):6043-6048
    [28] Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoeletrocatalyticactivity of p-n junction BiOI/TiO2nanotube arrays. The Journal of PhysicalChemistry C,2011,115(15):7339-7346
    [29] Liu Z Y, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2nanofiberphotocatalyst fabricated by electrospinning with a side-by-side dual spinneretmethod. Nano Letters,2007,7(4):1081-1085
    [30] Zhang J, Xu Q, Feng Z C, et al. Importance of the relationship between surfacephases and photocatalytic activity of TiO2. Angewandte Chemie InternationalEdition,2008,47(9):1766-1769
    [31] Ouyang S X, Kikugawa N, Zou Z G, et al. Effective decolorizations andmineralizations of organic dyes over a silver germanium oxide photocatalystunder indoor-illumination irradiation. Applied Catalysis A: General,2009,366(2):309-314
    [32] Ouyang S X, Kikugawa N, Chen D, et al. A systematical study on photocatalyticof AgMO2(M=Al, Ga, In): effects of chemical compositions, crystal structuresand electronic structures. The Journal of Physical Chemistry C,2009,113(4):1560-1566
    [33] Li X K, Ouyang S X, Kikugawa N, et al. Novel Ag2ZnGeO4photocatalyst fordegradation under visible light irradiation. Applied Catalysis A: General,2008,334(1-2):51-58
    [34] Ouyang S X, Zhang H T, Li D F, et al. Electronic structure and photocatalyticcharacterization of a novel photocatalyst AgAlO2. The Journal of PhysicalChemistry B,2006,110(24):11677-11682
    [35] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organiccontaiminants over CaBi2O4under visible light irradiation. Angewandte ChimeInternational Edition,2004,43(34):4463-4466
    [36] Ye J H, Zou Z G, Matsushita A. A novel series of water splitting photocatalystsNiM2O6(M=Nb, Tb) active under visible light. International Journal ofHydrogen Energy,2003,28(6):651-655
    [37] Zou Z G, Ye J H, Sayama K, et al. Photocatalytic hydrogen and oxygen formationunder visible light irradiation with M-doped InTaO4(M=Mn, Fe, Co, Ni and Cu)photocatalysts. Journal of Photochemistry and photobiology A: Chemistry,2002,148(1-3):65-69
    [38] Zou Z G, Ye J H, Arakawa H. Surface characterization of nanoparticles ofNiOX/In0.9Ni0.1TaO4: effects on photocataltyci activity. The Journal of PhysicalChemistry B,2002,106(51):13098-13101
    [39] Zou Z G, Arakawa H, Ye J H. Substitution effect of Ta5+by Nb5+onphotocatalytic, photophysical, and structural properties of BiTa1-xNbxO4(0≤x≤1.0). Journal of Materials Research,2002,17(6):1446-1454
    [40] Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalystInVO4active under visible light irradiation. Chemical Physics Letters,2002,356(3-4):221-226
    [41] Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible lightirradition with an oxide semiconductor photocatalyst. Nature,2001,414(6864):625-627
    [42] Kako T, Zou Z G, Katagiri M, et al. Decomposition of organic compounds overNaBiO3under visible ligth irradiation. Chemistry of Materials,2007,19(2):198-202
    [43] Stoltzfus M W, Woodward P M, Seshadri R. Structure and bonding in SnWO4,PbWO4, and BiVO4: lone pairs vs inert pairs. Inorganic Chemistry,2007,46(10):3839-3850
    [44] Kudo A, Kato H, Tsuji I. Strtegies for the development of visible-light-drivenphotocatalysts for water splitting. Chemistry Letters,2004,33(12):1534-1539
    [45] Linsebigler A L, Guangquan L, Yate J T. Photocatalysis on TiO2surfsces:principles, mechanisms, and selected results. Chemical Reviews,1995,95(3):735-758
    [46] W Z Yin, W Z Wang, L. Zhou, et al. CTAB-assisted synthesis of monoclinicBiVO4photocatalyst and its highly efficient degradation of organic dye undervisible light irradiation. Jounal of Hazardous Materials,2010,173(1-3):194-199
    [47] J G Yu, A. Kudo. Effects of structural variation on the photocatalyticperformance of hydrothermally synthesized BiVO4. Advanced FunctionalMaterials,2006,16(16):2163-2169
    [48] Yin J, Zou Z G, Ye J H. Possible role of lattice dynamics in the photocatalyticactivity of BaM1/3N2/3O3(M=Ni, Zn; N=Nb, Ta). The Journal of PhysicalChemistry B,2004,108(26):8888-8893
    [49] Jiang H Y, Meng X, Dai H X, et al. High-performance porous spherical oroctapod-like single-crystalline BiVO4photocatalysts for the removal of phenoland methylene blue under visible-light illumination. Journal of HazardousMaterials,2012,217-218:92-99
    [50] Jiang H Y, Dai H X, Meng X, et al. Porous olive-like BiVO4:alcoho-hydrothermal preparation and excellent visible-light-drivenphotocatalytic performance for the degradation of phenol. Applied Catalysis B:Environmental,2011,105(3-4):326-334
    [51] Harriman A, Thomas J M, Zhou W, et al. A new family of photocatalysts basedon Bi2O3. Journal of Solid State Chemistry,1988,72(1):126-130
    [52] Leontie L, Caraman M, Visinoiu A, et al. On the optical properties of bismuthoxide thin films prepared by pulsed laser deposition. Thin Solid Films,2005,473(2):230-235
    [53] Drache M, Roussel P, Wignacourt J P. Structures and oxide mobility in Bi-Ln-Omaterials: heritage of Bi2O3. Chemical Reviews,2007,107(1):80-96.
