用户名: 密码: 验证码:
基于仿生粘附材料的生物催化剂固定化技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物催化在工业催化过程中发挥着重要的作用,而生物催化剂的固定化在其应用中扮演着重要角色。仿生黏附材料是基于海洋贻贝粘蛋白研究基础上人工合成的一种在水中具有粘附功能的材料。本课题利用邻苯二酚类衍生物所具有的粘附特性,通过合成不同类型的磁性固定化载体,对不同的生物催化剂进行固定化,并研究各个因素对固定化生物催化剂活力、稳定性的影响。具体的内容分为以下几个部分:
     (1)磁性壳聚糖纳米材料对ω-转氨酶J2315的固定化
     通过基因挖掘的方法筛选到一种新型的ω-转氨酶J2315,成功实现了该酶在大肠杆菌中的异源可溶表达,并对该酶的催化性质进行了鉴定,结果表明该酶的比活为8.6U/mg,具有S构型选择性,反应的最适pH为9.0,最适温度为40℃,该酶对芳香族胺类和芳香族醛类具有较好的催化活性。以邻苯二酚壳聚糖包裹的纳米四氧化三铁(CCS-IONPs)作为固定化载体,实现了ω-转氨酶J2315的高效固定化,此载体最大的载酶量为681.7mg蛋白/g载体,固定化酶活力回收率为87.5%。此外,固定化酶具有更好的稳定性和重复使用性。
     (2)产腈水解酶BCJ2315重组大肠杆菌的固定化及其应用
     利用邻苯二酚壳聚糖对细胞和纳米四氧化三铁相互交联,实现了重组大肠杆菌M15/BJ2315的固定化。固定化细胞活力回收率高,稳定性好,能通过磁分离实现重复使用。为了实现高浓度扁桃腈的转化,我们提出并优化了乙酸乙酯/水两相反应体系。在最优的条件下,成功的实现了1M扁桃腈在4h内的完全水解,产率为99%,ee值为95%。此外,利用固定化细胞在乙酸乙酯/水两相体系中连续多批次催化扁桃腈水解制备(R)-(-)-扁桃酸,在进行6批连续反应之后,(R)-(-)-扁桃酸的时空产率达到了40.9g·L-1.h-1,相对产量达到了24.1g·g-1。
     (3)聚多巴胺包裹的纳米四氧化三铁(PD-IONPs)司定化氧化葡萄糖酸杆菌的研究
     利用PD-IONPs作为固定化载体,通过材料表面的聚多巴胺与细胞粘附结合,进而引起细胞交联聚集实现细胞的固定化。在最优的条件下,每毫克材料能固定化21.3mg的湿菌体。通过此载体固定化氧化葡萄糖酸杆菌不影响其催化活性,并且赋予了固定化细胞良好的重复使用性。通过分析聚多巴胺与细胞表面结合的蛋白位点,发现与聚多巴胺结合的蛋白存在较多的赖氨酸、精氨酸或半胱氨酸,这些氨基酸残基所含有的氨基或巯基能与聚多巴胺的邻苯二酚基团通过共价键结合。
     (4)邻苯二酚基团粘附机理的研究
     为了揭示邻苯二酚基团与无机载体表面和生物大分子之间的粘附机理,我们以Fe3+和半胱氨酸作为模式研究对象,研究结果发现邻苯二酚基团能与Fe3+通过配位键形成络合物,而且其配位数由pH可逆的调控。此外,邻苯二酚基团与半胱氨酸反应结果表明邻苯二酚基团对巯基具有优先选择性。pH对邻苯二醌基团与氨基和巯基反应活性和选择性具有重要的影响。为了进一步研究邻苯二酚基团与生物大分子结合位点及其机理,我们采用邻苯二酚衍生化的PEG对脂肪酶LipK107进行修饰,通过定点突变的方法在脂肪酶的表面引入了半胱氨酸。结果揭示了邻苯二酚基团与蛋白的结合位点及其反应速率是由pH调控:在碱性条件下,邻苯二酚基团能与脂肪酶表面的氨基和巯基结合,反应速率快;而在中性的条件下,邻苯二酚基团与脂肪酶表面的巯基发生特异性的结合;在酸性条件下,邻苯二酚基团不能与脂肪酶结合。
     (5)磁性亲和纳米材料的制备及其应用
     基于邻苯二酚基团对金属离子和生物大分子的不同粘附机制,我们设计了两种磁性亲和纳米材料。通过还原性谷胱甘肽(GSH)与PD-IONPs表面的邻苯二酚基团反应制备GSH-PD-IONPs,此材料对GST标签融合蛋白具有较好的亲和性,成功的实现了GST融合的绿色荧光蛋白(GST-GFP)的分离纯化。此外,利用聚多巴胺包裹的磁性复合颗粒(PD-MNPs)络合镍离子后制备Ni2+-PD-MNPs,该材料对His标签融合蛋白展现出了很好的特异性,成功的用于分离纯化His标签融合的红色荧光蛋白(His-RFP)。同时,我们还利用该材料用于选择性固定化ω-转氨酶BJ110,结果表明该材料作为固定化载体能特异性的固定化细胞裂解液中的ω-转氨酶BJ110,固定化酶展现出了更好的比活力,还具有良好的稳定性和重复使用性。
     本课题所提出的基于仿生粘附材料的生物催化剂固定化技术,具有操作简便、固定化效率高、易于分离等优点,同时该技术具有普适性,能用于其它生物大分子,如酶、抗体、DNA等固定化。此外,通过对仿生粘附材料粘附机制进行揭示,为酶的理性固定化研究、蛋白质的修饰研究、酶的体外组装以及智能水凝胶的制备开拓了一条新型的技术解决路线。
Biocatalysis is continuing to gain momentum and is now becoming a key component in process chemist. The immobilization of biocatalysts plays an important role in their applications. Recently, inspired by adhesive proteins secreted by marine mussels, various biomimetic adhesive materials which have strong adhesive ability under water were developed. In this study, we prepared different kinds of magnetic nanocomposites with catechol group on surface, and use to immobilize biocatalysts.The factors which dicatated the activity and stability of the immobilized biocatalysts were investigated, and the attachment mechanism of catechol was also determined. The detailed work was introduced as following:
     (1) Immobilization of ω-transaminase J2315via magnetic catecholic chitosan
     A novel co-transaminase from Burkholderia cenocepacia J2315has been recruited by homology search and the gene was cloned and functionally expressed in E.coli BL21. The specific activity of purified co-transaminase J2315was8.7U/mg. The enzyme had an optimal temperature of40℃, and an optimal pH of9.0, and it shows (S) enantio-selectivity and good activity towards aromatic aldehydes and aromatic amines. The magnetic catecholic chitosan, which carrying adhesive moieties with strong surface affinity, was prepared by simply coating of catecholic chitosan onto iron oxide nanoparticles, and used to immobilize ω-transaminase J2315. Under optimal conditions,87.5%of the available ω-transaminase J2315was immobilized on the composite, yielding an enzyme loading capacity as high as681.7mg/g. Furthermore, the valuation of enzyme activity showed that ω-transaminase J2315immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme.
