用户名: 密码: 验证码:
含硒蛋白质(多肽)的制备及其抗氧化效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由基在机体内普遍存在,并且依赖抗氧化防御系统维持一种动态的平衡。抗氧化防御系统中的抗氧化剂分为酶类和非酶类两种,其中酶类抗氧化剂,即抗氧化酶发挥主要的作用。当机体发生某些疾病时,抗氧化防御系统中的抗氧化剂不能满足机体需要时,外源性抗氧化剂成为防治疾病的一类药物。但提取天然抗氧化酶作为药物成本高、来源有限,且天然酶还有分子量大、稳定性差等缺陷,限制了其应用。因此制备抗氧化模拟酶就成为获取外源性抗氧化剂的一种重要策略。
     谷胱甘肽过氧化物酶(GPx)是一种能够催化多种自由基分解的抗氧化酶,它在维持机体内氧化还原平衡过程中发挥重要作用,从而减少自由基对机体的损伤。GPx是一种含硒酶,同时研究发现机体内大部分含硒蛋白均具有抗氧化活性。因此,硒蛋白作为保护性治疗氧化应激相关疾病的药物越来越受关注。目前,制备硒蛋白的方法有化学合成、化学修饰、半胱氨酸缺陷表达和硒代半胱氨酸通读表达等方法。其中后二者属于基因工程方法,是近年来研究的热点。开发一种成本低、工艺简单,且具有较高抗氧化活性的含硒模拟酶,不仅可以获得更多潜在的抗氧化药物,也有助于研究机体天然抗氧化酶的催化作用机制。本研究的主要目的就是探索和优化硒蛋白的制备方法,制备具有一定抗氧化活性的硒蛋白,并在亚细胞和细胞水平研究硒蛋白的抗氧化作用。主要开展了以下工作:
     利用生物信息学方法和计算机辅助分子设计方法对人源性scFv进行3D建模,并再用计算机模拟筛选与GSH结合力较高的人源性scFv,获得Se-scFv-WCD1模型。将scFv-WCD1基因序列克隆到表达载体pET22b(+)上,用E. coli BL21(DE3)进行可溶性表达后,通过Ni2+螯合的固定化金属亲和层析(IMAC)纯化获得了scFv-WCD1蛋白。化学修饰法制备Se-scFv-WCD1并鉴定其酶学性质。Se-scFv-WCD1具有较高的GPx活性,其反应动力学为典型的乒乓机制。人源性Se-scFv-WCD1的成功制备,节省了噬菌体库多轮筛选的成本,说明计算机虚拟筛选结合化学修饰法制备含硒抗氧化模拟酶的策略是可以广泛适用的。
     应用SPP系统联合化学修饰法制备了Se-scFv-WCD1-lessACA。在表达阶段,SPP系统的成功应用,直接表达出较纯的scFv-WCD1-lessACA蛋白,省略了蛋白质的纯化过程。这节约了大量用于蛋白纯化的实验材料以及所需的时间。通过酶学性质鉴定证明,利用SPP系统联合化学修饰法制备的Se-scFv-WCD1-lessACA与以往实验中按常规方法制备的Se-scFv-WCD1表现出相同的酶学活性,如GPx活性、GSH结合常数、最适pH值、最适温度和酶反应动力学常数等。此外,Se-scFv-WCD1-lessACA具有较强的抗氧化活性,可以保护Fe2+/VC对线粒体的损伤。这为硒蛋白的制备和新型抗氧化药物的开发提供了技术支持。
     利用SPP系统联合Cys缺陷表达技术制备了具有SOD和GPx双酶活性的含硒65肽。Se-CuZn-65P是本研究组以前的研究中根据天然SOD3的同源序列同一段具有GPx活性的15连接而成,它在Xanthine/XOD/Fe2+损伤模型中显示出高SOD和GPx活性。而在SPP系统中利用Cys缺陷表达技术制备的Se-CuZn-65P也具有较高的SOD和GPx活性。通过Tricine-SDS-PAGE电泳、RP-HPLC和MALDI-TOF MS的实验结果证明这中硒蛋白的制备策略可以成功地获得较高纯度的Se-CuZn-65P。同时,本课题组利用乙醇诱导的L02细胞建立了酒精肝细胞损伤模型来鉴定其抗氧化活性。细胞增殖实验结果表明Se-CuZn-65P不仅几乎没有细胞毒性,而且能提高乙醇诱导损伤L02细胞存活率、迁移率等。TUNEL和FCM实验证明Se-CuZn-65P还能抑制乙醇诱导的L02细胞凋亡,主要表现在抑制细胞核形态学上的损伤。其抑制机制可能是Se-CuZn-65P降低乙醇引起的氧化损伤,从而降低了促凋亡基因与抗凋亡基因的比率,减少了细胞凋亡线粒体途径中Procaspase-3和PARP蛋白的切割。综上所述,Se-CuZn-65P对乙醇诱导的L02细胞损伤有保护作用,并可能成为一种潜在的预防ALD的药物。
Free radical (FR) is a normal metabolism product in the body, and it plays animportant biological role such as bactericidal potency, virus inhibition inflammationelimination, etc. Reactive oxygen species (ROS) is the most important category of FR,including superoxide anions (O2s), hydroxyl radical (HO·), hydrogen peroxy radical(HOO·), singlet oxygen (1O2), etc. But, the accumulation of FR in the body will leadto excessive oxidation reactions under the incentive effect of smoking, alcoholism,radiation, inhalation of contaminated air, etc. And then, the injury of body could becaused. This phenomenon is known as oxidative stress. FR can irreversibly damage tounsaturated fatty acids, proteins, nucleic acids and any other important biologicalmacromolecules under the oxidative status. Furthermore, some diseases could occur,example for cancer, cardiovascular disease, hemorrhagic shock, ischemia reperfusioninjury, atherosclerosis, etc.
     There is an antioxidant defense system in the body. This system can be set tomaintain balances of FR. Antioxidants include two kinds of enzymes and non-enzymes, within the antioxidant enzymes i.e. antioxidase exert a major function.Natural antioxidant enzymes consists of superoxide dismutase (SOD), catalase (CAT),glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase(GSR), etc. Since natural antioxidant enzyme possess a lot of defection, such as highcost for extract, a large molecular weight, poor stability, which limits theirpharmaceutical applications. So, the antioxidant drugs, which were from artificialantioxidant mimics prepared according to the natural antioxidant enzyme as a model,become a research hotspot in recent years. Among them, the studies about GPxenzyme mimic absorb more attention of scholars. Currently, GPx enzyme mimics include organic selenium compounds, metal complex, selenoprotein, supermolecularnanoenzyme, etc. Previous research has shown that most selenoprotein are enzymeswith antioxidant activity in the body, such as glutathione peroxidases (GPx),iodothyronine deiodinases (ID), thioredoxin reductases (TrxR), etc. Thus,selenoprotein become the development goal of antioxidant drug. In this study, threescenarios were used for the preparation of selenoproteins, which are computer-aidedmolecular design combined with chemical modification, single-protein production(SPP) system combined with chemical modification and SPP system combined withcysteine auxotrophic expression technique, respectively. Meanwhile, the biologicaleffects of selenoprotein prepared by the above-mentioned scenarios were investigatedin subcellular and cellular levels. Thereby optimize the preparation process ofselenoproteins and explore the mechanism of antioxidant selenoproteins.
     1. Preparation of selenoproteins with antioxidant activity by the method ofcomputer-aided molecular design combined with chemical modification
     Screening technologies of selenoproteins with high antioxidant activity in thelaboratory involve the inducement method, the copy method, the introduction methodand phage antibody library display technique. However, these methods are complexand costly. The use of simulate screening via computer-aided molecular designmethod similar to drug screening can solve these problems, which instead of previousscreening method in laboratory. Researches on protein structure indicate that thefolded forms of the protein backbone are very limited. This inspired us to carry out alarge number of simulate screening to selenoproteins by means of the transformationabout the protein backbone according to the structure of the natural antioxidantenzymes, for instance substitutions of amino acid, insertions or delete of peptidefragments, and the fusion of domains. In this study, a novel human scFv was designedon the basis of the structure of human antibody and optimized via bioinformaticsmethods such as homologous sequence analysis, three-dimensional (3D) modelbuilding, binding-site analysis and docking. The new scFv was named WCD1, whichhas a higher binding capacity to GSH. The DNA sequence of the human scFv-WCD1was synthesized and cloned into the expression vector pET22b(+), then scFv-WCD1protein was expressed in soluble form in Escherichia coli (E. coli) BL21(DE3) andpurified by Ni2+-immobilized metal affinity chromatography (IMAC). The serineresidue of scFv in the active site was converted into selenocysteine (Sec) with the chemical modification method, thus, the human Se-scFv-WCD1with GPx activitywas obtained. And it exhibited a typical ping-pong kinetic mechanism. This showsthat the combination method of chemical modification and computer virtual screeningwas a clever strategy for preparation of antioxidant mimics, human Se-scFv. Thisscenario saves a lot of costs for multiple rounds screening used by phage antibodylibrary display technique.
     2. Preparation of selenoproteins with antioxidant activity by the method of SPPsystem combined with chemical modification
     Large-scale preparation strategy of protein through recombination technology ofgenetic engineering has been very mature.While this solves the problem about limitedresources of natural antioxidant enzymes, but a new trouble was also was brought.The new trouble was time-consuming, labor-intensive and high cost in the purificationprocess of protein. The SPP system can save purification cost through the productionof a single protein, because MazF of the SPP system can degrade almost all ACAsequence of mRNA in the intracellular. Therefore, ACA sequence in scFv-WCD1mRNA was knocked out used the codon degeneracy in a case without changing theamino acid sequence. The scFv-WCD1-lessACA can be only expressed in SPPsystem and no other background proteins in the cells could be expressed. Then, Secwas incorporated into the scFv-WCD1-lessACA by chemical modification andresulted in Se-scFv-WCD1-lessACA. The enzymatic characteristics ofSe-scFv-WCD1-lessACA were determined. Se-scFv-WCD1-lessACA andSe-scFv-WCD1have the same properties, such as GPx activity, the binding constantfor GSH, optimal pH, optimal temperature and enzyme kinetics. Moreover,Se-scFv-WCD1-lessACA was confirmed to have a strong antioxidant ability toprotect mitochondria against oxidative damage induced by Fe2+/VC(mitochondrialdamage model). This saves a lot of time and test material required for the purificationof proteins.