    [54] Gualtieri A F, Immovilli S, Prudenziati M. Power X-ray diffraction data for thenew polymorphic compound ω-Bi2O3. Power Diffraction,1997,12(2):90-92
    [55] Cornei N, Tancret N, Abraham F, et al. New ε-Bi2O3metastable polymorph.Inorganic Chemistry,2006,45(13):4886-4888
    [56] Zhang K, Liang J, Wang S, et al. BiOCl sub-microcrystals induced by citric acidand their high photocatalytic activities. Crystal Growth&Design,2012,12(2):793-803
    [57] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowirearrays. Science,2006,312(5771):242-246
    [58] Xu H L, Wang W Z. Template synthesis of multishelled Cu2O hollow sphereswith a single-crystalline shell wall. Angewandte Chemie International Edition,2007,46(9):1489-1492
    [59] Puntes V F, Krishnan K M, Alivisatos A P. Coloidal nanocrystal shape and sizecontrol: the case of cobalt. Science,2001,291(5483):2115-2117
    [60] Han J T, Huang Y H, Wu X J, et al. Goodenough J B, Tunable synthesis ofbismuth ferrites with various morphologies. Advanced Materials,2006,18(16):2145-2148
    [61] Jungk H O, Feldmann C. Polyol mediated synthesis of sub-micrometer Bi2O3particles. Journal of Materials Science,2001,36(2):297-299
    [62] Huang Q Q, Zhang S N, Cai C X, et al. β-and α-Bi2O3nanoparticles synthesizedvia microwave-assisted method and their photocatalytic activity towards thedegradation of rhodamine B. Materials Letters,2011,65(6):988-990
    [63] Zhang L S, Wang W Z, Yang J, et al. Sonochemical synthesis of nanocrystalliteBi2O3as a visible-light-driven photocatalyst. Applied Catalysis A: General,2006,308:105-110
    [64] Kim H W, Lee J W, Shim S H. Study of Bi2O3nanorods grown using theMOCVD technique. Sensors and Actuators B,2007,126(1):306-310
    [65] Wang L, Cui Z L, Zhang Z K. Bi nanoparticles and Bi2O3nanorods formed bythermal plasma and heat treatment. Surface and Coatings Technology,2007,201(9-11):5330-5332
    [66] Anandan S, Wu J J. Microwave assisted rapid synthesis of Bi2O3short nanorods.Materials Letters,2009,63(27):2387-2389.
    [67] Muruganandham M, Amutha R, Lee G J, et al. Facile Fabrication of TunableBi2O3Self-Assembly and Its Visible Light Photocatalytic Activity. The Journalof Physical Chemistry C,2012,116(23):12906-12915
    [68] Zheng F L, Li G R, Qu Y N, et al. Synthesis of hierarchical rippled Bi2O3nanobelts for super capacitor applications. Chemical Communications,2010,46(27):5021-5023
    [69] Qiu Y F, Yang M L, Fan H B, et al. Nanowires of α-and β-Bi2O3: phase-selectivesynthesis and application in photocatalysis. CrystEngComm,2011,13(6):1843-1850
    [70] Fang G L, Chen G, Wang X, et al. Synthesis and luminescence of singlecrystalline Bi2O3nanosheets. Science China Technological Sciences,2011,54(1):19-22
    [71] Xia J Y, Liu L, Jin S M, et al. Preparation and growth mechanism of α-Bi2O3crystal whiskers. Procedia Engineering,2012,27:1441-1447
    [72] Zhou L, Wang W Z, Xu H L, et al. Bi2O3Hierarchical Nanostructures:Controllable Synthesis, Growth Mechanism, and their Application inPhotocatalysis. Chemistry-A European Journal,2009,15(7):1776-1782
    [73] Ma M G, Zhu J F, Sun R C, et al. Microwave-assisted synthesis of hierarchicalBi2O3sphere assembled from nanosheets with pore structure. Materials Letters,2010,64(13):1524-1527
    [74] Wu X H, Qin W, Li L, et al. Photocatalytic property of nanostructuredFe3+-doped Bi2O3films. Catalysis Communications,2009,10(5):600-604
    [75] Xie J M, Lu X M, Chen M, et al. The synthesis, characterization andphotocatalytic activity of V(V), Pb(II), Ag(I) and Co(II)-doped Bi2O3. Dyes andPigments,2008,77(1):43-47
    [76] Li L, Yang Y W, Li G H, et al. Conversion of a Bi nanowire array to an array ofBi–Bi2O3core–shell nanowires and Bi2O3nanotubes. Small,2006,2(4):548-553
    [77] Wang Y, Li S K, Xing X R, et al. Self-assembled3D flowerlike hierarchicalFe3O4@Bi2O3core–shell architectures and their enhanced photocatalytic activityunder visible light. Chemistry-A European Journal,2011,17(17):4802-4808
    [78] Bian Z F, Zhu J, Wang S H, et al. Self-assembly of active Bi2O3/TiO2visiblephotocatalyst with ordered mesoporous structure and highly crystallized anatase.The Journal of Physical Chemistry C,2008,112(16):6258-6262
    [79] Li X N, Huang R K, Hu Y H, et al. A templated method to Bi2WO6hollowmicrospheres and their conversion to double-shell Bi2O3/Bi2WO6hollowmicrospheres with improved photocatalytic performance. Inorganic chemistry,2012,51(11):6245-6250
    [80] Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a newvisible light photocatalyst. Journal of Catalysis,2009,262(1):144–149
    [81] Ding Y B, Zhu L H, Huang A Z, et al. A heterogeneous Co3O4-Bi2O3compositecatalyst for oxidative degradation of organic pollutants in the presence ofperoxymonosulfate. Catalysis Science Technolgy,2012,2(9):1977-1984
    [82] Wu T, Zhou X G, Zhang H, et al. Bi2S3nanostructures: a new photocatalyst.Nano Research,2010,3(5):379-386
    [83] Huang J, Zhang H, Zhou X G, et al. Dimensionality-dependent performance ofnanostructured bismuth sulfide in photodegradation of organic dyes. MaterialsChemistry and Physics,2013,138(2-3):755-761
    [84] Chen F J, Cao Y L, Jia D Z. Facile synthesis of Bi2S3hierarchical nanostructurewith enhanced photocatalytic activity. Journal of Colloid and Interface Science,2013,404:110-116
    [85] Luo Y F, Chen H, Li X, et al. Wet chemical synthesis of Bi2S3nanorods forefficient photocatalysts. Materials Letters,2013,105(1):12-15
    [86] Fang Z, Liu Y F, Fan Y T, et al. Epitaxial growth of CdS nanoparticle on Bi2S3nanowire and photocatalytic application of the heterostructure. The Journal ofPhysical Chemistry C,2011,115(29):13968-13976
    [87] Liu Z Q, Huang W Y, Zhang Y M, et al. Facile hydrothermal synthesis of Bi2S3spheres and CuS/Bi2S3composites nanostructures with enhanced visible-lightphotocatalytic performances. CrystEngComm,2012,14(23):8261-8267
    [88] Ma D K, Guan M L, Liu S S, et al. Controlled synthesis of olive-shapedBi2S3/BiVO4microsphere through a limited chemical conversion route andenhanced visible light responding photocatalytic activity. Dalton Transactions,2012,41(18):5581-5586
    [89] Zhang Z J, Wang W Z, Wang L, et al. Ehancement of visible-light photocatalysisby coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6.ACS Applied Materials&Interfaces,2012,4(2):593-597
    [90] Cao J, Xu B Y, Lin H L, et al. Novel Bi2S3-sensitized BiOCl with highly visiblelight photocatalytic activity for the removal of rhodamine B. CatalysisCommunications,2012,26:204-208
    [91] Lu J, Han Q F, Wang Z S. Synthesis of TiO2/Bi2S3heterojunction with anuclear-shell structure and its high photocatalytic activity. Materials ResearchBulletin,2012,47(7):1621-1624.