     (2) Immobilization of recombinant E.coli M15/BCJ2315via bio-inspired catecholic chitosan
     The recombinant E.coli M15/BCJ2315which harbored a mandelonitrilase from Burkholderia cenocepacia J2315was immobilized via catecholic chitosan and functionalized with magnetism by iron oxide nanoparticles. The immobilized cells showed high activity recovery, enhanced stability and good operability in the enantioselective hydrolysis of mandelonitrile to (R)-(-)-mandelic acid. The ethyl acetate-water biphasic system was built and optimized. Under the optimal conditions, as high as1M mandelonitrile could be hydrolyzed within4h with a final yield and ee value of99%and95%, respectively. Moreover, the successive hydrolysis of mandelonitrile was performed by repeated use of the immobilized cells for6batches, giving a final productivity (g·L-1·h-1) and relative production (g-g-1) of40.9and38.9, respectively.
     (3) Immobilization of Gluconobacter oxydans using bio-adhesive magnetic nanoparticles
     G.oxydans was immobilized via a synthetic adhesive biomimetic material inspired by the protein glues of marine mussels. This approach involves simple coating of a cell adherent polydopamine film onto magnetic nanoparticles, followed by conjugation of the polydopamine-coated nanoparticles to G.oxydans which resulted in cell aggregation. After optimization,21.3mg (wet cell weight) G.oxydans per milligram of nanoparticle was immobilized and separated with a magnet. Importantly, the immobilized cell showed high specific activity and good reusability. The membrane proteins on the surface of G.oxydans, which were attached by polydopamine, were separated via2D electrophoresis and analyzed by MALDI-TOF. The3D structure of these polydopamine-bound proteins revealed that these proteins were rich in Lys, Cys and Arg, which have reactive amine or thiol group toward catechol group.
     (4) Attachment mechanisms of catechol
     Coordination between catechol and Fe3+has been investigated, the results revealed the catechol-Fe3+ligands might have three coordination states and stoichiometrically dependent on the pH. The addition of Cys to catechol group suggested that the catechol group can react with thiol group preferentially. Furthermore, the reactivity of o-quinone group toward amine group was pH dependent. However, the thiol group can react with o-quinone under both acid and alkaline condition. The binding of catecholic PEG toward lipase was investigated.The results showed that, under neutral condition, the cathecol PEG can specifically couple to Cys residue which was introduced to the surface of enzyme molecule via site-directed mutagenesis. In alkaline condition, however, the catecholic PEG can react with both amine from Arg or Lys residues and thiol from Cys residue. Besides, the catecholic PEG cannot bind to lipase under acid condition.
     (5) Catechol-based magnetic affinity nanoparticles:preparation and application
     Inspired by the adhesive mechanism of catechol group, which can coordinate with metal ion, as well as react with thiol group specifically under neutral condition, two catechol-based magnetic affinity nanoparticles were designed and synthesized via facile dopamine chemistry. The method involves in-situ coating of iron oxide nanoparticles with polydopamine, followed by conjugation of glutathione or Ni2+to the polydopamine film. The result revealed that GSH-PD-IONPs displayed high selectivity toward GST tagged proteins, and Ni2+-PD-MNPs showed exclusively specificity for His tagged proteins. In addition, the co-transaminase BJ110was selectively immobilized onto Ni2+-PD-MNPs without purification, the immobilized enzyme showed improved specific activity due the affinity property of Ni2+-PD-MNPs toward His tagged proteins. Furthermore, the immobilized enzyme exhibited enhanced stability and reusability.
     In conclusion, we present a novel approach for biocatalysts immobilization and is based on bio-inspired adhesive materials. It offers the potential advantages of low cost, easy separation, low diffusion resistance, and high efficiency. Furthermore, the approach is a convenient platform technique for immobilization of other biomolecules, such as enzymes, DNA and antibody. Our results may pave a new way to apply the catechol based technique for rational enzyme immobilization, protein modification, multi enzyme conjugation, and intelligent hydrogel preparation.