     3. Preparation of selenoproteins with antioxidant activity by the method of SPPsystem combined with cysteine auxotrophic expression technique
     Various antioxidant enzymes can act cooperatively to scavenge the FR, in orderto the balance of oxidation-reduction system in body. Therefore, the research on thesynergism of multi-function antioxidant mimic is imperative. Recently, it wasdiscovered that the synergy between GPx and SOD plays a vital role in the antioxidant defense system. So, a65-mer peptide imitates (Se-CuZn-65P) of SOD andGPx was designed on the basis of native enzyme structural models under the aid ofthe computer, which contains a delicate dual-activity center based on the homologoussequence alignment in natural SOD3active center and the15-mer peptide with a GSHbinding site. The structure of Se-CuZn-65P contains that form the domains of theactive center of SOD and the catalytic triad of GPx upon the incorporation of Cu2+and Zn2+metals. And then, Se-CuZn-65P is expressed through the SPP systemcombined with cysteine auxotrophic expression technique. The results from Tricine-SDS-PAGE electrophoresis, RP-HPLC and MALDI-TOF MS show that the highpurity Se-CuZn-65P could be obtained successfully by this strategy. Enzymaticcharacterization also found that Se-CuZn-65P has higher SOD and GPx activity. It notonly efficiently effectuates fixed-point insertion of Sec, but also does not affect thespatial conformation and catalytic activity of the protein. The cell model of alcoholicliver disease (ALD) by way of ethanol induced L02cells was established forinvestigate the antioxidant activity of Se-CuZn-65P at the cellular level. The resultsdemonstrated that Se-CuZn-65P is not only almost no cytotoxicity, but also increaseincrease of cell viability, migration and decrease of ROS, malondialdehyde (MDA),lactate dehydrogenase (LDH), aspartate aminotransferase (AST). Se-CuZn-65P canalso inhibit apoptosis. Research on the mechanism of apoptosis revealed thatSe-CuZn-65P can maintain the integrity of the nucleus, and induce cell apoptosisthrough mitochondrial pathway. So Se-CuZn-65P has potential application forprevention of ALD.
     In summary, Strategies for preparation of selenoproteins can product a largenumber of antioxidant enzyme mimics with high purity and high activity in this study.The technical support was provided for preparation of selenoprotein and exploitationof novel selenium-containing antioxidant drug. It establishes the basis of clarificationabout catalytic mechanism and synergism of antioxidant enzymes.
引文
[1] Brown K M, Arthur J R. Selenium, selenoproteins and human health: a review [J].Public Health Nutr,2001,4(2B):593-599.
    [2] Greenaway F. J ns Jakob Berzelius: the creative conservative [J]. Endeavour,1979,3(4):138-143.
    [3] Guijian L, Liugen Z, Duzgoren-Aydin N S, Lianfen G, Junhua L, Zicheng P.Health effects of arsenic, fluorine, and selenium from indoor burning of Chinesecoal [J]. Rev Environ Contam Toxicol,2007,189:89-106.
    [4] Moxon A L, Rhian M. Selenium Poisoning [J]. Physiological Reviews,1943,23:305-337.
    [5] Schwarz K, Foltz C M. Selenium as an integral part of factor3against dietarynecrotic liver degeneration [J]. Journal of the American Chemical Society,1957,79(12):3292-3293.
    [6] Fairweather-Tait S J, Bao Y, Broadley M R, Collings R, Ford D, Hesketh J E,Hurst R. Selenium in human health and disease [J]. Antioxid Redox Signal,2011,14(7):1337-1383.
    [7] Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for humanhealth [J]. Metallomics,2014,6(1):25-54.
    [8] Ferguson L R, Karunasinghe N, Zhu S, Wang A H. Selenium and its’ role in themaintenance of genomic stability [J]. Mutation Research/Fundamental andMolecular Mechanisms of Mutagenesis,2012,733(1):100-110.
    [9] K hrl J, Brigelius-Flohé R, B ck A, G rtner R, Meyer O, Flohé L. Selenium inbiology: Facts and medical perspectives [J]. Biol Chem,2000,381:849-864。
    [10]董文甫,李艳红,岳文斌.哺乳动物硒蛋白的研究进展[J].中国畜牧兽医,2007,34(1):24-28.
    [11]Hatfield D L, Gladyshev V N. How selenium has altered our understanding of thegenetic code [J]. Molecular and cellular biology,2002,22(11):3565-3576.
    [12]Dayer R, Fischer B B, Eggen R I, Lemaire S D. The peroxiredoxin andglutathione peroxidase families in Chlamydomonas reinhardtii [J]. Genetics,2008,179(1):41-57.
    [13]Mehdi Y, Hornick J L, Istasse L, Dufrasne I. Selenium in the environment,metabolism and involvement in body functions [J]. Molecules,2013,18(3):3292-311.
    [14]Kurokawa S, Berry M J. Selenium. Role of the essential metalloid in health [J].Met Ions Life Sci,2013,13:499-534.
    [15]Baek I J, Yon J, Lee S. R., Kim M. R., Hong J. T., Lee B. J., Nam S. Y.,Differential Expression of Gastrointestinal Glutathione Peroxidase (GI-GPx)Gene during Mouse Organogenesis [J]. Anatomia Histologia Embryologia,2011,40(3):210-218.
    [16]Brigelius-Flohé R, Maiorino M. Glutathione peroxidases [J]. Biochim BiophysActa,2013,1830(5):3289-303.
    [17]Chambers S J, Lambert N, Williamson G. Purification of a cytosolic enzymefrom human liver with phospholipid hydroperoxide glutathione peroxidaseactivity [J]. International journal of biochemistry,1994,26(10):1279-1286.
    [18]Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase[J].Science,1973,179:588–590.
    [19]Flohé L, Günzler W A, Schock H H. Glutathione peroxidase: a selenoenzyme [J].FEBS Letts,1973,32:132–134.
    [20]Behne D, Weiss-Nowak C, Kalchlosch M, Westphal C, Gessner H,Kyriakopoulos A. Studies on the distribution and characteristics of newmammalian selenium selennium-containing protein [J]. Analyst,1995,120:823-825.
    [21]Takahashi K, Avissar N, Whitin J, Cohen H. Purification and charaterization ofhuman plasma glutathione peroxidase. A selenoglycoprotein distinct from theknown cellurar enzyme [J]. Arch Biochem Biophys,1987,256:677-686.
    [22]Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipidhydroperoxide glutathione peroxide [J]. Biochim Biophy Acta,1985,839(1):62-70.
    [23]Chu F F, Doroshow J H, Esworthy R S. Expression, characterization and tissuedistribution of a new cellutar selenium-denpendent glutathione peroxidase,GPX-GI [J]. J Biol. Chem,1993,268:2571-2576.
    [24]Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E.Lower whole blood glutathione peroxidase (GPX) activity in depression, but notin myalgic encephalomyelitis/chronic fatigue syndrome: another pathway thatmay be associated with coronary artery disease and neuroprogression indepression[J]. Neuro endocrinology letters,2011,32(2):133-140.
    [25]Shen G X. Oxidative stress and diabetic cardiovascular disorders: roles ofmitochondria and NADPH oxidase this review is one of a selection of paperspublished in a Special Issue on Oxidative Stress in Health and Disease [J].Canadian journal of physiology and pharmacology,2010,88(3):241-248.
    [26]Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O. Selenium or noselenium-that is the question in tumor patients: a new controversy [J]. IntegrativeCancer Therapies,2010,9(2):136-141.
    [27]Berry M J, Larsen P R. The role of selenium in thyroid hormone action [J].Endocrine Rev,1992,13B:207-219.
    [28]Dolinkin A. O., Chernov’yants M. S., Analysis of thyrostatic heteroaromaticthioamides (review)[J]. Pharmaceutical Chemistry Journal,2010,44(2):99-106.
    [29]Simpson G I C, Leonard D M, Leonard J L. Identification of the key residuesresponsible for the assembly of selenodeiodinases [J]. J Biol Chem,2006,281(21):14615-14621.
    [30]Sutija M, Longhurst T J, Joss J M P. Deiodinase type III in the Australianlungfish, Neoceratodus forsteri [J]. General and comparative endocrinology,2004,136(2):152-161.
    [31]Hulbert A J. Thyroid hormones and their effects: a new perspective [J].Biological Reviews,2000,75(4):519-63.
    [32]Sagar G V, Gereben B, Callebaut I, Mornon J P, Ze ld A, Curcio-Morelli C,Bianco A C. The thyroid hormone-inactivating deiodinase functions as ahomodimer [J]. Molecular Endocrinology,2008,22(6):1382-1393.
    [33]May J M, Mendiratta S, Hill K E, Burk R F. Reduction of dehydroascorbate toascorbate by the selenoenzyme thioredoxin reductase [J]. J Biol Chem,1997,272(36):22607-22610.
    [34]Collet J F, Messens J. Structure, function, and mechanism of thioredoxin proteins[J]. Antioxidants&redox signaling,2010,13(8):1205-1216.
    [35]Zhong L, Holmgren A. Essential role of selenium in the catalytic activities ofmammalian thioredoxin reductase revealed by characterization of recombinantenzymes with selenocysteine mutations [J]. J Biol Chem,2000,275(24):18121-18128.
    [36]Rundl f A K, Janard M, Miranda-Vizuete A, Arnér E S. Evidence for intriguinglycomplex transcription of human thioredoxin reductase1[J]. Free Radical Biologyand Medicine,2004,36(5):641-656.
    [37]Sun Q A, Zappacosta F, Factor V M, Wirth P J, Hatfield D L, Gladyshev V N.Heterogeneity within Animal Thioredoxin Reductases EVIDENCE FORALTERNATIVE FIRST EXON SPLICING[J]. J Biol Chem,2001,276(5):3106-3114.
    [38]Avval F Z, Holmgren A. Molecular mechanisms of thioredoxin and glutaredoxinas hydrogen donors for Mammalian s phase ribonucleotide reductase [J]. J BiolChem,2009,284(13):8233-8240.
    [39]Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B,Hengstler J G. Research article Role of thioredoxin reductase1and thioredoxininteracting protein in prognosis of breast cancer [J]. Breast Cancer Research,2010,12:12-15.
    [40]Merwin J R, Mustacich D J, Muller E G D, Pearson G D, Merrill G F. Reportergene transactivation by human p53is inhibited in thioredoxin reductase null yeastby a mechanism associated with thioredoxin oxidation and independent ofchanges in the redox state of glutathione [J]. Carcinogenesis,2002,23(10):1609-1616.
    [41]Noinaj N, Wattanasak R, Lee D Y, Wally J L, Piszczek G, Chock P B, BuchananS K. Structural Insights into the Catalytic Mechanism of Escherichia coliSelenophosphate Synthetase [J]. J bacteriol,2012,194(2):499-508.
    [42]Kim J Y, Lee K H, Shim M S, Shin H, Xu X M, Carlson B A, Lee B J. Humanselenophosphate synthetase1has five splice variants with unique interactions,subcellular localizations and expression patterns [J]. Biochem Biophys ResCommun,2010,397(1):53-58.
    [43]Tujiebajeva R M, Harney J W, Berry M J. Selenoprotein Pexpression,eurification,and immuneochemical characterization[J].J Biol. Chem.,2000,275(9):6288-6294.
    [44]Yang X, Hill K E, Maguire M J, Burk RF. Synthesis and secretion ofselenoprotein P by cultured rat astrocytes [J].Biochim Biophys Acta,2000,1474(3):390-396.
    [45]Akesson B, Bellew T, Burk RF. Purification of selenoprotein P from humanplasma. Biochim Biophys Acta,1994,1204:243-249.
    [46]Wilson D S, Tappel A L. Binding of plasma selenoprotein P to cell membranes[J]. J Inorg Biochem,1993,51(4):707-714.
    [47]Motchnik P A, Tappel A L. Rat plasma selenoprotein P properties andpurification [J]. Biochim Biophys Acta,1989,993(1):27-35.
