用户名: 密码: 验证码:
自然环境下农业机器人作业目标信息获取与视觉伺服策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器视觉技术是农业机器人获取作业目标信息的重要手段,可实现自然环境下目标的识别、定位与跟踪,为伺服控制末端执行器完成作业任务提供决策依据。本文针对农业机器人视觉系统面对的两类典型对比性环境——农田和果园,结合农田蔬菜株间锄草,和果园产量监控及预测任务,对目标信息获取方法及视觉伺服策略展开研究。两种环境作业难点和区别在于:田间蔬菜图像以二维田地等为背景,目标与背景颜色区别较大,但难点在于株间锄草对实时性要求较高;果园果树图像难点在于以三维空间物体为干扰背景,绿色苹果与枝叶等背景颜色相近且相互遮挡,但产量监控和预测可离线分析,对实时性要求不高。本文分别设计了视觉伺服系统用于控制株间锄刀避苗锄草,和主动视觉伺服的最佳取景方位搜索策略用于果园产量监控及预测,以降低枝叶遮挡的影响。主要研究内容如下:
     (1)研究采用G-R>Tr且G-B>Tb因子对田间苗草图像进行背景分割,设计了基于二维直方图的类区域标记法,将对图像的区域标记搜索转换为对图像二维直方图的区域标记搜索,降低了搜索目标数和搜索时间。采用图像二维直方图区域组合特征为判断依据,实现了快速准确的蔬菜苗株间接识别定位,避开了具体识别区分作物和杂草的复杂过程。试验表明,样机系统中目标识别定位算法耗时小于16ms,平均正确识别率为97.34%;
     (2)针对大间隔种植的蔬菜等作物,设计了在左右对应作物行之间寻找作物包围盒重叠区域的方法,提取了相对准确的蔬菜行导航离散点,进而通过Hough变换对离散点进行拟合,实现了导航路径及导航数据的获取;
     (3)株间锄草机器人作业时以蔬菜苗株为参照目标,视场内苗株相对于月牙形株间锄刀的位置时刻变化,针对该运动目标的跟踪问题,研究了株间锄刀的视觉伺服控制策略,包括锄刀转速转角跟踪控制原理、视觉盲区补偿计算等;设计了视觉伺服与人机交互系统软件,实现了目标的识别定位与跟踪、机器人作业状态监控、操作指令输入及辅助操作信息的反馈等功能;
     (4)研究了绿色苹果在近色枝叶等背景中的识别计数方法。利用带有环形辅助光源的相机系统采集果树夜间图像以避免自然光照的影响,设计了以归一化的g分量和H、S颜色分量为特征参数的支持向量机(SVM)分类器,结合基于超绿特征(2G-R-B)的阈值分类器,实现了绿色苹果有效识别;针对果实粘连问题,对粘连区域进行欧氏距离变换,并采用分水岭算法进行分割。对64幅果树夜间图像进行试验表明,该方法识别计数的平均正确率89.3%。
     (5)针对视觉图像中果实遮挡问题,研究了相机取景方位对果树空间的可见、遮挡区域与果实探测能力之间的关系。通过重建果树三维密集点云并获取相机内外部参数,基于小孔成像模型,采用像素点反向投射方法构建果树点云空间遮挡地图;对单棵果树可见的图像采集点,采取不同的图像采集顺序,通过分析各方法对果树点体素可见能力、遮挡探测能力和树上苹果探测能力发现,可见能力优先法采集图像,能够更快探测到趋近于真实值的苹果数量;
     (6)设计了具有圆柱面相机运动空间的主动视觉系统,研究了基于粒子群优化算法(PSO)的用于主动视觉伺服的最佳取景方位搜索策略,结合相机点可见能力优先的最佳取景方位判断依据,仿真实现了果树点云空间的主动视觉最佳取景方位搜索策略。
As one of the most important method to realize information acquisition for agricultural robot, the machine vision technology could help recognize, locate and track targets to finish the servo control of the end-effector. For agricultural robot the machine vision system offen needs to work in two typical environments, the field environment and the orchard environment. Compare the different purpose of intra-row weeding robot for transplanted vegetables and the orchard yield estimation system based on machine vision, we could find that, the weeding robot needs to locate single vegetables quickly in images with a large color difference between the plants and2D field background. While the orchard yield estimation system could do images anylysis off line, but as the image background contains more3D objects and the color of green apple targets and background is so similar that the situation is more complex. A vision servo control system was studied to realize intra-row weeding without damaging crops, as well as an optimal camera pose search method to reduce the occlusion for the orchard yield estimation based on active vison servo technolog. Following is the main research contents:
     1. With a background segmentation way of G-R>Tr&G-B>Tb, a region-labeling-kind method based on2D histogram was presented to recognize and locate individual crops. It transformed the image searching to the histogram searching, which could reduce the number of individual areas and the searching time. The individual crops could be recognized indirectly by comparing the local region features of2D histogram. The experiment results showed that the algorithm time cost was16ms, with a correct recognition rate of97.34%on individual crops.