引文
[1]Clark J H,Macquarrie D J. Handbook of green chemistry and technology. John Wiley & Sons,2008
    [2]Wenda S, Illner S, Mell A, et al. Industrial biotechnology-the future of green chemistry? Green Chemistry.2011,13(11):3007-3047
    [3]Anastas P T,Kirchhoff M M. Origins, current status, and future challenges of green chemistry.Accounts of chemical research.2002,35(9):686-694
    [4]Clark J H. Green chemistry:today (and tomorrow).Green Chemistry.2006,8(1): 17-21
    [5]Straathof A J, Panke S,Schmid A. The production of fine chemicals by biotransformations.Current opinion in biotechnology.2002,13(6):548-556
    [6]Pollard D J,Woodley J M. Biocatalysis for pharmaceutical intermediates:the future is now.Trends in biotechnology.2007,25(2):66-73
    [7]Buckland B C, Drew S W, Connors N C, et al. Microbial conversion of indene to indandiol:a key intermediate in the synthesis of CRIXIVAN.Metabolic engineering.1999, 1(1):63-74
    [8]Yazbeck D R, Martinez C A, Hu S, et al. Challenges in the development of an efficient enzymatic process in the pharmaceutical industry.Tetrahedron:Asymmetry.2004, 15(18):2757-2763
    [9]Buckland B C, Robinson D K,Chartrain M. Biocatalysis for pharmaceuticals-status and prospects for a key technology.Metabolic engineering.2000,2(1):42-48
    [10]Rozzell J D. Commercial scale biocatalysis:myths and realities.Bioorganic & medicinal chemistry.1999,7(10):2253-2261
    [11]Tufvesson P r, Lima-Ramos J, Nordblad M, et al. Guidelines and cost analysis for catalyst production in biocatalytic processes.Organic Process Research & Development. 2010,15(1):266-274
    [12]Cao L. Immobilised enzymes:science or art?Current Opinion in Chemical Biology.2005,9(2):217-226
    [13]Cao L, Langen L v,Sheldon R A. Immobilised enzymes:carrier-bound or carrier-free?Current Opinion in Biotechnology.2003,14(4):387-394
    [14]Wang P. Nanoscale biocatalyst systems.Current opinion in biotechnology.2006, 17(6):574-579
    [15]Torchilin V, Tischenko E, Smirnov V, et al. Immobilization of enzymes on slowly soluble carriers.Journal of biomedical materials research.1977,11(2):223-235
    [16]Bornscheuer U T. Immobilizing enzymes:how to create more suitable biocatalysts.Angewandte Chemie International Edition.2003,42(29):3336-3337
    [17]Blanco R M, Terreros P, Fernandez-Perez M, et al. Functionalization of mesoporous silica for lipase immobilization:Characterization of the support and the catalysts. Journal of Molecular Catalysis B:Enzymatic.2004,30(2):83-93
    [18]Kim B C, Nair S, Kim J, et al. Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres.Nanotechnology. 2005,16(7):S382
    [19]Hilal N, Nigmatullin R,Alpatova A. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes.Journal of membrane science.2004, 238(1):131-141
    [20]Abian O, Wilson L, Mateo C, et al. Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules:New enzyme derivatives to be used in any reaction medium. Journal of Molecular Catalysis B:Enzymatic. 2002,19(295-303
    [21]Torres-Bacete J, Arroyo M, Torres-Guzman R, et al. Stabilization of penicillin V acylase from Streptomyces lavendulae by covalent immobilization.Journal of Chemical Technology and Biotechnology.2001,76(5):525-528
    [22]Park S W, Lee J, Hong S I, et al. Enhancement of stability of GL-7-ACA acylase immobilized on silica gel modified by epoxide silanization.Process Biochemistry.2003, 39(3):359-366
    [23]Wilson L, Illanes A, Abian O, et al. Co-aggregation of penicillin G acylase and polyionic polymers:an easy methodology to prepare enzyme biocatalysts stable in organic media.Biomacromolecules.2004,5(3):852-857
    [24]Cheng S, Wei D, Song Q, et al. Immobilization of permeabilized whole cell penicillin G acylase from Alcaligenes faecalis using pore matrix crosslinked with glutaraldehyde.Biotechnology letters.2006,28(14):1129-1133
    [25]Demers N, Agostinelli E, Averill-Bates D A, et al. Immobilization of native and poly (ethylene glycol)-treated ('PEGylated') bovine serum amine oxidase into a biocompatible hydrogel.Biotechnology and applied biochemistry.2001,33(3):201-207
    [26]Betancor L, Hidalgo A, Fernandez-Lorente G, et al. Preparation of a stable biocatalyst of bovine liver catalase using immobilization and postimmobilization techniques.Biotechnology progress.2003,19(3):763-767
    [27]Ferreira L, Ramos M, Dordick J, et al. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease.Journal of Molecular Catalysis B:Enzymatic.2003,21(4):189-199
    [28]Lei C, Shin Y, Liu J, et al. Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society.2002,124(38):11242-11243
    [29]Ho L-F, Li S-Y, Lin S-C, et al. Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents.Process Biochemistry.2004,39(11): 1573-1581
    [30]Aoun S,Baboulene M. Regioselective bromohydroxylation of alkenes catalyzed by chloroperoxidase:advantages of the immobilization of enzyme on talc.Journal of Molecular Catalysis B:Enzymatic.1998,4(1):101-109
    [31]Palomo J M, Fernandez-Lorente G, Mateo C, et al. Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters.Enzyme and microbial technology.2002,31(6): 775-783
    [32]Neri D F, Balcao V M, Dourado F O, et al. Immobilized β-galactosidase onto magnetic particles coated with polyaniline:Support characterization and galactooligosaccharides production.Journal of Molecular Catalysis B:Enzymatic.2011, 70(1):74-80