    [92] Albuquerque R, Neres M C, Mendonc M H, et al. Adsorption and catalyticproperties of SiO2/Bi2S3nanocomposites on the methylene bluephotodecolorization process. Colloids and Surfaces A: PhysicochemicalEngineering Aspects,2008,328(1-3):107-113
    [93] Kudo A, Ueda K, Kato H, et al. Photocatalytic O2evolution under visible lightirradiation on BiVO4in aqueous AgNO3solution. Catalysis Letters,1998,53(3-4):229-230
    [94] Lim A R, Choh S H, Jang M S. Prominent ferroelastic domain walls in BiVO4crystal. Journal of Physics Condensed Matter,1995,7(15):7309-7315
    [95] Yu J Q, Kudo A. Effects of structural variation on the photocatalytic performanceof hydrothermally synthesized BiVO4. Advanced Functional Materials,2006,16(16):2163-2169
    [96] Liu W, Yu Y Q, Cao L X,et al. Synthesis of monoclinic structured BiVO4spindly microtubes in deep eutectic solvent and their application for dyedegradation. Journal of Hazardous Materials,2010,181(1-3):1102-1108
    [97] Kho, Y K; Teoh W Y, Iwase A, et al. Flame preparation ofvisible-light-responsive BiVO4oxygen evolution photocatalysts with subsequentactivation via aqueous route. Applied Materials Interfaces,2011,3(6):1997-2004
    [98] Yu J Q, Zhang Y, Akihiko K. Synthesis and photocatalytic performances ofBiVO4by ammonia co-precipitation process. Journal of Solid State Chemistry,2009,182(2):223-228
    [99] Neves M C, Trindade T. Chemical bath deposition of BiVO4. Thin Solid Films,2002,406(1-2):93-97
    [100] Sayama K, Nomura A, Zou Z G, et al. Photoelectrochemical decomposition ofwater on nanocrystalline BiVO4film electrodes under visible light. ChemicalCommunications,2003,23:2908-2909
    [101] Liu W, Cao L X, Su G, et al. Ultrasound assisted synthesis of monoclinicstructured spindle BiVO4particles with hollow structure and its photocatalyticproperty. Ultrasonics Sonochemistry,2010,17(4):669-674
    [102] Li H B, Liu G C, Duan X C. Monoclinic BiVO4with regular morphologies:hydrothermal synthesis, characterization and photocatalytic properties. MaterialsChemistry and Physics,2009,115(1):9-13
    [103] Li J Q, Wang D F, Liu H, et al. Nanosheet-based BiVO4hierarchicalmicrospheres and their photocatalytic activity under visible light. Physica StatusSolid A,2012,209(2):248-253
    [104] Zhang X F, Zhang Y B, Quan X, et al. Preparation of Ag doped BiVO4film andits enhanced photoelectrocatalytic (PEC) ability of phenol degradation undervisible light. Journal of Hazardous Materials,2009,167(1-3):911-914
    [105] Ge L. Novel Pd/BiVO4composite photocatalysts for efficient degradation ofmethyl orange under visible light irradiation. Materials Chemistry and Physics,2008,107(2-3):465-470
    [106] Ge L. Novel visible-light-driven Pt/BiVO4photocatalyst for efficientdegradation of methyl orange. Journal of Molecular Catalysis A: Chemical,2008,282(1-2):62-66
    [107] Zhang A P, Zhang J Z. Effects of europium doping on the photocatalytic behaviorof BiVO4. Journal of Hazardous Materials,2010,173(1-3):265-272
    [108] Xu H, Li H M, Wu C D, et al. Preparation, characterization and photocatalyticproperties of Cu-loaded BiVO4. Journal of Hazardous Materials,2008,153(1-2):877-884
    [109] Lee D K, Cho I S, Lee S W, et al. Effects of carbon content on the photocatalyticactivity of C/BiVO4composites under visible light irradiation. MaterialsChemistry and Physics,2010,119(1-2):106-111
    [110] Xu H, Li H M, Wu C D, et al. Preparation, characterization and photocatalyticproperties of Cu-loaded BiVO4. Journal of Hazardous Materials,2008,153(1-2),877-884
    [111] Luo W J, Li Z S, Yu T, et al. Effects of surface electrochemical pretreatment onthe photoelectrochemical performance of Mo-doped BiVO4. The Journal ofPhysical Chemistry C,2012,116(8):5076-5081
    [112] Cao S W, Yin Z, Barber J, et al. Preparation of Au-BiVO4heterogeneousnanostructures as highly efficient visible-light photocatalysts. ACS AppliedMaterials&Interfaces,2012,4(1):418-423
    [113] Long M C, Cai W M, Cai J, et al. Efficient photocatalytic degradation of phenolover Co3O4/BiVO4composite under visible light irradiation. Journal of PhysicalChemistry B,2006,110(41):20211-20216
    [114] Guan M L, Ma D K, Hu S W, et al. From hollow olive-shaped BiVO4to n pcore shell BiVO4@Bi2O3microspheres: Controlled synthesis and enhancedvisible-light-responsive photocatalytic properties. Inorganic Chemistry,2011,50(3):800-805
    [115] Kudo A, Hijii S. H2or O2evolution from aqueous solution on layered oxidephotocatalysts consisting of Bi3+with6s2configuration and d0transition metalions. Chemistry Letters,1999,28(10):1103-1104
    [116] Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organiccontaminants by Bi2WO6under visible light irradiation. Catalysis Letters,2004,92(1):1-2
    [117] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6nano-and microstructures: shapecontrol and associated visible-light-driven photocatalytic activities. Small2007,3(9):1618-1625
    [118] Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosizedBi2WO6catalysts synthesized via a hydrothermal process. Applied Catalysis B:Environmental2006,66(1):100-110
    [119] Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6photocatalyst withnanosheetmorphology via microwave-assisted solvothermal synthesis. CatalysisToday,2008,131(1):15-20.