    [48]Savaskan N E, Hore N, Eyupoglu I Y. Selenium and Selenoproteins inNeuroprotection and Neuronal Cell Death [M]. New York: Metal Ion in Stroke.Springer,2012:525-536.
    [49]Mao J, Teng W. The relationship between selenoprotein P and glucosemetabolism in experimental studies [J]. Nutrients,2013,5(6):1937-48.
    [50]Burk R F, Hill K E. Selenoprotein P: an extracellular protein with unique physicalcharacteristics and a role in selenium homeostasis [J]. Annu Rev Nutr,2005,25:215-35.
    [51]Whanger P. D., Selenoprotein W: a review [J]. Cellular and Molecular LifeSciences,2000,57(13-14):1846-1852.
    [52]Jeong D W, Kim E. H., Kim T. S., Chung Y. W., Kim H., Kim I. Y., Differentdistributions of selenoprotein W and thioredoxin during postnatal braindevelopment and embryogenesis [J]. Molecules and cells,2004,17(1):156-159.
    [53]Atkins J F, Gsteland R F. The twenty-first amino acid [J]. Nature,2000,407(6803):463-465
    [54]Forchhammer K, Heider J, Baron C. Selenoprotein synthesis: an expansion of thegenetic code [J]. Trends in biochemical sciences,1991,16:463-467.
    [55]Thanbichler M, B ck A. The function of SECIS RNA in translational control ofgene expression in Escherichia coli [J]. The EMBO journal,2002,21(24):6925-6934.
    [56]Zinoni F, Heider J, B ck A. Features of the formate dehydroge-nase mRNAnecessary for decoding of the UGA codon as selenocysteine [J]. Proc Natl AcadSci USA,1990,87(12):4660-4664.
    [57]Martin I G W, Berry M J. Selenocysteine codons decrease polysome associationon endogenous selenoprotein mRNAs [J]. Genes to Cells,2001,6(2):121-129.
    [58]Leinfelder W, Forchhammer K, Veprek B, Zehelein E, B ck A. In vitro synthesisof selenocysteinyl-tRNA (UCA) from seryl-tRNA (UCA): involvement andcharacterization of the selD gene product [J]. Proc Natl Acad Sci USA,1990,87(2):543-547.
    [59]Liu Z, Reches M, Groisman I, Engelberg-Kulka H. The nature of the minimal"selenocysteine insertion sequence"(SECIS) in Escherichia coli.[J]. NucleicAcids Res,1998,26(4):896-902.
    [60]Lambert A, Lescure A, Gautheret D. A survey of metazoan selenocysteineinsertion sequences [J]. Biochimie,2002,84(9):953-959.
    [61]Chen G F, Fang L, Inouye M. Effect of the relative position of the UGA codon tothe unique secondary structure in the fdhF mRNA on its decoding byselenocysteinyl tRNA in Escherichia coli.[J]. J Biol Chem,1993,268(31):23128-23131.
    [62]Baron C, Heider J, B ck A. Interaction of translation factor SELB with theformate dehydrogenase H selenopolypeptide mRNA [J]. Proc. Natl. Acad. Sci.USA,1993,90(9):4181-4185.
    [63]Li C, Reches M, Engelberg-Kulka H. The bulged nucleotide in the Escherichiacoli minimal selenocysteine insertion sequence participates in interaction withSelB: A genetic approach [J]. J Bacteriol,2000,182(22):6302-6307.
    [64]Itoh Y, Sekine S, Yokoyama S. Crystallization and preliminary X-raycrystallographic analysis of Aquifex aeolicus SelA, a bacterial selenocysteinesynthase [J]. Acta Crystallographica Section F: Structural Biology andCrystallization Communications (Acta Cryst.),2012,68(9):1128-1133.
    [65]Forchhammer K, B ck A. Selenocysteine synthase from Escherichia coli.analysis of the reaction sequence [J]. J Biol Chem,1991,266(10):6324-6328.
    [66]Kromayer M, Wilting R, Tormay P, B ck A. Domain structure of the prokaryoticselenocysteine-specific elongation factor SelB [J]. J Mol Biol,1996,262(4):413-420.
    [67]Huttenhofer A, B ck A. Selenocysteine inserting RNA elements modulate GTPhydrolysis of elongation factor SelB [J]. Biochemistry,1998,37,885-890.
    [68]Heider J, Baron C, B ck A. Coding from a distance: dissection of the mRNAdeterminants required for the incorporation of selenocysteine into protein [J]. TheEMBO journal,1992,11(10):3759-3766.
    [69]Copeland P R. Regulation of gene expression by stop codon recoding:selenocysteine [J]. Gene,2003,312:17-25.
    [70]Haft D H, Self W T. Orphan SelD proteins and selenium-dependent molybdenumhydroxylases [J]. Biol Direct,2008,3(4):1-6.
    [71]Kim I Y, Veres Z, Stadtman T C. Escherichia coli mutant SELD enzymes. Thecysteine17residue is essential for selenophosphate formation from ATP andselenide [J]. J Biol Chem,1992,267(27):19650-19654.
    [72]Jameson R R, Diamond A M, A regulatory role for Sec tRNA[Ser] Secinselenoprotein synthesis [J]. RNA,2004,10(7):1142-1152.
    [73]Sandman K. E., Noren C. J., The efficiency of Escherichia coli selenocysteineinsertion is influenced by the immediate downstream nucleotide [J]. Nucleic acidsresearch,2000,28(3):755-761.
    [74]Berry M J, Banu L, Chen Y Y, Mandel S J, Kieffer J D, Harney J W, Larsen P R.Recognition of UGA as a selenocysteine codon in type I deiodinase requiressequences in the3' untranslated region [J]. Nature,1991,353(6341):273-276.
    [75]Hill K E, Lloyd R S, Burk R.F. Conserved nucleotide sequences in the openreading frame and3' untranslated region of selenoprotein P mRNA [J]. Proc NatlAcad Sci USA,1993,90(2):537-541.
    [76]Berry M J, Banu L, Harney J W, Larsen P R. Functional characterization of theeukaryotic SECIS elements which direct selenocysteine insertion at UGA codons.EMBO J,1993,12(8):3315-3322.
    [77]Grundner-Culemann E, Martin G W, Harney J W, Berry M J. Two distinct SECISstructures capable of directing selenocysteine incorporation in eukaryotes [J].RNA,1999,5(5):625-635.
    [78]Squires J E, Berry M J. Eukaryotic selenoprotein synthesis: mechanistic insightincorporating new factors and new functions for old factors [J]. IUBMB Life,2008,60(4):232-235.
    [79]Fagegaltier D, Lescure A, Walczak R, Carbon P, Krol A. Structural analysis ofnew local features in SECIS RNA hairpins [J]. Nucleic Acids Res,2000,28(14):2679-2689.
    [80]Xu X M, Carlson B A, Mix H, Zhang Y, Saira K, Glass R S, Berry M J,Gladyshev V N, Hatfield D L. Selenophosphate synthetase2is essential forselenoprotein biosynthesis [J]. Biochem J,2007,404:115-120.
    [81]Xu X M, Carlson B A, Irons R, Mix H, Zhong N, Gladyshev V N, Hatfield D L.Biosynthesis of selenocysteine on its tRNA in eukaryotes [J]. PLoS Biol,2007,5:e4.
    [82]Maenpa P H, Bernfield M R. A specific hepatic transfer RNA for Phosphoserine[J]. Proc Natl Acad Sci USA,1970,67:688-695.
    [83]Hatfield D L, Portugal F H. Seryl-tRNA in mammalian tissues: Chromatographicdifferences in brain and liver and a specific response to the codon, UGA [J]. ProcNatl Acad Sci USA,1970,67:1200-1206.
    [84]Diamond A, Dudock B, Hatfield D L. Structure and properties of a bovine liverUGA suppressor serine tRNA with a tryptophan anticodon [J]. Cell,1981,25:497-506.
    [85]Hatfield D L, Diamond A, Dudock B. Opal suppressor serine tRNAs from bovineliver form phosphoseryl-Trna [J]. Proc Natl Acad Sci USA,1982,79:6215-6219.
    [86]Yuan J, Palioura S, Salazar J C, Su D, O’ Donoghue P, Hohn M J, Cardoso A M,Whitman W B, Soll D. RNA-dependent conversion of phosphoserine formsselenocysteine in eukaryotes and archaea [J]. Proc Natl Acad Sci USA,2006,103,18923-18927.
    [87]Kernebeck T, Lohse A W, Grotzinger J. A bioinformatical approach suggests thefunction of autoimmune hepatitis target antigen soluble liver antigen/liverpancreas [J]. Hepatology,2001,34,230-233.
    [88]Small-Howard A, Morozova N, Stoytcheva Z, Forry E P, Mansell J B, Harney JW, Carlson B A, Xu X M, Hatfield D L, Berry M J. Supramolecular complexesmediate selenocysteine incorporation in vivo [J]. Mol Cell Biol,2006,26:2337-2346.
    [89] Ding F, Grabowski P J. Identification of a protein component of a mammaliantRNA(Sec)complex implicated in the decoding of UGA as selenocysteine [J].RNA,1999,5:1561-1569.
    [90]Xu X M, Mix H, Carlson B A, Grabowski P J, Gladyshev V N, Berry M J,Hatfield D L. Evidence for direct roles of two additional factors, SECp43andSLA, in the selenoprotein synthesis machinery [J]. J Biol Chem,2005,280:41568-41575.
    [91]Guimaraes M J, Peterson D, Vicari A, Cocks B G, Copeland N G, Gilbert D J,Jenkins N A, Ferrick D A, Kastelein R A, Bazan J F, Zlotnik A. Identification ofa novel selD homolog from eukaryotes, bacteria, and archaea: Is there anautoregulatory mechanism in selenocysteine metabolism [J]. Proc Natl Acad Sci,USA1996,93:15086-15091.
    [92]Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman T C,Inagaki K. Selenophosphate synthetase genes from lung adenocarcinoma cells:Sps1for recycling L-selenocysteine and Sps2for selenite assimilation[J]. ProcNatl Acad Sci USA,2004,101:16162-16167.
    [93]Copeland P R, Driscoll D M. Purification, redox sensitivity, and RNA bindingproperties of SECIS-binding protein2, a protein involved in selenoproteinbiosynthesis [J]. J Biol Chem,1999,274:25447-25454.
    [94]Copeland P R, Fletcher J E, Carlson B A, Hatfield D L, Driscoll D M. A novelRNA binding protein, SBP2, is required for the translation of mammalianselenoprotein mRNAs [J]. EMBO J,2000,19:306-314.
    [95]Papp L V, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna K K. The redoxstate of SECIS binding protein2controls its localization and selenocysteineincorporation function [J]. Mol. Cell Biol,2006,26:4895-4910.
    [96]Forchhammer K, Leinfelder W, B ck A. Identification of a noveltranslation factor necessary for the incorporation of selenocystein intoprotein [J]. Nature,1989,342:453-456.
    [97] Tujebajeva R M, Copeland P R, Xu X M, Carlson B A, Harney J W, Driscoll DM, Hatfield D L, Berry M J. Decoding apparatus for eukaryotic selenocysteineincorporation [J]. EMBO Rep,2000,2:158-163.