    [33]张桂芝,廖强,王永忠.微生物固定化载体材料研究进展.材料导报.2011,25(17):105-109
    [34]Coleman N, Crofcheck C, Nokes S, et al. Effects of growth media pH and reaction water activity on the conversion of acetophenone to (S)-l-phenylethanol by Saccharomyces cerevisiae immobilized on Celite 635 and in calcium alginate.Transactions of the ASABE. 2009,52(2):665-671
    [35]Behera S, Kar S, Mohanty R C, et al. Comparative study of bio-ethanol production from mahula(Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices.Applied Energy.2010,87(1):96-100
    [36]Wu Y, Wang Y, Luo G, et al. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution.Bioresource technology.2009,100(14):3459-3464
    [37]Torres-Salas P, del Monte-Martinez A, Cutino-Avila B, et al. Immobilized biocatalysts:Novel approaches and tools for binding enzymes to supports.Advanced Materials.2011,23(44):5275-5282
    [38]Braiuca P, Ebert C, Basso A, et al. Computational methods to rationalize experimental strategies in biocatalysis.Trends in biotechnology.2006,24(9):419-425
    [39]Hudson S, Magner E, Cooney J, et al. Methodology for the immobilization of enzymes onto mesoporous materials.The Journal of Physical Chemistry B.2005,109(41): 19496-19506
    [40]Weber E, Sirim D, Schreiber T, et al. Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diametersJournal of Molecular Catalysis B:Enzymatic.2010,64(1):29-37
    [41]高敏,张长虹,周俊,et al.贻贝粘蛋白综述.安徽农业科学.2012,39(32):19860-19862
    [42]Hawkins A,Bayne B. Seasonal variation in the relative utilization of carbon and nitrogen by the mussel Mytilus edulis:Budgets, conversion efficiencies and maintenance requirements.Marine ecology progress series. Oldendorf.1985,25(2):181-188
    [43]Tamarin A, Lewis P, Askey J. The structure and formation of the bysus attachment plaque ini Mytilus. Journal of morphology.1976,149(2):199-221
    [44]Waite J H, Andersen N H, Jewhurst S, et al. Mussel adhesion:finding the tricks worth mimicking.The journal of adhesion.2005,81(3-4):297-317
    [45]Waite J H, Qin X-X,Coyne K J. The peculiar collagens of mussel byssus.Matrix Biology.1998,17(2):93-106
    [46]Deming T J. Mussel byssus and biomolecular materials. Current opinion in chemical biology.1999,3(1):100-105
    [47]Lee B P, Messersmith P B, Israelachvili J N, et al. Mussel-inspired adhesives and coatings. Annual review of materials research.2011,41(99
    [48]Waite J H, Lichtenegger H C, Stucky G D, et al. Exploring molecular and mechanical gradients in structural bioscaffolds.Biochemistry.2004,43(24):7653-7662
    [49]Inoue K, Takeuchi Y, Miki D, et al. Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. Journal of Biological Chemistry. 1995,270(12):6698-6701
    [50]Papov V V, Diamond T V, Biemann K, et al. Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. Journal of Biological Chemistry.1995,270(34):20183-20192
    [51]Zhao H,Waite J H. Proteins in load-bearing junctions:the histidine-rich metal-binding protein of mussel byssus.Biochemistry.2006,45(47):14223-14231
    [52]Zhao H,Waite J H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus.Journal of biological chemistry.2006,281(36): 26150-26158
    [53]Yu J, Wei W, Danner E, et al. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation.Nature chemical biology.2011,7(9):588-590
    [54]Hwang D S, Zeng H, Masic A, et al. Protein-and metal-dependent interactions of a prominent protein in mussel adhesive plaques.Journal of biological chemistry.2010, 285(33):25850-25858
    [55]Yu J, Kan Y, Rapp M, et al. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films.Proceedings of the National Academy of Sciences.2013,110(39):15680-15685
    [56]廖智,申望,王日昕.海洋生物黏附蛋白研究进展.浙江海洋学院学报:自然科学版.2008,26(4):439-447
    [57]Hwang D S, Yoo H J, Jun J H, et al. Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coliApplied and environmental microbiology.2004, 70(6):3352-3359
    [58]Hwang D S, Gim Y,Cha H J. Expression of functional recombinant mussel adhesive protein type 3 A in Escherichia coli.Biotechnology progress.2005,21(3):965-970
    [59]郑昕,王运吉.贻贝粘合蛋白基因转化巴斯德毕赤酵母.大连轻工业学院学报.2003,22(2):100-102
    [60]李楠楠,谭亮,王智平,et al.厚壳贻贝足丝黏附蛋白mfp-3重组表达及黏附功能分析.中国生物化学与分子生物学报.2011,27(9):851-857
    [61]李楠楠,王智平,鲁涛et al.厚壳贻贝足丝盘黏附蛋白mcofp-3的重组真核表达.生物技术通报.2010,12(031
    [62]Yamamoto H,Hayakawa T. Synthesis of sequential polypeptides containing L-β-3, 4-dihydroxyphenyl-a-alanine (DOPA) and L-glutamic acid.Biopolymers.1979,18(12): 3067-3076
    [63]Yu M,Deming T J. Synthetic polypeptide mimics of marine adhesives-Macromolecules.1998,31(15):4739-4745
    [64]Hwang D S, Gim Y, Yoo H J, et al. Practical recombinant hybrid mussel bioadhesive fp-151.Biomaterials.2007,28(24):3560-3568
    [65]Lee B P, Dalsin J L,Messersmith P B. Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels.Biomacromolecules.2002,3(5):1038-1047
    [66]Lee B P, Huang K, Nunalee F N, et al. Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. Journal of Biomaterials Science, Polymer Edition.2004,15(4):449-464
    [67]Lee H, Lee B P,Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos.Nature.2007,448(7151):338-341
    [68]Dawson T M,Dawson V L. Molecular pathways of neurodegeneration in Parkinson's disease.Science.2003,302(5646):819-822