     2. As the crop space is large, a method of tracking navigation points between corresponding crop rows was studied to fit the navigation line based on Hough transformation. It showed a higher accuracy than the traditional navigation points tracking method.
     3. A vison servo control method of the intra-row weeding robot was presented to track the relative moving crops in the visual-field, which could realize the angle and rotating speed control of the crescent weeding hoe as well as the tracking of crops in the blind area of vison system. A vison servo control and human-computer interaction system was also designed to realize the vison servo control, the working stadus monitoring, the commond inputting and operation assisting information displaying.
     4. An image capturing system composed of two color cameras and an active flashing light was used to capture apple tree images at night. And a green apple recognition method was proposed. A hybrid classifier including an SVM method based on the advantage of H, S and normalized g and a Super-G method (2G-R-B) was developed to segement apple areas. To seperate the connected apple regions, the Euclidean distance transformation and a watershed method was used. The analysis of experimental results regarding64images showed that the average rate of correct recognition is89.30%.
     5. To reduce the occlusion area of the apple tree, the relationship between the visibility, the occlusion exploring ability and apple detection ability of different camera poses was studied. With the3D tree point cloud and the camera parameters from3D reconstruction of the image sequences, the occlusion map was generated based on the pinhole camera model. According to the anylysis of the different order of the existing camera pose sequence, the best visibility decision method could detect more apples after taking the same number of pictures.
     6. An active vision system was designed with the motion range on a semi-cylinder surface. According to the best visibility decision method, a searching strategy based on the Partical Swarm Opimization was presented to figure out the opitimal camera poses. The simulation experiments showed that this method could help search the opitimal camera poses.
引文
[1]赵欣.智能机器人在农业自动化领域的主要应用[J].中国农学通报,2010,26(10):360-364.
    [2]李丽原.浅析2012年中国蔬菜供需形势[J].中国农业信息,2013,8:36-40.
    [3]王金政,薛晓敏,陆超.我国苹果生产现状与发展对策[J].山东农业科学,2010,6:117-119.
    [4]杨洪强.2012.苹果安全生产技术指南[M].北京:中国农业出版社.
    [5]李慧峰,吕德国,秦嗣军.我国苹果产业现状及其可持续发展对策[J].沈阳农业大学学报(社会科学版),2005-06,7(2):203-204.
    [6]Van Henten E J, Hemming J, Van Tuijl B A J, et al. An autonomous robot for harvesting cucumbers in greenhouses[J]. Autonomous Robots,2002,13(3):241-258.
    [7]E.J. Van Henten, B.A.J. Van Tuijl, J. Hemming. Field Test of an Autonomous Cucumber Picking Robot[J]. Biosystems Engineering,2003,86(3):305-313
    [8]Van Henten E J, Van't Slot, D A, Hol, C W J, et al. Optimal manipulator design for a cucumber harvesting robot[J]. Computers and Electronics in Agriculture,2009,65(2):247-257
    [9]周增产,J. Bontsema, L. Van Kollenburg-Crisan.荷兰黄瓜收获机器人的研究开发[J].农业工程学报,2001,17(6):77-80
    [10]Naoshi Kondo, Kazunori Ninomiya. A New Challenge of Robot for Harvesting Strawberry Grown on Table Top Culture[C]//2005 ASAE Annual International Meeting. Florida, USA.2005, Paper Number:053138.