    [120] Zhang G K, Lü F, Li M, et al. Synthesis of nanometer Bi2WO6synthesized bysol–gel method and its visible-light photocatalytic activity for degradation of4BS. Journal of Physics and Chemistry of Solids,2010,71(4):579-582
    [121] Zhang Z J, Wang W Z, Shang M, et al. Low-temperature combustion synthesis ofBi2WO6nanoparticles as a visible-light-driven photocatalyst. Journal ofHazardous Materials,2010,177(1-3):1013-1018
    [122] Zhou L, Wang W Z, Zhang L S. Ultrasonic-assisted synthesis ofvisible-light-induced Bi2MO6(M=W, Mo) photocatalysts. Journal of MolecularCatalysis A: Chemical,2007,268(1-2):195-200
    [123] Obregon-Alfaro S, Martinez-delaCruz A. Synthesis, characterization andvisible-light photocatalytic properties of Bi2WO6and Bi2W2O9obtained byco-precipitation method. Applied Catalysis A: General,2010,383(1-2):128-133
    [124] Shang M, Wang W Z, Zhang L, et al. Bi2WO6with enhanced photocatalyticactivities by nitrogen doping. Materials Chemistry and Physics,2010,120(1):155-159
    [125] Song X C, Zhang Y F, Ma R, et al. Photocatalytic activities of Mo-doped Bi2WO6three-dimensional hierarchical microspheres. Journal of Hazardous Materials,2011,192(1):186-191
    [126] Zheng Y, Lv K L, Li X F, et al. TiO2-modified flower-like Bi2WO6nanostructureswith enhanced UV-Vis photocatalytic activity. Chemical Engineering Technology,2011,34(10):1630-1634
    [127] Xiao Q, Zhang J, Xiao C, et al. Photocatalytic degradation of methylene blueover Co3O4/Bi2WO6composite under visible light irradiation. CatalysisCommunications,2008,9(6):1247-1253
    [128] Gui M S, Zhang W D, Su Q X, et al. Preparation and visible light photocatalyticactivity of Bi2O3/Bi2WO6heterojunction photocatalysts. Journal of Solid StateChemistry,2011,184(8):1977-1982
    [129] Liu W, Chen S F, Zhang H Y, et al. Preparation, characterisation of p-nheterojunction photocatalyst CuBi2O4/Bi2WO6and its photocatalytic activities.Journal of Experimental Nanpscience,2011,6(2):102-120
    [130] Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6hotocatalyst withC60enhanced photoactivity under visible irradiation. Environmental Science&Technology,2007,41(17):6234-6239
    [131] Ge L, Liu J. Efficient visible light-induced photocatalytic degradation of methylorange by QDs sensitized CdS-Bi2WO6. Applied Catalysis B: Environmental,2011,105(3-4):289-297
    [132] Kudo A, Hijii S. H2or O2evolution from aqueous solutions on layered oxidephotocatalysts consisting of Bi3+with6s2configuration and d0transition metalions. Chemistry Letters,1999,28(10):1103-1104
    [133] Yao W F, Wang H, Xu X H, et al. Synthesis and photocatalytic property ofbismuth titanate Bi4Ti3O12. Materials Letters,2003,57(13-14):1899-1902
    [134] Yao W F, Wang H, Xu X H, et al. Photocatalytic property of bismuth titanateBi12TiO20crystals. Applied Catalysis A: General,2003,243(1):185-190
    [135] Zhou J K, Zou Z G, Ray A K, et al. Preparation and Characterization ofPolycrystalline Bismuth Titanate Bi12TiO20and Its Photocatalytic Propertiesunder Visible Light Irradiation. Industrial Engineering Chemistry Research,2007,46(3):745-749
    [136] Murugesan S, Subramanian V. Robust synthesis of bismuth titanate pyrochlorenanorods and their photocatalytic applications. Chemical Communications,2009,34:5109-5111
    [137] Zhu X Q, Zhang J L, Chen F. Hydrothermal synthesis of nanostructuresBi12TiO20and their photocatalytic activity on acid orange7under visible light.Chemosphere,2010,78(11):1350-1355
    [138] Hou J G, Jiao S Q, Zhu H M, et al. Facile synthesis and visible-lightphotocatalytic activity of bismuth titanate nanorods. Journal of NanoparticleResearch,2011,13(10):5557-5564
    [139] Zhou T, Hu J. Mass Production and Photocatalytic Activity of Highly CrystallineMetastable Single-Phase Bi20TiO32Nanosheets. Environmental Science&Technology,2010,44(22):8698-8703
    [140] Zhang H P, Lü M K, Liu S W, et al. Preparation and photocatalytic property ofperovskite Bi4Ti3O12films. Materials Chemistry and Physics,2009,114(2-3):716-721
    [141] Hou J G, Jiao S Q, Zhu H M, et al. Bismuth titanate pyrochlore microspheres:Directed synthesis and their visible light photocatalytic activity. Journal of SolidState Chemistry,2011,184(1):154-158
    [142] Hou J G, Qu Y F, Krsmanovic D, et al. Hierarchical assemblies of bismuthtitanate complex architectures and their visible-light photocatalytic activities.Journal of Materials Chemistry,2010,20(12):2418-2423
    [143] Yu J Q, Kudo A. Hydrothermal synthesis and photocatalytic property of2-dimensional bismuth molybdate nanoplates. Chemistry Letters,2005,34(11):1528-1529
    [144] Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties andphotocatalytic activities of bismuth molybdates under visible light irradiation.The Journal of Physical Chemistry B,2006,110(36):17790-17796
    [145] Theobald F, Laarif A. Redetermination of the crystal structure of α-Bi2O3·3MoO3by neutron diffraction and catalytic oxidation of propene. Materials ResearchBulletin,1985,20(6):653-665