    [98]Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A.Characterization of mSelB, a novel mammalian elongation factor forselenoprotein translation [J]. EMBO J,2000,19:4796-4805.
    [99]Chavatte L, Brown B A, Driscoll D M. Ribosomal protein L30is a component ofthe UGA-selenocysteine recoding machinery in eukaryotes [J]. Nat Struct MolBiol,2005,12:408-416.
    [100] Turanov A A, Lobanov A V, D L Hatfield, Gladyshev V N. UGA codonposition-dependent incorporation of selenocysteine into mammalianselenoproteins [J] Nucleic Acids Research,2013,41(14):6952-6959.
    [101] Sunde R A, Raines A M. Selenium regulation of the selenoprotein andnonselenoprotein transcriptomes in rodents [J]. Adv Nutr,2011,2(2):138-150.
    [102] Stoytcheva Z R, Berry M J. Transcriptional regulation of mammalianselenoprotein expression [J]. Biochim Biophys Acta,2009,1790(11):1429-1440.
    [103] Driscoll D M, Copeland P R. Mechanism and regulation of selenoproteinsynthesis [J]. Annual Review of Nutrition,2003,23:17-40.
    [104] Carlson B A, Xu X M, Gladyshev V N, Hatfield D L. Selective rescue ofselenoprotein expression in mice lacking a highly specialized methyl group inselenocysteine Trna [J]. J Biol Chem,2005,280(7):5542-5548.
    [105] Sunde R A, Raines A M, Barnes K M, Evenson J K. Selenium status highlyregulates selenoprotein mRNA levels for only a subset of the selenoproteins inthe selenoproteome [J].Biosci Rep,2009,29(5):329-338.
    [106] Hadley K B, Sunde R A. Selenium regulation of thioredoxin reductase activityand mRNA levels in rat liver [J].J Nutr Biochem,2001,(12):693-702.
    [107] Moriarty P M, Picciano M F, Beard J L, Reddy C C. Classicalselenium-dependent glutathione peroxidase expression is decreased secondaryto iron deficiency in rats [J]. J Nutr,1995,125:293-301.
    [108] Rayman M P. Selenium and human health [J]. Lancet,2012,379:1256-1268.
    [109] Steinbrenner H, Sies H. Protection against reactive oxygen species byselenoproteins [J]. Biochim Biophys Acta,2009,1790(11):1478-1485.
    [110] Alkan I, Simsek F, Haklar G, Kervancio lu E, Ozveri H, Yal in S, Akda A.Reactive oxygen species production by the spermatozoa of patients withidiopathic infertility: relationship to seminal plasma antioxidants [J]. TheJournal of urology,1997,157(1):140-143.
    [111] Bellinger F P, Raman A V, Reeves M A, Berry M J. Regulation and function ofselenoproteins in human disease [J]. Biochem J,2009,422(1):11-22.
    [112] Hopkins P N. Molecular biology of atherosclerosis [J].Physiol Rev,2013,93(3):1317-542.
    [113] Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore A M,Napolitano A M, Di Ilio C, Cuccurullo F. Glutathione-related antioxidantdefenses in human atherosclerotic plaques [J]. Circulation,1998,97(19):1930-1934.
    [114] Sattler W, Maiorino M, Stocker R. Reduction of HDL-and LDL-associatedcholesterylester and phospholipid hydroperoxides by phospholipidhydroperoxide glutathione peroxidase and Ebselen (PZ51)[J]. Arch BiochemBiophys,1994,309(2):214-221.
    [115] Serwatka K, Stachowska E, Chlubek D. Selenium and the activities ofcyclooxygenase and lipoxygenase in cells involved in atherogenesis[J]. AnnAcad Med Stetin.,2005,51(2):65-68.
    [116] Park J G, Oh G T. The role of peroxidases in the pathogenesis of atherosclerosis[J]. BMB Rep.,2011,(8):497-505.
    [117] Germain D L S, Galton V A, Hernandez A. Defining the roles of theiodothyronine deiodinases: Current concepts and challenges[J]. Endocrinology,2009,150(3):1097-1107.
    [118] Anastasilakis A D, Toulis K A, Nisianakis P, Goulis D G, Kampas L, Valeri RM, Oikonomou D, Tzellos T G, Delaroudis S. Selenomethionine treatment inpatients with autoimmune thyroiditis: a prospective, quasirandomised trial [J].Int J Clin Pract,2012,66:378-383.
    [119] Nacamulli D, Petricca D, Mian C. Selenium and autoimmune thyroiditis [J]. JEndocrinol Invest.,2013,36(10Suppl):8-14.
    [120] Beckett G J, Peterson F E, Choudhury K, Rae P W, Nicol F, Wu P S, Toft A D,Smith A F, Arthur J R. Inter-relationships between selenium and thyroidhormone metabolism in the rat and man [J]. J Trace Elem Electrolytes HealthDis,1991,(4):265-567.
    [121] Schweizer U, Brauer A U, Kohrle J, Nitsch R, Savaskan N E. Selenium andbrain function: a poorly recognized liaison [J]. Brain Res Rev,2004,45:164-178.
    [122] Fitch M T, Silver J. CNS injury, glial scars, and inflammation: Inhibitoryextracellular matrices and regeneration failure [J]. Exp Neurol,2008,209,294-301.
    [123] Gu Q P, Sun Y, Ream L W, Whanger P D. Selenoprotein W accumulatesprimarily in primate skeletal muscle, heart, brain and tongue [J]. Mol CellBiochem,2000,204:49-56.
    [124] Joseph S B, McKilligin E, Pei L, Watson M A, Collins A R, Laffitte B A, ChenM, Noh G, Goodman J, Hagger G N, Tran J, Tippin T K, Wang X, Lusis A J,Hsueh W A, Law R E, Collins J L, Willson T M, Tontonoz P. Synthetic LXRligand inhibits the development of atherosclerosis in mice [J]. Proc Natl AcadSci USA,2002,99,7604-7609.
    [125] Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer U M,Guicheney P. Selenoprotein N: an endoplasmic reticulum glycoprotein with anearly developmental expression pattern [J]. Hum Mol Genet,2003,12,1045-1053.
    [126] Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Kwon SY,Moustafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM,Gladyshev VN.Structure-expression relationships of the15-kDa selenoproteingene. Possible role of the protein in cancer etiology [J]. J. Biol. Chem.,2000,275(45):35540-35547.
    [127] Brown J S, Foster H D J. Schizophrenia: an update of the selenium deficiencyhypothesis [J]. Orthomolecular Med,1996,11(4):211-222.
    [128] Xiong S, Markesbery W R, Shao C, Lovell M A. Seleno-L-methionine protectsagainst beta-amyloid and iron/hydrogen peroxide-mediated neuron death [J].Antioxid Redox Signal,2007,9(4):457-467.
    [129] Schomburg L, Schweizer U, Holtman B, Flohé L, Sendtner M, K hrle J. Genedisruption discloses role of selenoprotein P in selenium delivery to target tissues[J]. Biochem J,2003,370:397-402.
    [130] Rocourt C R, Cheng W H. Selenium supranutrition: are the potential benefits ofchemoprevention outweighed by the promotion of diabetes and insulinresistance?[J]. Nutrients,2013,5(4):1349-1365.
    [131] Mueller A S, Mueller K, Wolf N M, Pallauf J. Selenium and diabetes: anenigma?[J]. Free Radic Res,2009,43(11):1029-1059.
    [132] Wang X D, Vatamaniuk M Z, Wang S K, Roneker C A, Simmons R A, Lei X G.Molecularmechanisms for hyperinsulinaemia induced by overproduction ofselenium-dependent glutathione peroxidase-1in mice [J]. Diabetologia,2008,51:1515-1524.
    [133] Labunskyy V M, Lee B C, Handy D E, Loscalzo J, Hatfield D L, Gladyshev VN. Both maximal expression of selenoproteins and selenoprotein deficiency canpromote development of type2diabetes-like phenotype in mice [J]. AntioxidRedox Signal,2011,14(12):2327-2336.
    [134] Hoffmann P R, Berry M J. The influence of selenium on immune responses [J].Mol Nutr Food Res,2008,52(11):1273-1280.
    [135] Arthur J R, McKenzie R C, and Beckett G J. Selenium in the immune system [J].J Nutr,2003133:1457S-1459S.
    [136] Hu Y, Benya R V, Carroll R E, Diamond A M. Allelic loss of the gene for theGPX1selenium-containing protein is a common event in cancer [J]. J Nutr,2005,135(12Suppl):3021S-3024S.
    [137] Hu Y J, Diamond A M. Role of glutathione peroxidase1in breast cancer: lossof heterozygosity and allelic differences in the response to selenium [J]. CancerRes,2003,63(12):3347-3351.
    [138] Sun Q A, Wu Y, Zappacosta F, Jeang K T, Lee B J, Hatfield D L, Gladyshev VN. Redox regulation of cell signaling by selenocysteine in mammalianthioredoxin reductases [J]. J Biol Chem,1999,274(35):24522-24530.
    [139] Becker K, Gromer S, Schirmer R H, Müller S. Thioredoxin reductase as apathophysiological factor and drug target [J]. Eur J Biochem,2000,267(20):6118-25.
    [140] Hatfield D L, Tsuji P A, Carlson B A, Gladyshev V N. Selenium andselenocysteine: roles in cancer, health, and development [J]. Trends BiochemSci,2014,39(3):112-120.
    [141] Beck M A, Esworthy R S, Ho Y S, Chu F F. Glutathione peroxidase protectsmice from viral-induced myocarditis [J]. FASEB J,1998,12(12):1143-1149.
    [142] Ryan-Harshman M, Aldoori W. The relevance of selenium to immunity, cancer,and infectious/inflammatory diseases [J]. Can J Diet Pract Res,2005,66(2):98-102.
    [143] Chandrudu S, Simerska P, Toth I. Chemical methods for peptide and proteinproduction [J]. Molecules,2013,18(4):4373-4388.
    [144] Sun Y, Li T Y, Chen H, Zhang K, Zheng K Y, Mu Y, Yan G L, Li W, Shen J C,Luo G M. Selenium-containing15-Mer peptides with high glutathioneperoxidase-like activity [J]. J Bio Chem,2004,279:37235-37240.
    [145] Zou X F, Ji Y T, Gao G, Zhu X J, Lv S W, Yan F, Han S P, Chen X, Gao C C,Liu J, Luo GM. A novel selenium and copper-containing peptide with bothsuperoxide dismutase and glutathione peroxidase activities [J]. J MicrobiolBiotechnol,2010,(1):88-93.
    [146] Wu Z P, Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic [J]. J AmChem Soc,1990,112:5647-5648.
    [147] Klayman DL, Griffin TS. Reaction of selenium with sodium borohydride inprotic solvents. A facile method for the introduction of selenium into organicmolecules [J]. Journal of the American Chemical Society,1973,95(1):197-199.
    [148] Ren X J, Jemth P, Board P G, Luo G M, Mannervik B, Liu J Q, Zhang K, ShenJ C. A semisynthetic glutathione peroxiase with high catalytic efficiency:Selenoglutathione transferase [J]. J Photochem Photobiol B-Biol,2003,69:7-12.