    [11]Rajendra P, Kondo N, Ninomiya K, et al. Machine Vision Algorithm for Robots to Harvest Strawberries in Tabletop Culture Greenhouses[J], EAEF,2009,2(1):24-30. [12] Lei Tian. Development of a sensor-based precision herbicide application system[J]. Computers and Electronics in Agriculture,2002, (36):133-149.
    [13]Tian L, Reid Jf, Hummel Jw. Development of a precision sprayer for site-specific weed management[J]. Transactions of the ASAE,1999,42(4):893-900.
    [14]B L Steward, L F Tian, L Tang. Distance-Based Control System for Manchine Vision-Based Selective Spraying[J]. Transactions of the ASAE,2002,45(5):1255-1262.
    [15]Tillett N D, Hague T, Grundy A C, et al. Mechanical within-row weed control for transplanted crops using computer vision[J]. Biosystems Engineering,2008,99(2):171-178.
    [16]Hague T, Tillett N. A bandpass filter approach to crop row location and tracking[J]. Mechatronics, 2001,11(1),10-12.
    [17]Tillett N D, Hague T, Miles, S.J. A field assessment of a potential method for weed and crop mapping on the basis of crop planting geometry [J]. Computers and Electronics in Agriculture,2001,32(3):229-246.
    [18]Tillett N D, Hague T, Miles, S.J. Inter-row vision guidance for mechanical weed control in sugar beet. Computers and Electronics in Agriculture[J], Computers and Electronics in Agriculture,2002,33(3):163-177.
    [19]M Norremark, H W Griepentrog, J Nielsen, H T Sogaard. The Development and Assessment of the Accuracy of an Autonomous GPS-Based System for Intra-Row Mechanical Weed Control in Row Crops [J]. PA-Precision Agriculture,2008,101:396-410.
    [20]陈勇,田磊,郑加强.基于直接施药方法的除草机器[J].农业机械学报,2005,36(10):91-93.
    [21]侯学贵,陈勇,郭伟斌.除草机器人田间机器视觉导航[J].农业机械学报,2008,39(3):106-112.
    [22]金小俊,陈勇,侯学贵,等.基于机器视觉的除草机器人杂草识别[J].山东科技大学学报(自然科学版),2012,31(2):104-108.
    [23]袁挺,纪超,陈英,等.基于光谱成像技术的温室黄瓜识别方[J].农业机械学报,2011,42:172-176.
    [24]纪超,冯青春,袁挺,等.温室黄瓜采摘机器人系统研制及性能分析[J].机器人,2011,33(6):726-730.
    [25]袁挺,李伟,谭豫之,等.温室环境下黄瓜采摘机器人信息获取[J].农业机械学报,2009,40(10):172-176.
    [26]张俊雄,曹峥勇,耿长兴,等.温室精准对靶喷雾机器人研制[J].农业工程学报,2009,25(2):70-73.
    [27]耿长兴,张俊雄,曹峥勇,等.温室黄瓜病害对靶施药机器人设计[J].农业机械学报,2011,42(1):177-180.
    [28]耿长兴,张俊雄,曹峥勇,等.基于色度和纹理的黄瓜霜霉病识别与特征提取[J].农业机械学报,2011,42(3):170-174.
    [29]曹峥勇,张俊雄,耿长兴,等.温室对靶喷雾机器人控制系统[J].农业工程学报,2010,26(2):228-233.