    [146] Reilly L M, Sankar G, Catlo C R A. Following the formation of γ-phase Bi2MoO6catalyst by in site XRD/XAS and thermogravimetric techniques. Journal of SolidState Chemistry,1999,148(1):178-185
    [147] Li H H, Li K W, Wang H. Hydrothermal synthesis and photocatalytic propertiesof bismuth molybdate materials. Materials Chemistry Physics,2009,116(1):134-142
    [148] Tian G H,Chen Y J, Zhou W, et al. Facile solvothermal synthesis of hierarchicalflower-like Bi2MoO6hollow spheres as high performance visiblt-light-drivenphotocatalysts. Journal of Materials Chemistry,2011,21(3):887-892
    [149] Zheng Y, Duan F, Wu J, et al. Enhanced photocatalytic activity of bismuthmolybdates with the preferentially exposed {010} surfaces under visible lightirradiation. Journal of Molecular Catalysis A: Chemical,2009,303(1-2):9-14
    [150] Zhou T F, Hu J C, Li J L. Er3+doped bismuth molybdate nanosheets withexposed {010} facets and enhanced photocatalytic performance. AppliedCatalysis B: Environmental,2011,110:221-230
    [151] Duan F, Zheng Y, Chen M Q. Enhanced photocatalytic activity of bismuthmolybdate via hybridization with carbon. Materials Letters,2011,65(2):191-193
    [152] Ren J, Wang W Z, Shang M, et al. Heterostructured bismuth molybdatecomposite: preparation and improved photocatalytic activity under visible-lightirradiation. ACS Applied Materials&Interfaces,2011,3(7):2529-2533
    [153] Gao B F, Chen X Y, Yin K B, et al. Visible-light photocatalytic properties ofweak magnetic BiFeO3nanoparticles. Advanced Materials,2007,19(19):2889-2892
    [154] Li S, Lin Y H, Zhang B P, et al. Controlled fabrication of BiFeO3uniformmicrocrystal and their magnetic and photocatalytic behaviors. The Journal ofPhysical Chemistry C,2010,114(7):2903-2908
    [155] Zhang X Y, Lv J, Bourgeois L, et al. Formation and photocatalytic properties ofbismuth ferrite submicrocrystals with tunable morphologies. New Journal ofChemistry,2011,35(4):937-941
    [156] Li S, Lin Y H, Zhang B P, et al. BiFeO3/TiO2core-shell structurednanocomposites as visible-active photocatalysts and their optical responsemechanism. Journal of Applied Physics,2009,105(5):054310-1-5
    [157] Zhang G K, Li M, Yu S J, et al. Synthesis of nanometer-size Bi3TaO7and itsvisible-light photocatalytic activity for the degradation of a4BS dye. Journal ofColloid and Interface Science,2010,345(2):467-473
    [158] Chen R G, Bi J H, Wu L, et al. Orthorhombic Bi2GeO5nanobelts: Synthesis,characterization, and photocatalytic properties. Crystal Growth&Design,2009,9(4):1775-1779
    [159] Zhang G K, Yang J L, Zhang S M, et al. Preparation of nanosized Bi3NbO7andits visible-light photocatalytic property. Journal of Hazardous Materials,2009,172(2-3):986-992
    [160] Kusainova A M, Zhou W Z, Irvine J T S, et al. Layered intergrowth phasesBi4MO8X (X=Cl, M=Ta and X=Br, M=Ta or Nb): structural and electrophysicalcharacterization. Journal of Solid State Chemistry,2002,166(1):148-157
    [161] Chang X F, Ji G B, Sui Q, et al. Rapid photocatalytic degradation of PCP-Naover NaBiO3driven by visible light irradiation. Journal of Hazardous Materials,2009,166(2-3):728-733
    [162] Huang W L, Zhu Q S. Electronic structures of relaxed BiOX (X=F, Cl, Br, I)photocatalysts. Computational Materials Science,2008,43(4):1101-1108
    [163] Zhang K L, Liu C M, Huang F Q, et al. Study of the electronic structure andphotocatalytic activity of the BiOCl photocatalys. Applied Catalysis B:Environmental,2006,68(3-4):125-129
    [164] Deng H, Wang J W, Peng Q, et al. Controlled hydrothermal synthesis of bismuthoxyhalide nanobelts and nanotubes. Chemistry-A European Journal,2005,11(22):6519-6524
    [165] Ma J M, Liu X D, Lian J B, et al. Ionothermal synthesis of BiOCl nanostructuresvia a long-chain ionic liquid precursor route. Crystal Growth&Design,2010,10(6):2522-2527
    [166] Chen F, Liu H Q, Bagwasi S, et al. Photocatalytic study of BiOCl for degradationof organic pollutants under UV irradiation. Journal of Photochemistry andPhotobiology A: Chemistry,2010,215(1):76-80
    [167] Zhu L P, Liao G H, Bing N C, et al. Self-assembled3D BiOCl hierarchiitectures:tunable synthesis and characterization. CrystEngComm,2010,12(11):3791-3796
    [168] Geng J, Hou W H, Lv Y N, et al. One-dimensional BiPO4nanorods andtwo-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis,characterization and growth mechanism. Inorganic Chemistry,2005,44(23):8503-8509
    [169] Lei Y Q, Wang G H, Song S Y, et al. Synthesis, characterization and assembly ofBiOCl nanostructure and their photocatalytic properties. CrystEngComm,2009,11(9):1857-1862.
    [170] Wang C H, Shao C L, Liu Y C, et al. Photocatalytic properties BiOCl and Bi2O3nanoflbers prepared by electrospinning. Scripta Materialia,2008,59(3):332-335.
    [171] Peng H L, Chan C K, Meister S, et al. Shape evolution of layer-structuredbismuth oxychloride nanostructures via low-temperature chemical vaportransport. Chemistry of Materials,2009,21(2):247-252.