    [149] Su D, Ren X J, You D L, Mu Y, Yan G L, Luo Y M, Xue Y, Shen J C, Liu Z,Luo G M. Generation of three selenium-containing catalytic antibodies withhigh catalytic efficiency using a novel hapten design method [J]. Arch BiochemBiophys,2001,395:177-184.
    [150] Luo G M, Zhu Z Q, Ding L, Gao G, Sun Q A, Liu Z, Yang T S, Shen J C.Generation of selenium-containing abzyme by chemical mutation [J]. BiochemBiophys Res Comm,1994,198:1240-1247.
    [151] Ren X J, Gao S J, You D L, Huang H L, Liu Z, Mu Y, Liu J Q, Zhang Y, YangT S, Shen J C. Cloning and expressing of a single-chain catalytic antibody thatacts as a glutathione peroxidase mimic with high catalytic efficiency [J].Biochem J,2001,359:369-374.
    [152] Huo R, Wei J Y, Xu J J, Lv S W, Zheng Q C, Yan F, Su J M, Fan J, Li J S,Duan Y J, Yu Y, Jin F H, Sun W G, Shi Y, Cong D L, Li W, Yan GL, Luo GM.2008. Human catalytic antibody Se-scFv-B3with high glutathione peroxidaseactivity [J]. J Mol Recognit,21:323-328.
    [153] Xu J J, Song J, Yan F, Chu H, Luo J, Zhao Y, Cheng X, Luo G M, Zheng Q,Wei J Y. Improving GPX activity of selenium-containing human single-chainFv antibody by site-directed mutation based on the structural analysis [J]. J MolRecognit,2009,22(4):293-300.
    [154] Hortin G, Boime I. Applications of amino acid analogs for studying co-andposttranslational modifications of proteins [J]. Methods Enzymol,1983,96:777-784.
    [155] Wilson M J, Hatfield D L. Incorporation of modified amino acids into proteinsin vivo [J]. Biochim. Biophys Acta,1984,781:205-215.
    [156] Budisa N, Steipe B, Demange P, Eckerskorn C, Kellermann J, Huber R.High-level biosynthetic substitution of methionine in proteins by its analogs2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine inEscherichia coli [J]. Eur J Biochem,1995,230:788-796.
    [157] Xie J M, Schultz P G. A chemical toolkit for proteins—an expanded geneticcode [J]. Nature Reviews,2006,7:775-782.
    [158] Cohen G N, Munier R. Effects of structural analogues of amino acids on growthand synthesis of proteins and enzymes in Escherichia coli [J]. Biochim BiophysActa,1959,31:347-356.
    [159] Muller S, Senn H, Gsel1B, Vetter W, Baron C, B ck A. The formation ofdiselenide bridges in proteins by incorporation of selenocysteine residues:Biosynthesis and characterization of (Se)2-thioredoxin [J]. Biochemistry,1994,33:3404-3412.
    [160] Boschi-Muller S, Muller S, Dorsselaer A V, B ck A, Branlant G. Substitutingselenocysteine for active site cysteine149of phosphorylating glyceraldehyde3-phosphate dehydrogenase reveals a peroxidase activity [J]. FEBS Letters,1998,439:241-245.
    [161] Ge Y, Qi Z. H, Wang Y, Liu X M, Li J, Xu J Y, Liu J Q, Shen J C. Engineeredselenium-containing glutaredoxin displays strong glutathione peroxidaseactivity rivaling natural enzyme [J]. Int J Biochem Cell Biol,2009,41(4):900-906.
    [162] Li J, Liu X M, Ji Y T, Qi Z H, Ge Y, Xu J Y, Liu J Q, Luo G M, Shen J C.Biosynthesis of selenosubtilisin: A novel way to target selenium into the activesite of subtilisin [J]. Chinese Science Bulletin,2008,53(16):2454-2461.
    [163] Yu H J, Liu J Q, B ck A, Li J, Luo G M, Shen J C. Engineering glutathionetransferase to a novel glutathione peroxidase mimic with high catalyticefficiency: incorporation of selenocysteine into a glutathione-binding scaffoldusing an auxotrophic expression system [J]. J Biol Chem,2005,280:11930-11935.
    [164] Buettner C, Harney J W, Berry M J. The Caenorhabditis elegans homologue ofthioredoxin reductase contains a selenocysteine insertion sequence (SECIS)element that differs from mammalian SECIS elements but directs selenocysteineincorporation [J]. J Biol Chem,1999,274(31):21598-21602.
    [165] Gasdaska J R, Harney J W, Gasdaska P Y, Powis G, Berry M J. Regulation ofhuman thioredoxin reductase expression and activity by3'-untranslated regionselenocysteine insertion sequence and mRNA instability elements[J]. J BiolChem,1999,274(36):25379-25385.
    [166] Fujiwara N, Fujii T, Fujii J, Taniguchi N. Functional expression of ratthioredoxin reductase: selenocysteine insertion sequence element is essential forthe active enzyme [J]. Biochem J,1999,340(Pt2):439-444.
    [167] Xu Y W, Jiang Z H, Mu Y, Zhang L, Zhao S Q, Liu S J, Wang C, Zhao Y, LüSW, Yan G L.Effects of combinatorial expression of selA, selB and selC geneson the efficiency of selenocysteine incorporation in Escherichia coli [J]. ChemRes in Chinese U,2013,29(1):87-94.
    [168] Hazebrouck S, Camoin L, Faltin Z, Strosberg A D, Eshdat Y.Substitutingselenocysteine for catalytic cysteine41enhances enzymatic activityof plant phospholipid hydroperoxide glutathione peroxidase expressed inEscherichia coli [J]. J Biol Chem,2000,275(37):28715-28721.
    [169] Zavacki A M, Mansell J B, Chung M, Klimovitsky B, Harney J W, Berry M J.Coupled tRNA (Sec)-dependent assembly of the selenocysteine decodingapparatus [J]. Mol Cell,2003,11:773-781.
    [170] Bar-Noy S, Moskovitz J. Mouse methionine sulfoxide reductase B: effect ofselenocysteine incorporation on its activity and expression of theseleno-containing enzyme in bacterial and mammalian cells [J]. BiochemBiophys Res Commun,2002,297(4):956-961.
    [171] Bauman A T, Malencik D A, Barofsky D F, Barofsky E, Anderson S R,Whanger P D. Selective production of rat mutant selenoprotein W with andwithout bound glutathione [J]. Biochem Biophys Res Commun,2004,313(2):308-313.
    [172]刘琼,姜亮,田静,倪嘉缵.硒蛋白的分子生物学及与疾病的关系[J].化学进展,2009,21(5):819-830.
    [173] Liu H J. Expression of selenium-containing protein with GSH binding site ineukaryotic cells [D]. Jilin: Jilin University,2010.
    [174] Novoselov S V, Lobanov A V, Hua D, Kasaikina M V, Hatfield D L, GladyshevV N. A highly efficient form of the selenocysteine insertion sequence element inprotozoan parasites and its use in mammalian cells [J]. Proc Natl Acad Sci USA,2007,104(19):7857-7862.
    [175] Korotkov K V, Novoselov S V, Hatfield D L, Gladyshev V N. MammalianSelenoprotein in Which Selenocysteine (Sec) Incorporation Is Supported by aNew Form of Sec Insertion Sequence Element [J]. Mol Cell Biol,2002,22(5):1402-1411.
    [176]赵文然,钟翔宇,孙辉.人类磷脂氢谷胱甘肽过氧化物酶的真核表达及其多克隆抗体的制备[J].中国地方病学杂志,2006,25(1):39-41.
    [177] Kim I Y, Guimar es M J, Zlotnik A. Fetal mouse selenophosphate synthetase2(SPS2) Characterization of the cysteine mutant form overproduced in abaculovirus–insect cell system [J]. Proc Natl Acad Sci USA,1997,94(2):418-421.
    [178] Zhong L, Holmgren A. Essential Role of Selenium in the Catalytic Activities ofMammalian Thioredoxin Reductase Revealed by Characterization ofRecombinant Enzymes with Selenocysteine Mutations [J]. J Biol Chem,2000,275(24):18121-18128.
    [179] Tujebajeva R M, Harney J W, Berry M J. Selenoprotein P expression,purification, and immunochemical characterization [J]. J Biol Chem,2000,275(9):6288-6294.
    [180] Stadtman T C. Selenoeysteine [J]. Annu Rev Biochem,1996,65:83-100.
    [181] Fridovich I. Oxigen radicals, hydrogen peroxide and oxigen toxicity [J]. Freeradicals in biology,1976:239-277.
    [182] Pryor W A. The role of free radical reactions in biological systems [J]. Freeradicals in biology,1976,1:1-49.
    [183] Valdez L B, Lores Arnaiz S, Bustamante J, Alvarez S, Costa L E, Boveris A.Free radical chemistry in biological systems [J]. Blol Res,2000,33(2):65-70.
    [184] Sánchez-Moreno C. Review: Methods used to evaluate the free radicalscavenging activity in foods and biological systems [J]. Food Science andTechnology International,2002,8(3):121-137.
    [185] Ghezzi P, Bonetto V, Fratelli M. Thio-l disulfide balance: from the concept ofoxidative stress to that of redox regulation [J]. Antioid Redox Signal,2005,7(7-8):964-972.
    [186] Sj din B, Westing Y H, Apple F S. Biochemical mechanisms for oxygen freeradical formation during exercise [J]. Sports Medicine,1990,10(4):236-254.
    [187] Del Maestro R F. An approach to free radicals in medicine and biology [J]. Actaphysiologica Scandinavica. Supplementum,1979,492:153-168.
    [188] Klaunig J E, Xu Y, Bachowski S, Jiang J. Free-radical oxygen-induced changesin chemical carcinogenesis[J]. Free Radical Toxicology,1997:375-400.
    [189] Cadenas E. Biochemistry of oxygen toxicity [J]. Annual review of biochemistry,1989,58(1):79-110.
    [190] Fridovich I. Biological effects of the superoxide radical [J]. Arch Bioch Biophys,1986,247(1):1-11.
    [191] Valko M, Rhodes C J, Moncol J, Izakovic M M, Mazur M. Free radicals, metalsand antioxidants in oxidative stress-induced cancer[J]. Chemico-biologicalinteractions,2006,160(1):1-40.
    [192] Ames B N, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and thedegenerative diseases of aging [J]. Proc Nati Academy Sci,1993,90(17):7915-7922.
    [193] Fritz R, Bol J, Hebling U, Angermüller S., V lkl A, Fahimi H D, Mueller S.Compartment-dependent management of H2O2by peroxisomes [J]. Free RadicalBiol Med,2007,42(7):1119-1129.
    [194] Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002,18(10):872-879.
    [195] Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation ofOH radical footprints in a TBP-DNA complex reveals the role of dynamics inthe mechanism of sequence-specific binding [J]. J Mol Biol,2000,304(1):55-68.
    [196] Hideg é, Spetea C, Vass I. Singlet oxygen and free radical production duringacceptor-and donor-side-induced photoinhibition: studies with spin trappingEPR spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1994,1186(3):143-152.
    [197] DeRosa M C, Crutchley R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews,2002,233:351-371.