    [69]Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings.Science.2007,318(5849):426
    [70]Yu F, Chen S, Chen Y, et al. Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless SteelJournal of Molecular Structure.2010,982(1): 152-161
    [71]Della Vecchia N F, Avolio R, Alfe M, et al. Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable Through a Quinone Control Point.Advanced Functional Materials.2013,23(10):1331-1340
    [72]Bernsmann F, Ponche A, Ringwald C, et al. Characterization of dopamine-melanin growth on silicon oxide.The Journal of Physical Chemistry C.2009, 113(19):8234-8242
    [73]Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly (dopamine).Langmuir.2012,28(15):6428-6435
    [74]Hong S, Na Y S, Choi S, et al. Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation.Advanced Functional Materials. 2012,22(22):4711-4717
    [75]Liebscher J r, Mrowczynski R, Scheidt H A,et al. Structure of Polydopamine:A Never-Ending Story?Langmuir.2013,29(33):10539-10548
    [76]Lee H, Scherer N F,Messersmith P B. Single-molecule mechanics of mussel adhesion.Proceedings of the National Academy of Sciences.2006,103(35):12999-13003
    [77]Ye Q, Zhou F,Liu W. Bioinspired catecholic chemistry for surface modification.Chemical Society Reviews.2011,40(7):4244-4258
    [78]Moser J, Punchihewa S, Infelta P P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates.Langmuir.1991,7(12): 3012-3018
    [79]Rajh T, Chen L, Lukas K, et al. Surface restructuring of nanoparticles:an efficient route for ligand-metal oxide crosstalk.The Journal of Physical Chemistry B.2002,106(41): 10543-10552
    [80]Dalsin J L, Lin L, Tosatti S, et al. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA.Langmuir.2005,21(2):640-646
    [81]Rodenstein M, Zu□rcher S, Tosatti S G, et al. Fabricating Chemical Gradients on Oxide Surfaces by Means of Fluorinated, Catechol-Based, Self-Assembled Monolayers.Langmuir.2010,26(21):16211-16220
    [82]Anderson T H, Yu J, Estrada A, et al. The Contribution of DOPA to Substrate-Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films.Advanced functional materials.2010,20(23):4196-4205
    [83]Frank B P,Belfort G. Adhesion of Mytilus edulis foot protein 1 on silica:ionic effects on biofouling.Biotechnology progress.2002,18(3):580-586
    [84]Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers:a metal-based biological strategy for hard flexible coatings.Science.2010,328(5975): 216-220
    [85]Zeng H, Hwang D S, Israelachvili J N, et al. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water.Proceedings of the National Academy of Sciences.2010,107(29):12850-12853
    [86]Holten-Andersen N, Harrington M J, Birkedal H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli.Proceedings of the National Academy of Sciences.2011,108(7):2651-2655
    [87]Barrett D G, Fullenkamp D E, He L, et al. pH-Based Regulation of Hydrogel Mechanical Properties Through Mussel-Inspired Chemistry and Processing.Advanced functional materials.2013,23(9):1111-1119
    [88]Cha HJ, Hwang DS, Lin S. Development of bioadhesive from marine mussels. Botechnology journal.2008,3(5):631-638
    [89]Bilic G, Brubaker C, Messersmith P B, et al. Injectable candidate sealants for fetal membrane repair:bonding and toxicity in vitro.American journal of obstetrics and gynecology.2010,202(1):85. e81-85. e89
    [90]Xi Z-Y, Xu Y-Y, Zhu L-P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine). Journal of Membrane Science.2009,327(1):244-253
    [91]Amstad E, Gillich T, Bilecka I, et al. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups.Nano letters.2009, 9(12):4042-4048
    [92]Ko R, Cadieux P A, Dalsin J L, et al. First prize:Novel uropathogen-resistant coatings inspired by marine mussels.Journal of Endourology.2008,22(6):1153-1160
    [93]Lee H, Rho J,Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings.Advanced Materials.2009,21(4):431-434
    [94]Ren Y, Rivera J, He L, et al. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating.BMC biotechnology. 2011,11(1):63
    [95]Chao C, Zhang B, Zhai R, et al. Natural Nanotube-Based Biomimetic Porous Microspheres for Significantly Enhanced Biomolecule Immobilization.ACS Sustainable Chemistry & Engineering.2013,
    [96]Zhang L, Shi J, Jiang Z, et al. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction.Green Chemistry.2011,13(2):300-306
    [97]Peng H-P, Liang R-P, Zhang L, et al. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bionanoparticles for glucose sensor.Biosensors and Bioelectronics.2012,
    [98]Li Y, Qin C, Chen C, et al. Highly sensitive phenolic biosensor based on magnetic polydopamine-laccase-Fe3O4 bionanocomposite.Sensors and Actuators B:Chemical.2012, 168(46-53
    [99]Zheng L-Z, Li Y-D, Xiong L-Y, et al. Preparation of H2O2 Biosensor Based on Graphene-polydopamine Nanomaterials.Fenxi Huaxue.2012,40(1):72-76
    [100]Ruan C, Shi W, Jiang H, et al. One-pot preparation of glucose biosensor based on polydopamine-graphene composite film modified enzyme electrode. Sensors and Actuators B:Chemical.2013,177:826-832
    [101]Kang J, Sakuragi M, Shibata A, et al. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment.Materials Science and Engineering:C.2012,32(8):2552-2561