    [172] Zhang L, Cao X F, Chen X T, et al. BiOBr hierarchical microspheres:Microwave-assisted solvothermal synthesis, strong adsorption and excellentphotocatalytic properties. Journal of Colloid and Interface Science,2011,354(2):630-636
    [173] Cheng H F, Huang B B, Wang Z Y, et al. One-pot miniemulsion-mediated routeto BiOBr hollow microspheres with highly efficient photocatalytic activity.Chemistry-A European Journal,2011,17(29):8039-8043
    [174] Feng Y C, Li L, Li J W, et al. Synthesis of mesoporous BiOBr3D microspheresand their photodecomposition for toluene. Journal of Hazardous Materials,2011,192(2):538-544
    [175] Xu J, Meng W, Zhang Y, et al. Photocatalytic degradation oftetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway.Applied Catalysis B: Environmental,2011,107(3-4):355-362
    [176] Gondal M A, Chang X F, Ali M A, et al. Adsorption and degradationperformance of Rhodamine B over BiOBr under monochromatic532nm pulsedlaser exposure. Applied Catalysis A: General,2011,397(1-2):192-200
    [177] Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure withhigh photocatalytic activity by CTAB as Br source and template. Journal ofHazardous Materials,2009,167(1-3):803-809
    [178] Zhang J, Shi F J, Lin J, et al. Self-assembled3-D architectures of BiOBr as avisible light driven photocatalyst. Chemistry of Materials,2008,20(9):2937-2941
    [179] Huo Y N, Zhang J, Miao M, et al. Solvothermal synthesis of flower-like BiOBrmicrospheres with highly visible-light photocatalytic performances. AppliedCatalysis B: Environmental,2012,111-112:334-341
    [180] Zhao K, Zhang X, Zhang L. The first BiOI-based solar cells. ElectrochemistryCommunications,2009,11(3):612-615
    [181] Chang X, Huang J, Cheng C, et al. BiOX (X=Cl, Br, I) photocatalysts preparedusing NaBiO3as the Bi source: characterization and catalytic performance.Catalysis Communications,2010,11(5):460-464
    [182] Li Y Y, Wang J S, Yao H C, et al. Efficient decomposition of organic compoundsand reaction mechanism with BiOI photocatalyst under visible light irradiation.Journal of Molecular Catalysis A: Chemical,2011,334(1-2):116-122
    [183] Zhang X, Ai Z H, Jia F, et al. Generalized one-pot synthesis, characterization,and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplatemicrospheres. The Journal of Physical Chemistry C,2008,112(3):747-753
    [184] Li T B, Chen G, Zhou C, et al. New photocatalyst BiOCl/BiOI composites withhighly enhanced visible light photocatalytic performances. Dalton Transactions,2011,40(18):6751-6758
    [185] Hahn N T, Hoang S, Self J L, et al. Spray pyrolysis deposition andphotoelectrochemical properties of n-type BiOI nanoplatelet thin film. ACSNano,2012,6(9):7712-7722
    [186] Wang P Q, Bai Y, Liu J Y, et al. N, C-codoped BiOCl flower-like hierarchicalstructures. Micro&Nano Letters,2012,7(9):876-879
    [187] Cheng H F, Huang B B, Wang P, et al. In situ ion exchange synthesis of the novelAg/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants.Chemical Communications,2011,47(25):7054-7056
    [188] Ai Z H, Ho W K, Lee S C. Efficient visible light photocatalytic removal of NOwith BiOBr-Graphene nanocomposites. The Journal of Physical Chemistry C,2011,115(51):25330-25337
    [189] Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a newvisible light photocatalyst. Journal of Catalysis,2009,262(1):144-149
    [190] Shamaila S, Sajjad A K L, Chen F, et al. WO3/BiOCl, a novel heterojunction asvisible light photocatalyst. Journal of Colloid and Interface Science,2011,356(2):465-472
    [191] Cao J, Xu B Y, Luo B D, et al. BiOI/BiOBr heterojunction photocatalysts withenhanced visible light photocatalytic properties. Catalysis Communications,2011,13(1):63-68
    [192] Chang X F, Yu G, Huang J, et al. Enhancement of photocatalytic activity overNaBiO3/BiOCl composite prepared by an in situ formation strategy. CatalysisToday,2010,153(3-4):193-199.
    [193] Zhang L, Wang W Z, Zhou L, et al. Fe3O4coupled BiOCl: A highly efficientmagnetic photocatalyst. Applied Catalysis B: Environmental,2009,90(3-4):458-462
    [194] Kong L, Jiang Z, Xiao T C, et al. Exceptional visible-light-driven photocatalyticactivity over BiOBr-ZnFe2O4heterojunctions. Chemical Communication,2011,47(19):5512-5514
    [195] Khalil S S, Uvarov V, Fronton S, et al. A novel heterojunction BiOBr/Bismuthoxyhydrate photocatalystwith highly enhanced visible light photocatalyticproperties. The Journal of Physical Chemistry C,2012,116(20):11004-11012
    [196] Khalil S S, Uvarov V, Fronton S, et al. A novel class of heterojunctionphotocatalysts with highly enhanced visible lightphotocatalytic performances:yBiO(ClxBr1x)-(1y)bismuth oxidehydrate. Applied Catalysis B: Environmental,2012,117-118:148-155
    [197] Zhang W D, Zhang Q, Dong F, et al. Visble-light photocatalytic removal of NOin air over BiOX (X=Cl, Br, I) single-crystal nanoplates prepared at roomtemperature. Industrial&Engineering Chemistry Research,2013,52(20):6740-6746
    [198] Greaves C, Blower S K. Structure relationships between Bi2O2CO3and β-Bi2O3.Materials Research Bulletin,1988,23(7):1001-1008
    [199] Cheng H F, Huang B B, Yang K S, et al. Facile template-free synthesis ofBi2O2CO3hierarchical microflowers and their associated photocatalytic activity.ChemPhysChem,2010,11(10):2167-2173
    [200] Zhao T Y, Zai J T, Xu M, et al. Hierarchical Bi2O2CO3microspheres withimproved visible-light-driven photocatalytic activity. CrystEngComm,2011,13(12):4010-4017
    [201] Liu Y Y, Wang Z Y, Huang B B, et al. Preparation, electronic structure, andphotocatalytic properties of Bi2O2CO3nanosheet. Applied Surface Science,2010,257(1):172-175
    [202] Dong F, Lee S C, Wu Z B, et al. Rose-like monodisperse bismuth subcarbonatehierarchical hollow microspheres: one-pot template-free fabrication andexcellent visible light photocatalytic activity and photochemical stability for NOremoval in indoor air. Journal of Hazardous Materials,2011,195:346-354
    [203] Cao J, Li X, Lin H L, et al. Surface acid etching of (BiO)2CO3to construct(BiO)2CO3/BiOX (X=Cl, Br, I) heterostructure for methyl orange removal undervisible light. Applied Surface Science,2013,266:194-199