    [198] Beyer R E. The participation of coenzyme Q in free radical production andantioxidation [J]. Free Radical Biology and Medicine,1990,8(6):545-565.
    [199] Halliwell B, Cross C E. Oxygen-derived species: their relation to human diseaseand environmental stress [J]. Environ. Health. Persp,1994,102(S10):5.
    [200] Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of ageing [J].Nature,2000,408(6809):239-247.
    [201] Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical induceddamage to DNA: Mechanisms and measurement [J]. Free Radical Biol Med,2002,32(11):1102-1115.
    [202] Valko M, Izakovic M, Mazur M, Rhodes C J, Telser J. Role of oxygen radicalsin DNA damage and cancer incidence [J]. Molecular and cellular biochemistry,2004,266(1-2):37-56.
    [203] Dizdaroglu M. Chemical determination of free radical-induced damage to DNA[J]. Free Radical Biol Med,1991,10(3):225-242.
    [204] Dedon P C, Tannenbaum S R. Reactive nitrogen species in the chemical biologyof inflammation [J]. Arch Biochem Biophys,2004,423(1):12-22.
    [205] Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, andsignificance [J]. Amer J Clinical Nut,1993,57(5):715S-724S.
    [206] Yin H, Xu L, Porter N A. Free radical lipid peroxidation: mechanisms andanalysis [J]. Chemical reviews,2011,111(10):5944-5972.
    [207] Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage byreactive oxygen species [J]. International Microbiology,2010,3(1):3-8.
    [208] Mostafalou S, Eghbal M A, Nili-Ahmadabadi A, Baeeri M, Abdollahi M.Biochemical evidence on the potential role of organophosphates in hepaticglucose metabolism toward insulin resistance through inflammatory signalingand free radical pathways [J]. Toxicol Industr Health,2012,28(9),840-851.
    [209] Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J. Free radicalsand antioxidants in normal physiological functions and human disease [J]. Int JBiochem Cell Biol,2007,39(1):44-84.
    [210] Barja G. Updating the mitochondrial free radical theory of aging: an integratedview, key aspects, and confounding concepts [J]. Antioxidants&redoxsignaling,2013,19(12):1420-1445.
    [211] Matés J M, Sánchez-Jiménez F M. Role of reactive oxygen species in apoptosis:implications for cancer therapy [J]. Int J Biochem Cell Biol,2000,32(2):157-170.
    [212] Simon H U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species(ROS) in apoptosis induction [J]. Apoptosis,2000,5(5):415-418.
    [213]谢萍.自由基与细胞凋亡[J].生物学教学,2004,29(1):3-4.
    [214] Dreher D, Junod A F. Role of oxygen free radicals in cancer development [J].Euro J Cancer,1996,32(1):30-38.
    [215] Spasi M B. Free radicals and cancer [J]. Arch Oncology,2000,8(4):153-153.
    [216] Njie-Mbye Y F, Kulkarni-Chitnis M, Opere C A, Barrett A, Ohia S E. Lipidperoxidation: pathophysiological and pharmacological implications in the eye[J]. Front Physiol,2013,4:366.
    [217] Waypa G B, Marks J D, Guzy R, Mungai P T, Schriewer J, Dokic D,Schumacker P T. Hypoxia triggers subcellular compartmental redox signaling invascular smooth muscle cells [J]. Circulation Research,2010,106(3):526-535.
    [218] Birben E, Sahiner U M, Sackesen C, Erzurum S, Kalayci O. Oxidative stressand antioxidant defense [J]. The World Allergy Organization Journal,2012,5(1):9.
    [219] Husain N, Kumar A, Radicals F. Reactive Oxygen Species and NaturalAntioxidants: A Review [J]. Society of Education India,2012,3(4):164-175.
    [220] Sies H. Strategies of antioxidant defense [M] Berlin Heidelberg: EJB Reviews,Springer,1994:101-107.
    [221] Yan F, Mu Y, Yan G L, Liu J Q, Shen J C, Luo G M. Antioxidant enzymemimics with synergism[J]. Mini reviews in medicinal chemistry,2010,10(4):342-356.
    [222] Perry J J P, Shin D S, Getzoff E D, Tainer J A. The structural biochemistry ofthe superoxide dismutases [J]. Biochimica et Biophysica Acta (BBA)-Proteinsand Proteomics,2010,1804(2):245-262.
    [223] Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling,vascular function, and diseases [J]. Antioxidants&redox signaling,2011,15(6):1583-1606.
    [224] Mylona P V, Polidoros A N, Scandalios J G. Modulation of antioxidantresponses by arsenic in maize [J]. Free Radical Biol Med,1998,25(4/5):576-585.
    [225] Miller A F. Superoxide dismutases: ancient enzymes and new insights [J].FEBS letters,2012,586(5):585-595.
    [226] Ren B, Huang W H, Akesson B, Ladenstein R. The crystal structure ofselenoglutathione peroxidase from human plasma at2.9resolutions [J]. MMol Biol,1997,268:869-885.
    [227] Martin J L. Thioredoxin-a fold for all reasons [J]. Structure,1995,3:245-250.
    [228] Maiorino M, Aumann K D, Brigelius-Flohé R, Doria D, van den Heuvel J,McCarthy J, Roveri A, Ursini F, Flohé L. Probing the presumed catalytic triadof selenium-containing peroxidases by mutational analysis of phospholipidhydroperoxide glutathione peroxidase(PHGPx)[J]. Biol Chem Hoppe Seyler,1995,376:651-660.
    [229] Carsol M A, Pouliquen-Sonaglia I, Lesgards G, Marchis-Mouren G, PuigserverA, Santmone M. A. New Kinetic Model for the Mode of Action of Soluble andMembrane-Immobilized Glutathione Peroxidase from BovineErythrocytes-Effects of Selenium [J]. Eur J Biochem,1997,247:248–255.
    [230] Flohé L, Loschen G, Günzler W A, Eichele E. Glutathione Peroxidase, theKinetic Mechanism [J]. Hoppe-Seyler’s Z Physiol Chem,1972,353:987-999.
    [231] Ursini F, Maiorini M, Gregolin C. Purification from Pig Liver of a ProteinWhich Protects Liposomes and Biomembranes from Peroxidative Degradationand Exhibits Glutathione Peroxidase Activity on PhosphatidylcholineHydroperoxides [J]. Biochem Biophys Acta,1982,710:197-211.
    [232] Dalziel K. The Interpretation of Kinetic Data for Enzyme-Catalysed ReactionsInvolving Three Substrates [J]. Biochem J,1969,114:547-556.
    [233] Dalziel K. Initial Steady State Velocities in the Evaluation ofEnzyme-Coenzyme-Substrate Reaction Mechanisms [J]. Acta Chem. Scand.1957,11:1706-1723.
    [234] Segel I. H., Enzyme Kinetics [M]. New York: John Wiley and Sons.1975:227.
    [235] Carsol M A, Pouliquen-Sonaglia I, Lesgards G, Marchis-Mouren G, PuigserverA, Santmone M A. New Kinetic Model for the Mode of Action of Soluble andMembrane-Immobilized Glutathione Peroxidase from BovineErythrocytes-Effects of Selenium [J]. Eur J Biochem,1997,247:248–255.
    [236] Vidossich P, Carpena X, Loewen P C, Fita I, Rovira C. Oxygen Binding toCatalase-Peroxidase[J]. J Phys Chem Lett,2011,2(3):196-200.
    [237] Park J G. Invited Mini Review: The role of peroxidases in the pathogenesis ofatherosclerosis [J]. Bioch Mol Bio Rep,2011,44(8):497-505.
    [238] Goyal M M, Basak A. Human catalase: looking for complete identity [J].Protein&cell,2010,1(10):888-897.
    [239] RACKER E, Glutathione reductase from bakers’ yeast and beef liver [J]. J BiolChem.1955,217(2):855-65.
    [240] Yan J, Ralston M M, Meng X, Bongiovannic K D, Jonesc A L, Benndorfd R,Nelina L D, Fraziera W J, Rogersa L K, Smithc C V, Liua Y. Glutathionereductase is essential for host defense against bacterial infection[J]. Free RadicalBiol Med,2013,61:320-332.
    [241] Deponte M. Glutathione catalysis and the reaction mechanisms ofglutathione-dependent enzymes [J]. Biochim Biophys Acta,2013,1830(5):3217-66.
    [242] Hayes J D, Pulford D J. The glutathione S-transferase supergene family:regulation of GST and the contribution of the isoenzymes to cancerchemoprotection and drug resistance [J]. Crit Rev BiochemMol Biol,1995,30(6):445-600.
    [243] Whalen R, Boyer T. Human glutathione S-transferase [J]. Semin Liver Dis,1998,18(4):345-358.
    [244] Seidegard J, Ekstrom G. The role of human glutathione transferases and epoxidehydrolases inthe metabolismof xenobiotices [J]. EnvironHealth Perspect,1997,105(S4):791-799.
    [245] Di Pietro G, Magno L A V, Rios-Santos F. Glutathione S-transferases: anoverview in cancer research [J]. Expert Opin Drug Metab Toxicol,2010,6(2):153-170.
    [246] Horton J K, Roy G, Piper J T, Van Houten B, Awasthi Y C, Mitra S,Alaoui-Jamali M A, Boldogh I, Singhal S S. Characterization of achlorambucil-resistant human ovarian carcinoma cell line overexpressingglutathione S-transferase mu[J]. Biochem Pharmacol,1999,58(4):693-702.
    [247] Pickett C B, Lu A Y H. Glutathione S-transferases: gene structure, regulation,and biological function [J]. Annual review of biochemistry,1989,58(1):743-764.
    [248] Xu H, Cao W, Zhang X. Selenium-Containing Polymers: PromisingBiomaterials for Controlled Release and Enzyme Mimics [J]. Accounts ofchemical research,2013,46(7):1647-1658.
    [249] Diamantopoulos A, Temme D. MIMIC models, formative indicators and thejoys of research [J]. AMS review,2013,3(3):160-170.
    [250] Huang X, Liu X, Luo Q, Luo Q, Liu J, Shen J.Artificial selenoenzymes:Designed and redesigned [J]. Chemical Society Reviews,2011,40(3):1171-1184.
    [251] Wang C, Yan G L, Luo G M. Synthetic Antioxidant Polymers: Enzyme Mimics.Antioxidant Polymers: Synthesis, Properties, and Applications [M]. New Jersey:Scrivener Publishing LLC and JohnWiley and Sons Ltd.2012,259-332.
    [252] Claudio S, Caterina T, Claudia S, Marta P, Francesco G. Selenium ContainingCompounds from Poison to Drug Candidates: A Review on the GPx-likeActivity[J]. Current Chemical Biology,2013,7(1):25-36.
    [253] Antony S, Bayse C A. Modeling the mechanism of the glutathione peroxidasemimic ebselen [J]. Inorganic chemistry,2011,50(23):12075-12084.
    [254] Lv S W, Wang X G, Mu Y, Zang T Z, Ji Y T, Liu J Q, Shen J C, Luo G M. Anovel dicyclodextrinyl diselenide compound with glutathione peroxxidaseactivity [J]. FEBS Journal,2007,274:3846-3854.