    [102]Chien C-Y,Tsai W-B. Poly (dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells.ACS Applied Materials & Interfaces.2013,5(15): 6975-6983
    [103]Zhu L-P, Jiang J-H, Zhu B-K, et al. Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer.Colloids and Surfaces B:Biointerfaces.2011,86(1):111-118
    [104]Yixue S, Bin C, Yuan G, et al. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness.Carbohydrate polymers.2013, 92(2):2245-2251
    [105]Hong S, Yang K, Kang B, et al. Hyaluronic Acid Catechol:A Biopolymer Exhibiting a pH-Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering.Advanced Functional Materials.2013,23(14):1774-1780
    [106]Choi J S, Messersmith P B,Yoo H S. Decoration of electro spun nanofibers with monomeric catechols to facilitate cell adhesion.Macromolecular bioscience.2013,
    [107]Metha PK, Hale TI,Christen P. Aminotransferases:demonstration of homology and division into evolutionary subgroups.European Journal of Biochemistry.1993,214(2): 549-561
    [108]Malik M S, Park E-S,Shin J-S. Features and technical applications of ω-transaminases.Applied microbiology and biotechnology.2012,94(5):1163-1171
    [109]Koszelewski D, Tauber K, Faber K, et al. co-Transaminases for the synthesis of non-racemic a-chiral primary amines.Trends in biotechnology.2010,28(6):324-332
    [110]Yun H, Lim S, Cho B-K, et al. co-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2:a new catalyst for kinetic resolution of β-amino acids and amines.Applied and environmental microbiology.2004,70(4):2529-2534
    [111]Kaulmann U, Smithies K, Smith M E, et al. Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis.Enzyme and microbial technology.2007,41(5):628-637
    [112]Yun H, Hwang B-Y, Lee J-H, et al. Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 co-transaminase, which is resistant to product inhibition by aliphatic ketones.Applied and environmental microbiology.2005,71(8): 4220-4224
    [113]Pannuri S, Kamat S,Garcia A. Methods for engineering Arthrobacter citreus w-transaminase variants with improved thermostability for use in enantiomeric enrichment and stereo selective synthesis.PCT Int Appl.2006,54
    [114]Cho B K, Park H Y, Seo J H, et al. Redesigning the substrate specificity of ω-aminotransferase for the kinetic resolution of aliphatic chiral amines.Biotechnology and bioengineering.2008,99(2):275-284
    [115]Kim J Y, Lee J K, Lee T S, et al. Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans.International journal of biological macromolecules.2003,32(1):23-27
    [116]Orrego C, Salgado N, Valencia J, et al. Novel chitosan membranes as support for lipases immobilization:Characterization aspects.Carbohydrate polymers.2010,79(1):9-16
    [117]Wu Y, Wang Y, Luo G, et al. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution.Bioresource technology.2009,100(14):3459-3464
    [118]Kaushik A, Khan R, Solanki P R, et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor.Biosensors and Bioelectronics.2008,24(4):676-683
    [119]Tran H V, Tran L D,Nguyen T N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb (Ⅱ) and Ni (Ⅱ) from aqueous solution.Materials Science and Engineering:C.2010,30(2):304-310
    [120]Ge Y, Zhang Y, He S, et al. Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging.Nanoscale research letters.2009,4(4): 287-295
    [121]Zhang L-y, Zhu X-j, Sun H-w, et al. Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system.Current Applied Physics. 2010,10(3):828-833
    [122]Zhao D-L, Wang X-X, Zeng X-W, et al. Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. Journal of Alloys and Compounds.2009,477(1):739-743
    [123]Orrego C E,Valencia J S. Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method.Bioprocess and biosystems engineering.2009,32(2):197-206
    [124]Orrego C E, Valencia J S,Zapata C. Candida rugosa lipase supported on high crystallinity chitosan as biocatalyst for the synthesis of 1-butyl oleate.Catalysis letters.2009, 129(3-4):312-322
    [125]Shin J-S, Yun H, Jang J-W, et al. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.Applied microbiology and biotechnology.2003,61(5-6):463-471
    [126]Schell U, Wohlgemuth R,Ward J M. Synthesis of pyridoxamine 5'-phosphate using an MBA:pyruvate transaminase as biocatalyst.Journal of Molecular Catalysis B: Enzymatic.2009,59(4):279-285
    [127]Humble M S, Cassimjee K E, Hakansson M, et al. Crystal structures of the Chromobacterium violaceum ω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP.FEBS journal.2012,279(5):779-792
    [128]Park E-S, Kim M,Shin J-S. Molecular determinants for substrate selectivity of ω-transaminases.Applied microbiology and biotechnology.2012,93(6):2425-2435
    [129]Savile C K, Janey J M, Mundorff E C, et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture.Science.2010,329(5989): 305-309
    [130]Thatte M R. Synthesis and antibacterial assessment of water-soluble hydrophobic chitosan derivatives bearing quaternary ammonium functionality. Louisiana State University, 2004
    [131]Stepanow S, Strunskus T, Lingenfelder M, et al. Deprotonation-driven phase transformations in terephthalic acid self-assembly on CU (100).The Journal of Physical Chemistry B.2004,108(50):19392-19397