    [204] Cao J, Li X, Lin H L, et al. In situ preparation of novel p-n junctionphotocatalyst BiOI/(BiO)2CO3with enhanced visible light photocatalytic activity.Journal of Hazardous Materials,2012,239:316-324
    [205] Xu Y S, Zhang W D, Anion exchange strategy for construction ofsesame-biscuit-like Bi2O2CO3/Bi2MoO6nanocomposites with enhancedphotocatalytic activity. Applied Catalysis B: Environmental,2013,140:306-316
    [206] Gan H H, Zhang G K, Huang H X. Enhanced visible-light-driven photocatalyticinactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7composites. Journal ofHazardous Materials,2013,250:131-137
    [207] Reddy K H, Martha S, Parida K M. Fabrication of novel p-BiOI/n-ZnTiO3heterojunctions for degradation of Rhodamine6G under visible light irradiation.Inorganic Chemistry,2013,52(11):6390-6401
    [208] Pan C, Zhu Y F. New type of BiPO4oxy-acd salt photocatalyst with highphotocatalytic activity on degradation of dye. Environmental Science&Technology,2010,44(14):5570-5574
    [209] Pan C S, Zhu Y F. Size-controlled synthesis of BiPO4nanocrystals for enhancedphotocatalytic performance. Journal of Materials Chemistry,2011,21(12):4235-4241
    [210] Pan C S, Xu J, Wang Y J, et al. Dramatic activity of C3N4/BiPO4photocatalystwith core/shell structure formed by self-assembly. Advanced FunctationalMaterials,2012,22(7):1518-1524
    [211] Li G F, Ding Y, Zhang Y F, et al. Microwave synthesis of BiPO4nanostructuresand their morphology-dependent photocatalytic performances. Journal of Colloidand Interface Science,2011,363(2):497-503
    [212] Xiong J Y, Cheng G, Lu Z, et al. BiOCOOH hierarchical nanostructures:shape-controlled solvothermal synthesis and photocatalytic degradationperformances. CrystEngComm,2011,13(7):2381-2390
    [213] Duan F, Zheng Y, Liu L, et al. Synthesis and photocatalytic behaviour of3Dflowerlike bismuth oxide formate architectures. Materials Letters,2010,64(14):1566-1569
    [214] Yu S J, Zhang G K, Gao Y Y, et al. Single-crystalline Bi5O7NO3nanofibers:Hydrothermal synthesis, characterization, growth mechanism, and photocatalyticproperties. Journal of Colloid and Interface Science,2011,354(1):322-330
    [215] Yu H T, Quan X. Nano-heterojunction photocatalytic materials in environmentalpollution controlling. Progress in Chemistry,2009,21(23):406-419
    [216] Wu H W, Zhang N, Zhong J L, et al. Progess in research of p-n typesemiconductor composite photocatalysts. Chemical Industry and EngineeringProgess,2007,26(12):1669-1674
    [217] Cui Y M. Recent progess of TiO2photocatalyst with precious metals loading.Precious Metals,2007,28(3):62-70
    [218] Cozzoli P D, Fanizza E, Comparelli R, et al. Role of metal nanoparticles inTiO2/Ag nanocomposite-based microheterogeneous photocatalysis. The Journalof Physical Chemistry B,2004,108(28):9623-9630
    [219] Costi R, Saunders A E, Elmalem E, et al. Visible light induced charge retentionand photocatalysis with hybrid CdSe-Au nanodumbblells. Nano Letters,2008,8(2):637-641
    [220] Williams G, Seger B, Kamat P V. TiO2-graphene nancomposites: UV-assistedphotocatalytic reduction of grapheme oxide. ACS Nano,2008,2(7):1487-1491
    [221] Palmisano G, Gutierrez M C, Ferrer M L, et al. TiO2/ORMOSIL thin films dopedwith phthalocyanine dyes: new photocatalytic devices activated by solar light.The Journal of Physical Chemistry C,2008,112(7):2667-2670
    [222] Li X Y, Wang D S, Cheng G X, et al. Preparation of polyaniline-modified TiO2nanoparticles and their photocatalytic activity under visible light illumination.Applied Catalysis B: Environmental,2008,81(3-4):267-273
    [223] Zhang H, Zong R L, Zhao J C, et al. Dramatic visible photocatalytic degradationperformances due to synergetic effect of TiO2with PANI. Environmental Science&Technology,2008,42(10):3803-3807
    [224] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting.Chemical Society Review,2009,38(1):253-278
    [225] Zhang J, Xu Q, Feng Z C, et al. Importance of the relationship between surfaceplase and photocatalytic activity of TiO2. Angewandte Chemie InternationalEdition,2008,47(11):1766-1769
    [226] Zong X, Yan H J, Wu G P, et al. Enhancement of photocatalytic H2evolution onCdS by loading MoS2as cocatalyst under visible light irradiation. The Journal ofAmerican Chemistry Society,2008,130(23):7176-7177
    [227] Li L Z, Yan B. BiVO4/Bi2O3submicrometer sphere composite: microstructureand photocatalytic activity under visible-light. Journal of Alloys and Compounds,2009,476(1-2):624-528
    [228] Mao C B, Solis D J, Reiss B D, et al. Virus-based toolkit for the directedsynthesis of magnetic and semiconducting nanowires. Science,2004,303(5655):213-217
    [229] Mi J L, Lock N, Sun T, et al. Biomolecule-assisted hydrothermal synthesis ofself-assembly of Bi2Te3nanostring-cluster hierarchical structure. ACS Nano,2010,4(5):2523-2530
    [230] Wu S S, Cao H Q, Yin S F, et al. Amino acid assisted hydrothermal synthesis andphotocatalysis of SnO2nanocrystals. The Journal of Physical Chemistry C,2009,113(41):17893-17898
    [231] Wu S S, Cao H Q, Yin S F, et al. Biominerzlization and superhydrophobicity ofBaCO3complex nanostructures. Inorganic Chemistry,2009,48(21):10326-10329
    [232] Wu S S, Yin S F, Cao H Q, et al. Glucosan controlled biomineralization of SrCO3complex nanostructures with superhydrophobicity and adsorption properties.2011,21(13):8734-8742
    [233] Sun Y F, Wu C Z, Long R, et al. Synthetic loosely packed monoclinic BiVO4nanoellipsoids with novel multiresponses to visiblt light, trace gas andtemperature. Chemical Communications,2009,46(30):4542-4544
    [234] Cheng H F, Huang B B, Dai Y, et al. One-step synthesis of the nanostructuredAgI/BiOI composites with highly enhanced visible-light photocatalyticperformances. Langmuir,2010,26(9):6618-6624
    [235] Andronic L, Luminita I, Duta A. Photochemical synthesis of coppersulphide/titanium oxide photocatalyst. Journal of Photochemistry andPhotobiology A: Chemistry,2011,221(1):30-37
    [236] Kwon C W, Poquet A, Mornet S, et al. Electronegativity and chemical hardness:two helpful concepts for understanding oxide nanochemistry. Materials Letters,2001,51(5):402-413