    [255] Woggon W D. Metal complexes covalently linked to cyclodextrin [J]. CurrentOrganic Chemistry,2010,14(13):1362-1379.
    [256] Ge Y, Liu J, Shen J. Biosynthetic Mimics of Selenoproteins. Selenoproteins andMimics [M]. Berlin Heidelberg: Springer,2012:279-287.
    [257] Wiester M J, Ulmann P A, Mirkin C A. Enzyme mimics based uponsupramolecular coordination chemistry [J]. Angewandte Chemie InternationalEdition,2011,50(1):114-137.
    [258] Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds [J].Chemical Society Reviews,2012,41(23):7890-7908.
    [259] Suzuki M, Roy R, Zheng H, Woychik N, Inouye M, Bacterial Bioreactors forHigh Yield Production of Recombinant Protein [J]. J Bio Chem,2006,281(49):37559-37565.
    [260] Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M., MazF cleavescellular mRNAs specifically at ACA to block protein synthesis in Escherichiacoli.[J]. Mol Cell,2003,12:913-923.
    [1] Andrady C, Sharma S K, Chester K A. Antibody-enzyme fusion proteins forcancer therapy [J]. Immunotherapy,2011,3(2):193-211.
    [2] Li Y, Wang Y, Guo Y. Preparation of synthetic antigen and monoclonal antibodyfor indirect competitive ELISA of citrinin [J]. Food and Agricultural Immunology,2012,23(2):145-156.
    [3] Xu Y W, Mu Y. Selenium-containing Catalytic Antibodies. Selenoproteins andMimics [M]. Berlin Heidelberg: Springer,2012:259-277.
    [4] Luo G M, Zhu Z Q, Ding L, Gao G, Sun Q A, Liu Z, Yang T S, Shen J C.Generation of selenium-containing abzyme by using chemical mutation [J].Biochem Biophys Res Commun,1994,198(3):1240-1247.
    [5] Ren X J, Gao S J, You D L, Huang H L, Liu Z, Mu Y, Liu J Q, Zhang Y, Yang TS, Shen J C. Cloning and expressing of a single-chain catalytic antibody that actsas a glutathione peroxidase mimic with high catalytic efficiency [J]. Biochem J,2001,359:369-374.
    [6] Lin F, Li Y, Yang W K, Liang B, Mu Y, Sun Y, Li W, Luo G M. Rapid selectionof phage Se-scFv with GPX activity via combination of phage display antibodylibrary with chemical modification [J]. Chem Res Chinese U,2007,23(1),58.
    [7] Xu J, Song J, Su J, Wei J, Yu Y, Lv S, Nie G. A new human catalytic antibodySe-scFv-2D8and its selenium-containing single domains with high GPX activity[J]. J Mol Recogit,2010,23(4):352-359.
    [8] Sali A, Blundell T L. Comparative proteinmodelling by satisfaction of spatialrestraints [J]. J Mol Biol,1993,234:779-815.
    [9] Kabat E A, Wu T T, Perry H M, Gottesman K S, Foeller C. Sequences of Proteinsof Immunological Interest,5th edit [M]. Bethesda: National Institutes of Health,1991:274.
    [10]Sircar A, Sanni K A, Shi J, Gray J J. Analysis and modeling of the variable regionof camelid single-domain antibodies [J]. J Immunology,2011,186(11):6357-6367.
    [11]Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L.Comparison of simple potential functions for simulating liquid water [J]. J ChemPhys,1983,79:926-935.
    [12]Lüthy R, Bowie J U, Eisenberg D. Assessment of protein models withthree-dimensional profles [J]. Nature,1992,356:83-85.
    [13]Bradford, M. M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding [J]. AnalyticalBiochemistry,1976,72,248-254.
    [14]Yu H J, Liu J Q, B ck A, Li J, Luo G M, Shen J C. Engineering glutathionetransferase to a novel glutathione peroxidase mimic with high catalytic efficiency.Incorporation of selenocysteine into a glutathione-binding scaffold using anauxotrophic expression system [J]. J Biol Chem,2005,280:11930-11935.
    [15]Sun Y, Mu Y, Li W, Lv S, Jiang Z, Zhang K, Shen J. Protection of epidermalcells against UVB injury by the antioxidant selenium-containing single-chain Fvcatalytic antibody [J]. Arch Biochem Biophys,2003,412(1):90-94.
    [16]Wilson S R, Zucker P A, Huang R R C, Spector A. Development of syntheticcompounds with glutathione peroxidase activity[J]. J Am Chem Soc,1989,111:5936-5939.
    [17]Ulrich H D, Mundorff E, Santarsiero B D, Driggers E M, Stevens R C, Schultz PG. The interplay between binding energy and catalysis in the evolution of acatalytic antibody [J]. Nature,1997,389:271-275.
    [18]Bell I M, Fisher M L, Wu Z P, Hilvert D. Kinetic studies on the peroxidaseactivity of selenosubtilisin [J]. Biochemistry,1993,32:3754-3762.
    [19]Jiang Z H, Arnér E S, Mu Y, Johansson L, Shi J, Zhao S, Luo G M. Expression ofselenocysteine-containing glutathione-transferase in Escherichia coli [J]. BiochBiophys Res Commun,2004,321(1):94-101.
    [20]Su D, Ren X J, You D L, Mu Y, Yan G L, Luo Y M, Xue Y, Shen J C, Liu Z,Luo GM. Generation of three selenium-containing catalytic antibodies with highcatalytic efficiency using a novel hapten design method[J]. Arch BiochemBiophys,2001,395:177-184.
    [21]Laskowski R A, MacArthur M W, Moss D S, Thornton J M. PROCHECK: aprogram to check the stereochemical quality of protein structures [J]. J ApplCryst,1993,26:283-291.
    [22]Xu J J, Song J, Yan F, Chu H Y, Luo J X, Zhao Y, Cheng X, Luo G M, Zheng QC, Wei J Y. Improving GPX activity of selenium-containing human single-chainFv antibody by site-directed mutation based on the structural analysis [J]. J MolRecognit,2009,22:293-300.
    [23]Müller A, Cadenas E, Graf P, Sies H. A novel biologically active selenoorganiccompound I. Glutatione peroxidase-like activity in vitro and antioxidant capacityof PZ51(Ebselen)[J]. Biochem Pharmacol,1984,33,3235-3239
    [24]Mannervik B. Glutathione peroxidase [J]. Meth Enzymol,1985,113:490-495.
    [1] Luo G M, Zhu Z Q, Ding L, Gao G, Sun Q A, Liu Z, Yang T S, Shen J C.Generation of selenium-containing abzyme by chemical mutation [J]. BiochemBiophys Res Comm,1994,198:1240-1247.
    [2] Suzuki M, Roy R, Zheng H, Woychik N, Inouye M, Bacterial Bioreactors forHigh Yield Production of Recombinant Protein [J] J Bio Chem,2006,281(49):37559-37565.
    [3] Suzuki M, Zhang J, Liu M, Woychik N A, Inouye M. Single protein productionin living cells facilitated by an mRNA interferase [J]. Mol Cell,2005,18:253-261.
    [4] Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M., MazF cleavescellular mRNAs specifically at ACA to block protein synthesis in Escherichiacoli.[J]. Mol Cell,2003,12:913-923.
    [5] Zhang Y, Zhang J, Hara H, Kato I, Inouye M. Insights into the mRNA cleavagemechanism by MazF, an mRNA interferase[J]. J Biol Chem,2005,280:3143-3150.
    [6] Qing G, Ma L C, Khorchid A, Swapna G V, Mal T K, TakayamaM M, Xia B,Phadtare S, Ke H, Acton T, Montelione G T, Ikura M, Inouye M. Cold-shockinducedhigh-yield protein production in Escherichia coli.[J]. Nat Biotechnol,2004,22:877-882.
    [7] Suzuki M, Mao L L, Inouye M. Single protein production (SPP) system inEscherichia coli [J]. Nat Protocols,2007,2:1802-1810.
    [8] Suzuki M, Roy R, Zheng H, Woychik N, Inouye M. Bacterial bioreactors for highyield production of recombinantprotein [J]. J Biol Chem,2006,281:37559-37565.
    [9] Vaiphei S T, Tang Y F, Montelione G T, Inouye M. The use of the condensedsingle protein production systemfor isotope-labeled outer membrane proteins,OmpA and OmpX in E. coli.[J]. Mol Biotechnol,2011,47:205-210.
    [10]Mao L L, Inoue K, Tao Y S, Montelione G T, McDermott A E, Inouye M.Suppression of phospholipid biosynthesis by cerulenin in the condensedSingle-Protein-Production (cSPP) system[J]. J Biomol NMR,2011,49:131-137.
    [11]Mao L L, Stathopulos P B, Ikura M, Inouye M. Secretion of human superoxidedismutase in Escherichia coliusing the condensed single-protein-productionsystem [J]. Protein Sci,2010,19:2330-2335.
    [12]Wang C, Wan P, Gong P S, Lv L M, Xu Y W, Zhao Y, He B, Zhao G, Yan G L,Mu Y, Lv S W, Luo G M. A novel selenium-containing human single chainvariable fragment with glutathione peroxidase activity base on computer-aidedmolecular design [J]. Chem Res Chin U,2011,27:813-819.
    [13]Vaiphei S T, Mao L L, Shimazu T, Park J H, Inouye M. Use of amino acids asinducers for high-level protein expression in the single-protein production system[J]. Appl Environ Microb,2010,76:6063-6068.
    [14]Sun S Q, Mo W J, Ji Y P, Liu S Y. Prepraration and mass spectrometric study ofegg yolk antibody (IgY) against rabies virus [J]. Rapid Commun Mass Spectrom,2001,15:708-712.
    [15]Shimazu T, Degenhardt K, Nur-E-Kamal A, Zhang J J, Yoshida T, Zhang Y L,Mathew R, White E, Inouye M. NBK/BIK antagonizes MCL-1and BCL-XL andactivates BAK-mediated apoptosis in response to protein synthesis inhibition[J].Genes Dev,2007,21:929-941.
    [16]Hillenkamp F, Karas M, Beavis R C, Chait B T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers [J]. Anal Chem,1991,63:1193-1203.
    [17]Lansman R A, Shade R O, Shapiro J F, Avise J C. The use of restrictionendonucleases to measure mitochondrial DNA sequence relatedness in naturalpopulations. III. Techniques and potential applications [J]. J Mol Evol,1981,17:214-226.
    [18]BRADFORD M M. A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding [J].Anal Biochem,1976,72:248-254.
    [19]You D L, Ren X J, Xue Y, Luo G M, Yang T S, Shen J C. A selenium-containingsingle-chain abzyme with potent antioxidant activity [J]. Eur J Biochem,2003,270:4326-4331.
    [20]Shen N, Yan F, Guo Y, Lv S W, Gong P S, Xu Y W, Yan G L, Mu Y, Luo G M.Imprinted human serum albumin with antioxidant activity [J]. Chem Res ChineseU,2011,27:258-263.
    [21]Gao N, Li H M, Li Q S, Liu J Q, Luo G M. Synthesis and kinetic evaluation of atrifunctional enzyme mimic with a dimanganese active centre [J]. J InorgBiochem,2011,105:283-288.