    [132]Zhao H, Sun C, Stewart R J, et al. Cement proteins of the tube-building polychaete Phragmatopoma californica.Journal of biological chemistry.2005,280(52): 42938-42944
    [133]Yi S-S, Lee C-w, Kim J, et al. Covalent immobilization of co-transaminase from Vibrio fluvialis JS17 on chitosan beads.Process Biochemistry.2007,42(5):895-898
    [134]Jiang Y, Guo C, Xia H, et al. Magnetic nanoparticles supported ionic liquids for lipase immobilization:Enzyme activity in catalyzing esterification.Journal of Molecular Catalysis B:Enzymatic.2009,58(1):103-109
    [135]Tang K, Yi J, Huang K, et al. Biphasic recognition chiral extraction:a novel method for separation of mandelic acid enantiomers.Chirality.2009,21(3):390-395
    [136]Terreni M, Pagani G, Ubiali D, et al. Modulation of penicillin acylase properties via immobilization techniques:one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C.Bioorganic & medicinal chemistry letters.2001,11(18):2429-2432
    [137]Surivet JP,Vatele J-M. Total synthesis of antitumor Goniothalamus styryllactones.Tetrahedron.1999,55(45):13011-13028
    [138]Kinbara K, Sakai K, Hashimoto Y, et al. Design of resolving reagents: p-substituted mandelic acids as resolving reagents for 1-arylalkylamines.Tetrahedron: Asymmetry.1996,7(6):1539-1542
    [139]Liu M, Sibi M P. Recent advances in the stereoselective synthesis of β-amino acids.Tetrahedron.2002,58(40):7991-8035
    [140]Yadav G D,Sivakumar P. Enzyme-catalysed optical resolution of mandelic acid via RS(+)-methyl mandelate in non-aqueous media.Biochemical Engineering Journal.2004, 19(2):101-107
    [141]Patterson M A, Szajewski R P, Whitesides G M. Enzymic conversion of. alpha.-keto aldehydes to optically active, alpha-hydroxy acids using glyoxalase I and II.The Journal of Organic Chemistry.1981,46(23):4682-4685
    [142]Vasic-Racki D, Jonas M, Wandrey C, et al. Continuous (R)-mandelic acid production in an enzyme membrane reactor.Applied microbiology and biotechnology.1989, 31(3):215-222
    [143]何玉财,许建和.腈水解酶在羧酸合成中的研究进展.生物加工过程.2009,7(1):7-12
    [144]Pace H C,Brenner C. The nitrilase superfamily:classification, structure and function.Genome Biol.2001,2(1):1-9
    [145]Zhang Z-J, Xu J-H, He Y-C, et al. Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(-)-mandelic acid production.Bioprocess and biosystems engineering.2011, 34(3):315-322
    [146]Banerjee A, Sharma R,Banerjee U. The nitrile-degrading enzymes:current status and future prospects.Applied Microbiology and Biotechnology.2002,60(1-2):33-44
    [147]Wu S, Fogiel A J, Petrillo K L, et al. Protein engineering of Acidovorax facilis 72W nitrilase for bioprocess development.Biotechnology and bioengineering.2007,97(4): 689-693
    [148]Kabaivanova L V, Chernev G E, Salvado I M M, et al. Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates.Central European Journal of Chemistry.2011,9(2):232-239
    [149]Kabaivanova L, Dobreva E, Dimitrov P, et al. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. Journal of Industrial Microbiology and Biotechnology.2005,32(1):7-11
    [150]Wang H, Sun H,Wei D. Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction.BMC biotechnology.2013, 13(1):14
    [151]Kaul P, Banerjee A,Banerjee U C. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst.Biomacromolecules.2006,7(5):1536-1541
    [152]Zhang Z-J, Xu J-H, He Y-C, et al. Efficient production of (R)-(-)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp.Process Biochemistry.2010,45(6):887-891
    [153]Zhang Z-J, Pan J, Liu J-F, et al. Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene-water biphasic system. Journal of biotechnology.2011,152(1):24-29
    [154]He Y-C, Zhou Q, Ma C-L, et al. Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene-water biphasic system.Bioresource technology.2012,115(88-95
    [155]Gong P-F,Xu J-H. Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU 1001 in a biphasic system.Enzyme and microbial technology. 2005,36(2):252-257
    [156]Xue Y-P, Liu Z-Q, Xu M, et al. Enhanced biotransformation of (R,S)-mandelonitrile to (R,S)-(-)-mandelic acid with in situ production removal by addition of resin.Biochemical Engineering Journal.2010,53(1):143-149
    [157]Ni Y,Chen R R. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier.Biotechnology and bioengineering.2004,87(6):804-811
    [158]Park J B, Biihler B, Habicher T, et al. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.Biotechnology and bioengineering.2006, 95(3):501-512
    [159]Verbelen P J, De Schutter D P, Delvaux F, et al. Immobilized yeast cell systems for continuous fermentation applications.Biotechnology letters.2006,28(19):1515-1525
    [160]宋向阳,余世袁.生物细胞固定化技术及研究进展.化工时刊.2000,14(11):37-39
    [161]Deppenmeier U, Hoffmeister M,Prust C. Biochemistry and biotechnological applications of Gluconobacter strains.Applied Microbiology and Biotechnology.2002, 60(3):233-242
    [162]Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans.Nature biotechnology.2005,23(2):195-200
    [163]Keliang G,Dongzhi W. Asymmetric oxidation by Gluconobacter oxydans.Applied microbiology and biotechnology.2006,70(2):135-139
    [164]Wu J, Wang J-L, Li M-H, et al. Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology.Bioresource technology.2010,101(23):8936-8941