    [237] Jiang J, Zhang X, Sun P B, et al. ZnO/BiOI heterostructures: photoinducedcharge-transfer property and enhanced visiblt light photocatalytic activity. TheJournal of Physical Chemistry C,2011,115(42):20555-20564
    [238] Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of p-type NiO/n-typeZnO heterojunctions with enhanced photocatalytic activity. ACS AppliedMaterials&Interfaces,2010,2(10):2915-2923
    [239] Murdoch M, Waterhouse G I N, Nadeem M A, et al. The effect of gold loadingand particle size on photocatalytic hydrogen production from ethanol overAu/TiO2nanoparticles. Nature Chemistry,2011,3(2):489-492
    [240] Wang W B, Wang F F, Kang Y R, et al. Facile self-assembly of Au nanoparticleson magnetic attapulgite/Fe3O4composite for fast catalytic decoloration of dye.RSC Advances,2013,3(42):11515-11520
    [241] Wang D J, Xue G L, Zhen Y Z, et al. Mondispersed Ag nanoparticles loaded onthe surface of spherical Bi2WO6nanoarchitectures with enhanced photocatalyticactivities. Journal of Materials Chemistry,2012,22(38):4751-4758
    [242] Xin B F, Jiang L Q, Ren Z Y, et al. Effect of simultaneously doped and depositedAg on the photocatalytic activity and surface states of TiO2. The Journal ofPhysical Chemistry B,2005,109(7):2805-2809
    [243] Wang X D, Waterhouse G I N, Mitchell D R G, et al. Noble metal-modifiedporous titania networks and their application as photocatalysts. ChemCatChem,2011,3(11):1763-1771
    [244] Zhou B, Zhao X, Liu H J, et al. Synthesis of visible-light sensitive M-BiVO4(M=Ag, Co and Ni) for the photocatalytic degradation of organic pollutants.Separation and Purification Technology,2011,77(3):275-282
    [245] Khan S U M, Al-Shahry M, Ingler Jr W B. Efficient photochemical watersplitting by a chemical modified TiO2. Science,2002,297(5578):2234-2245
    [246] Poulston S, Price N J, Weeks C, et al. Surface redox characteristics of mixedoxide catalysts used for selective oxidation. Journal of Catalysis,1998,178(2):658-667
    [247] Rabin O, Perez J M, Grimm J, et al. An X-ray computed tomography imagingagent based on long-circulating bismuth sulphide nanoparticles. Nature Materials,2006,5(1):118-122
    [248] Konstantatos G, Levina L, Tang J, et al. Sensitive solution-processed Bi2S3nanocrystalline photodetectors. Nano Letters,2008,8(11):4002-4006
    [249] Ma J M, Liu Z F, Lian J B, et al. Ionic liquids-assisted synthesis andelectrochemical properties of Bi2S3nanostructures. CrystEngCommun,2011,13(23):3072-3079
    [250] Luo W J, Chen M, Wang X B, et al. Novel single-source precursors approach toprepare highly uniform Bi2S3and Sb2S3nanorods via a solvothermal treatment.Chemistry of Materials,2007,19(4):872-878
    [251] Zhou H Y, Xiong S L, Wei L Z, et al. Acetylacetone-directed controllablesynthesis of Bi2S3nanostructures with tunable morphology. Crystal Growth&Design,2009,9(9):3862-3867
    [252] Tahir A A, Ehsam M A, Mazhar M, et al. Photoelectrochemical andphotoresponsive properties of Bi2S3nanotube and nanoparticles thin films.Chemistry of Materials,2010,22(17):5084-5092
    [253] Yang Q, Hu C G, Wang S X, et al. Tunable synthesis and thermoelectric propertyof Bi2S3nanowires. The Journal of Physical Chemistry C,2013,117(11):5515-5520
    [254] Liu X W, Cao H Q, Yin J F. Generation and photocatalytic activities ofBi@Bi2O3microspheres. Nano Research,2011,4(5):470-482
    [255] Tian Lu, Tan H Y, Vittal J J. Morphology controlled synthesis of Bi2S3nanomaterials via single and multiple-source approaches. Crystal Growth&Design,2008,8(2):734-738
    [256] Yu J G, Zhang J, Liu S W. Ion-exchange synthesis and enhanced visible lightphotoactivity of CuS/ZnS nanocomposite hollow spheres. The Journal ofPhysical Chemistry C,2010,114(32):13642-13649
    [257] Han X G, Jin M S, Xie S F, et al. Synthesis of tin dioxide octahedralnanoparticles with exposed high energy {221} facets and enhanced gas-sensingproperties. Angewandte Chemie International Edition,2009,48(48):9180-9185
    [258] Jiang Z Y, Kuang Q, Xie Z X, et al. Synthesis and properties of micro-nanostructured crystallites with high-energy surfaces. Advanced FunctionalMaterials,2010,20(18):3635-3645
    [259] Ye L Q, Zan L, Tian L H, et al. The {001} facets-dependent high photoactivity ofBiOCl nanosheets. Chemical Communications,2011,47(42):6951-6953
    [260] Jiang J, Zhao K, Xiao X Y, et al. Synthesis and facet-dependent photoreactiity ofBiOCl single-crystalline nanosheets. The Journal of American Chemistry Society,2012,134(10):4473-4476
    [261] Guan M L, Xiao C, Zhang J, et al. Vacancy associates promoting solar-drivenphotocatalytic activity of ultrathin bismuth oxychloride nanosheets. The Journalof American Chemistry Society,2013,135(28):10411-10417
    [262] Yin J F, Cao H Q, Lu Y X. Self-assembly into magnetic Co3O4complexnanostructures as peroxidase. Journal of Materials Chemistry,2012,22(2):527-534
    [263] Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenol Aby mesoporous BiWO6under simulated solar light irradiation. EnvironmentalScience&Technology,2010,44(17):6843-6848
    [264] Wang Y N, Deng K J, Zhang L Z, et al. Visible light photocatalysis of BiOI andits photocatalytic activity enhancement by in situ ionic liquid modification. TheJournal of Physical Chemistry C,2011,115(29):14300-14308
    [265] Purkatastha A, Yan Q Y, Ramamath G, et al. Surfactant-directed synthesis ofbranched bismuth telluride/sulfide core/shell nanorods. Advanced Materials,2008,20(14):2697-2684
    [266] Chen D M, Jiang Z Y, Geng J Q, et al. Carbon and nitrogen co-doped TiO2withenhanced visible-light photocatalytic activity. Industrial Engineering Chemistry&Research,2007,46(9):2741-2746
    [267] Zheng Y, Duan F, Chen M Q, et al. Synthetic Bi2O2CO3nanostructures: novelphotocatalyst with controlled special surface exposed. Journal of MolecularCatalysis A: Chemistry,2010,317(1-2):34-40
    [268] Nazeeruddin M K, Baranoff E, Gratzel M. Dye-sensitized solar cells: a briefoverview. Solar Energy,2011,85(6):1172-1178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700