    [22]Pryor W A, Stanley J P, Blair E. Autoxidation of polyunsaturated fatty acids. II.A suggested mechanism for the formation of TBA-reactive materials fromprostaglandin-like endoperoxides [J]. Lipids,1976,11:370-379.
    [23]Yu H J, Liu J Q, Li J, Zang T Z, Luo G M, Shen J C. Protection of mitochondrialintegrity from oxidative stress by selenium-containing glutathione transferase [J].Appl Biochem Biotech,2005,127:133-142.
    [24]Lv S W, Wang X G, Mu Y, Zang T Z, Ji Y T, Liu J Q, Shen J C, Luo G M. Anovel dicyclodextrinyl diselenide compound with glutathione peroxidase activity[J]. FEBS J,2007,274:3846-3854.
    [25]Karbownik-Lewińska M, St pniak J, Lewiński A. High level of oxidizednucleosides in thyroid mitochondrial DNA; damaging effects of Fenton reactionsubstrates [J]. Thyroid Res,2012,5:24-32.
    [26]Liu Z., Celotto A. M., Romero G., Wipf P., Palladino M. J.,Geneticallyencoded redox sensor identifies the role of ROS in degenerative andmitochondrial disease pathogenesis [J]. Neurobiology of disease,2012,45(1):362-368.
    [27]Hulsmans M, Van Dooren E, Holvoet P. Mitochondrial reactive oxygen speciesand risk of atherosclerosis [J]. Current atherosclerosis reports,2012,14(3):264-276.
    [28]Kehrer J P. The Haber–Weiss reaction and mechanisms of toxicity [J].Toxicology,2000,149(1):43-50.
    [29]Hunter F. E., Scott A., Hoffsten P. E., Guerra F., Weinstein J., Schneider A.,Smith E., Studies on the mechanism of ascorbate-induced swelling and lysis ofisolated liver mitochondria[J]. J Biol Chem,1964,239(2):604-613.
    [30]Kwon T, Watts B. Malonaldehyde in aqueous solution and its role as a measureof lipid oxidation in foods [J]. J Food Sci,1964,29:294-302.
    [31]Bourens M, Fontanesi F, Soto I C, Liu J J, Barrientos A. Redox and reactiveoxygen species regulation of mitochondrial cytochrome c oxidase biogenesis[J].Antioxidants&redox signaling,2013,19(16):1940-1952.
    [1] Sies H. Oxidative stress: oxidants and antioxidants [J]. Experimental physiology,1997,82(2):291-295.
    [2] Yan F, Mu Y, Yan G, Liu J Q, Shen J C, Luo G M. Antioxidant enzyme mimicswith synergism [J]. Mini reviews in medicinal chemistry,2010,10(4):342-356.
    [3] Huang X, Liu X, Luo Q, Luo Q, Liu J, Shen J.Artificial selenoenzymes: Designedand redesigned [J]. Chemical Society Reviews,2011,40(3):1171-1184.
    [4] Yan F, Yan G L, Lv S W, Shen N, Mu Y, Chen T, Gong P S, XuY W, Lv L M,Liu J Q, Shen J C, Luo G M. A novel65-mer peptide imitates the synergism ofsuperoxide dismutase and glutathione peroxidase [J]. Int J Biochem Cell Biol,2011,43(12):1802-1811.
    [5] Sun Y, Li T, Chen H, Zhang K, Zheng K, Mu Y, Yan G, Li W, Shen J, Luo G MSelenium-containing15-mer peptides with high glutathione peroxidase-likeactivity [J]. J Biol Chem,2004,279:37235-37240.
    [6] Luo Q, Zhang C, Miao L, Zhang D M, Bai Y S, Hou C X, Liu J Q, Yan F, Mu Y,Luo G M. Triple mutated antibody scFv2F3with high GPx activity: insights fromMD, docking, MDFE, and MM-PBSA simulation [J]. Amino acids,2013,44(3):1009-1019.
    [7] Takei T, Urabe Y, Asahina Y, Hojo H, Nomura T, Dedachi K, Arai K, IwaokaM.Model Study Using Designed Selenopeptides on the Importance of theCatalytic Triad for the Antioxidative Functions of Glutathione Peroxidase [J]. JPhys Chem B,2014,118(2):492-500.
    [8] Kono H, Rusyn I, Yin M, Gabele E, Yamashina S, Dikalova A (2000) NADPHoxidase-derived free radicals are key oxidants in alcohol-induced liver disease [J].J Clin Invest,106:867-872.
    [9] McGinnis M, FoegeH. Actual causes of death in the United States [J]. JAMA,1993,270:2207-2212.
    [10]De Minicis S, Brenner D A. Oxidative stress in alcoholic liver disease: role ofNADPH oxidase complex [J]. J Gastroenterol Hepatol,2008,23:S98-S103.
    [11]Niemel O, Parkkila S, Yl-Herttuala S, Villanueva J. Ruebner B, Halsted C HSequential acetaldehyde production, lipid peroxidation, and fibrogenesis inmicropig model of alcohol-induced liver disease [J]. Hepatology,1995,22:1208-1214.
    [12]Albano E. Alcohol, oxidative stress and free radical damage [J]. Proc Nutr Soci,2006,65:278-290.
    [13]Dey A, Cederbaum I. Alcohol and oxidative liver injury [J]. Hepatology,2006,43:63-74.
    [14]Nath B, Szabo G. Alcohol-induced modulation of signaling pathways in liverparenchymal and nonparenchymal cells: implications for immunity [J]. SeminLiver Dis,2009,29:166-177.
    [15]Koch O R, Pani G, Borrello S, Colavitti R, Cravero A, Farre S, Galeotti TOxidative stress and antioxidant defenses in ethanol-induced cell injury [J]. MolAspects Med,2004,25:191-198.
    [16]Sch gger H. Tricine-SDS-PAGE [J]. Nat Protoc,2006,1:16-22.
    [17]Brown D R, Qin K F, Herms J W, Westaway D, Kretzschmar H. The cellularprion protein binds copper in vivo [J]. Nature,1997,390:684-687.
    [18]Filgueiras A V, Capelo J L, Lavilla I, Bendicho C. Comparison ofultrasound-assisted extraction and microwave-assisted digestion for determinationof magnesium, manganese and zinc in plant samples by flame atomicabsorptionspectrometry [J]. Talanta,2000,53:433-441.
    [19]Liu Y, Huang H, Lin J, Zhang Q, Tan J, Ren J. Suppressive effects of genomicimprinted gene PEG10on hydrogen peroxide-induced apoptosis in L02cells [J]. JHuazhong Univ Sci Technolog Med Sci,2009,12(6):705-709.
    [20]Marshall J D, Eneland W C, Smith C W. Superiority of fluorescent antibodytechnique with a modification of its application [J]. Proc Soc Exp Biol,1958,98:898-900
    [21]Murata M, Yoshida Y, Osono M, Ohashi N, Oyanagi M, Urakami H, Tamura A,Nogami S, Tanaka H, Kawamura A. Production and Characterization ofMonoclonal Strain-Specific Antibodies against Prototype Strains of Rickettsiatsutsugamushi [J]. Microbiology and immunology,1986,30(7):599-610.
    [22]Liu Q, Qian Y, Chen F, Chen X, Chen Z, Zheng M. EGCG attenuatespro-inflammatory cytokines and chemokines production in LPS-stimulated L02hepatocyte [J]. Acta biochimica et biophysica Sinica,2014,46(1):31-39.
    [23]Gavrieli Y, Sherman Y, Ben-Sasson SA Identification of programmedcell deathin situ via specific labeling of nuclear DNA fragmentation [J]. J Cell Biol,1992,119:493-501.
    [24]Wang H, Xue Z, Wang Q, Feng X, Shen Z. Propofol protects hepatic L02cellsfrom hydrogen peroxide-induced apoptosis via activation of extracellularsignal-regulated kinases pathway [J]. Anesthesia&Analgesia,2008,107(2):534-540.
    [25]Hungerford G, Benesch J, Mano J F, Reis R L. Effect of the labelling ratio on thephotophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serumalbumin [J]. Photochemical&Photobiological Sciences,2007,6(2):152-158.
    [26]Umezawa N, Gelman M A, Haigis M C, Raines R T, Gellman S H. Translocationof a β-Peptide Across Cell Membranes [J]. J Am Chem Soc,2002,124:368-369.
    [27]Fonseca S B, Pereira M P, Kelley S O. Recent advances in the use ofcellpenetrating peptides for medical and biological applications [J]. Adv DrugDeliv Rev,2009,61:953-964.
    [28]Lundin P, Johansson H, Guterstam P, Holm T, Hansen M, Langel U, ELAndaloussi S. Distinct uptake routes of cell-penetrating peptide conjugates [J].Bioconjug Chem,2008,19:2535-2542.
    [29]Vivès E, Schmidt J, Pèlegrin A. Cell-penetrating and cell-targeting peptides indrug delivery [J]. Biochim Biophys Acta,2008,1786:126-138.
    [30]Li G L, Ye Y, Kang J J, Yao X Y, Zhang Y Z, Jiang W, Gao M, Dai Y D, Xin YQ, Wang Q, Yin Z M, Luo L. L-Theanine prevents alcoholic liver injury throughenhancing the antioxidant capability of hepatocytes [J]. Food Chem Toxicol,2012,50:363-372.
    [31]Fan Y, Cheng H, Liu D, Zhang X, Wang B, Sun L, Tai G, Zhou Y. The InhibitoryEffect of Ginseng Pectin on L-929Cell Migration [J]. Arch Pharm Res,2010,33:681-689.
    [32]Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease [J].Mol Aspects Med,2008,29:9-16.
    [33]Molina M F, Sanchez-Reus I, Iglesias I, Benedi J. Quercetin, a FlavonoidAntioxidant, Prevents and Protects against Ethanol-Induced Oxidative Stress inMouse Liver [J]. Biol Pharm Bull,2003,26:1398-1402.
    [34]Yao G, Yang L, Hu Y, Liang J, Liang J, Hou YNonylphenol-induced thymocyteapoptosis involved caspase-3activation and mitochondrial depolarization [J].Molecular Immunology,2006,43:915-926.
    [35]Guicciardi M E, Gores G J. Apoptosis: a mechanism of acute and chronic liverinjury [J]. Gut,2005,54:1024-1033.
    [36]Schmitz I, Kirchhoff S, Krammer P H. Regulation of death receptor-mediatedapoptosis pathways [J]. Int J Biochem Cell Biol,2000,32:1123-1136.
    [37]Pantano C, Shrivastava P, McElhinney B, Janssen-Heininger Y. Hydrogenperoxide signaling through tumor necrosis factor receptor1leads to selectiveactivation of c-Jun N-terminal kinase [J]. J Biol Chem,2003,278:44091-44096.
    [38]Tafani M, Cohn J A, Karpinich N O, Rothman R J, Russo M A, Farber J L.Regulation of intracellular pH mediates Bax activation in HeLa cells treated withstaurosporine or tumor necrosis factor-alpha [J]. J Biol Chem,2002,277:569-576.
    [39]Koh D W, Ted M D, Valina L D. Mediation of cell death by poly (ADP-ribose)polymerase-1[J]. Pharmacol Res,2005,52:5-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700