    [165]Hekmat D, Bauer R, Neff V. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans.Process Biochemistry.2007,42(1):71-76
    [166]Wei S, Song Q,Wei D. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone.Preparative biochemistry & biotechnology.2007,37(1):67-76
    [167]Black K C, Yi J, Rivera J G, et al. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy.Nanomedicine.2013,8(1):17-28
    [168]Ren Y, Rivera J G, He L, et al. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating.BMC biotechnology. 2011,11(1):63
    [169]LaVoie M J, Ostaszewski B L, Weihofen A, et al. Dopamine covalently modifies and functionally inactivates parkin.Nature medicine.2005,11(11):1214-1221
    [170]Madura I D, Czerwinska K, Jakubczyk M, et al. Weak C-H-O and Dipole-Dipole Interactions as Driving Forces in Crystals of Fluorosubstituted Phenylboronic Catechol Esters.Crystal Growth & Design.2013,13(12):5344-5352
    [171]Xu C, Xu K, Gu H, et al. Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles.Journal of the American Chemical Society.2004,126(32):9938-9939
    [172]Holten-Andersen N, Fantner G E, Hohlbauch S, et al. Protective coatings on extensible biofibres.Nature materials.2007,6(9):669-672
    [173]Holten-Andersen N, Mates T E, Toprak M S, et al. Metals and the integrity of a biological coating:the cuticle of mussel byssus.Langmuir.2008,25(6):3323-3326
    [174]Avdeef A, Sofen S R, Bregante T L, et al. Coordination chemistry of microbial iron transport compounds.9. Stability constants for catechol models of enterobactin. Journal of the American Chemical Society.1978,100(17):5362-5370
    [175]Burzio L A,Waite J H. Cross-linking in adhesive quinoproteins:studies with model decapeptides.Biochemistry.2000,39(36):11147-11153
    [176]Zhang F,Dryhurst G. Effects of L-cysteine on the oxidation chemistry of dopamine:New reaction pathways of potential relevance to idiopathic Parkinson's DiseaseJournal of medicinal chemistry.1994,37(8):1084-1098
    [177]Butler A. Acquisition and utilization of transition metal ions by marine organisms.Science.1998,281(5374):207-209
    [178]杨世东,李玉玲,王冬梅et al.负载羟基氧化铁改性滤料对苯酚吸附研究.水处理技术.2010,36(6):69-72
    [179]Shen X-M, Zhang F,Dryhurst G. Oxidation of dopamine in the presence of cysteine:characterization of new toxic products.Chemical research in toxicology.1997, 10(2):147-155
    [180]Borovansky J,Riley P A. Melanins and Melanosomes:Biosynthesis, Structure, Physiological and Pathological Functions. John Wiley & Sons,2011
    [181]Palani A, Lee J-S, Huh J, et al. Selective enrichment of cysteine-containing peptides using SPDP-Functionalized superparamagnetic Fe3O4@SiO2 nanoparticles: Application to comprehensive proteomic profiling.Journal of Proteome Research.2008, 7(8):3591-3596
    [182]Terpe K. Overview of tag protein fusions:from molecular and biochemical fundamentals to commercial systems.Applied microbiology and biotechnology.2003,60(5): 523-533
    [183]Ghosh R. Protein separation using membrane chromatography:opportunities and challenges.Journal of chromatography A.2002,952(1):13-27
    [184]Lichty J J, Malecki J L, Agnew H D, et al. Comparison of affinity tags for protein purification.Protein expression and purification.2005,41(1):98-105
    [185]Muir T W, Sondhi D, Cole P A. Expressed protein ligation:a general method for protein engineering.Proceedings of the National Academy of Sciences.1998,95(12): 6705-6710
    [186]Scheich C, Sievert V, Bussow K. An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography.BMC biotechnology.2003,3(1):12
    [187]Dong X, Wang Y, Huang Y, et al. Preparation of GSH-functionalized porous dextran for the selective binding of GST by high internal phase emulsion (HIPE) polymerization.Journal of Materials Chemistry.2011,21(40):16147-16152
    [188]Lipin D I, Raj A, Lua L H, et al. Affinity purification of viral protein having heterogeneous quaternary structure:Modeling the impact of soluble aggregates on chromatographic performance.Journal of Chromatography A.2009,1216(30):5696-5708
    [189]杨柳.钻螯合亲和介质的制备及其在六聚组氨酸融合蛋白纯化中的应用.西安:西北大学,2008
    [190]孙永亮,李淑娟,胡道道,et al.纯化组氨酸标签蛋白金属螯合亲和色谱填料的制备与性能.陕西师范大学学报:自然科学版.2007,35(2):67-71
    [191]Vinckier N K, Chworos A,Parsons S M. Improved isolation of proteins tagged with glutathione S-transferase.Protein expression and purification.2011,75(2):161-164
    [192]Frenzel A, Bergemann C, Kohl G, et al. Novel purification system for 6xHis-tagged proteins by magnetic affinity separation. Journal of Chromatography B.2003, 793(2):325-329
    [193]Lee Y J, Park J M, Huh J, et al. Ultra-Specific Enrichment of GST-Tagged Protein by GSH-Modified Nanoparticles.Bull. Korean Chem. Soc.2010,31(6):1569
    [194]Pan Y, Long M J C, Li X, et al. Glutathione (GSH)-decorated magnetic nanoparticles for binding glutathione-S-transferase (GST) fusion protein and manipulating live cells.Chemical Science.2011,2(5):945-948
    [195]Deng C, Zhan X, Yang P, et al. Facile Synthesis Ti4+-Immobilized Fe3O4@ Polydopamine Core-shell Microspheres for Highly Selective Enrichment of Phosphopeptides.Chemical Communications.2013,
    [196]Liu J, Sun Z, Deng Y, et al. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups.Angewandte Chemie.2009, 121(32):5989-5993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700