    [30]S. Kiani, A. Jafari. Crop detection and positioning in the field using Discriminant Analysis and Neural Networks[J]. Journal of Agricultural Science and Technology.2012(14):755-76
    [31]Alberto Tellaechea, Gonzalo Pajaresa, Xavier P Burgos-Artizzub, et al. A computer vision approach for weeds identification through Support Vector Machines[J]. Applied Soft Computing, 2011,11(1):908-915.
    [32]Alberto Tellaechea, Xavier P Burgos-Artizzub, Gonzalo Pajares, et al.. A vision-based method for weeds identification through the Bayesian decision theory[J]. Pattern Recognition,2008,41(2):521-530
    [33]Hong Y Jeon, Lei F Tian, Heping Zhu. Robust crop and weed segmentation under uncontrolled outdoor illumination[J]. Sensors,2011,11(6):6270-6283.
    [34]George E M, Joao Camargo Neto. Verification of color vegetation indices for automated crop imaging applications[J]. Computer and Electronics in Agriculture,2008,63(2):282-293.
    [35]Gehbhardt, S., Kuehbauch, W., A New Algorithm for Automatic Rumex Obtusifolius Detection in Digital Images Using Colour and Texture Features and The Influence Of Image Resolution[J]. Precision Agric,2007,8:1-13.
    [36]Claus G Serensen, Michael Norremark, Rasmus Nyholm Jorgensen, et al. Hortibot:feasibility study of a plant nursing robot performing weeding operations-part FV[C]//2007 ASABE Annual International Meeting. Minneapolis, USA,2007, Paper Number 077019.
    [37]Bjorn Astrand, Albert-Jan Baerveldt. An agricultural mobile robot with vision-based perception for mechanical weed control[J]. Autonomous Robots,2002,13(1):21-35.
    [38]毛罕平,胡波,张艳诚,等.杂草识别中颜色特征和阈值分割算法的优化[J].农业工程学报,2007,9(23):154-158.
    [39]毛文华,王月青,王一鸣,等.苗期作物和杂草的光谱分析与识别[J].光谱学与光谱分析,2005,25(6):984-987.
    [40]何东健,乔永亮,李攀,等.基于SVM-DS多特征融合的杂草识别[J].农业机械学报,2013,44(2):182-187.
    [41]陈树人,栗移新,毛罕平,等.基于光谱分析技术的作物中杂草识别研究[J].光谱学与光谱分析,2009,29(2):463-466.
    [42]李志臣,姬长英.基于图像分析的杂草分形维数计算[J].农业工程学报,2006,22(11):175-178.
    [43]龙满生,何东健.玉米苗期杂草的计算机识别技术研究[J].农业工程学报,2007,23(7):139-144.
    [44]胡炼,罗锡文,曾山.基于机器视觉的株间机械除草装置的作物识别与定位方法[J].农业工程学报,2013,29(10):12-18.
    [45]张春龙,黄小龙,刘卫东,等.苗间锄草机器人信息获取方法的研究[J].农业工程学报,2012,28(9):142-146.
    [46]S. Nuske, S. Achar, T. Bates, et al. Yield estimation in vineyards by visual grape detection[C]// Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2011.
    [47]S. Nuske, K. Gupta, S. Narasihman, et al. Modeling and calibration visual yield estimates in vineyards[C]//In Proceedings of International Conference on Field and Service Robotics,2012.
    [48]Linker R, Cohen O, Naor A. Determination of the number of green apples in RGB images recorded in orchards [J]. Computers and Electronics in Agriculture,2012(81):45-57.
    [49]Linker R, Cohen O, Naor A. Determination of the Number of Green Apples on Trees[C]//2011 ASABE Annual International Meeting. Kentucky, USA,2011, Paper Number:1110603.
    [50]Qi Wang, Stephen Nuske, Marcel Bergerman, et al. Automated crop yield estimation for apple orchards[C]//The 13th International Symposium on Experimental Robotics. Quebec City, Canada, 2012.
    [51]Qi Wang, Stephen Nuske, Marcel Bergerman, et al. Design of Crop Yield Estimation System for Apple Orchards Using Computer Vision. [C]//2012 ASABE Annual International Meeting. Texas, USA,2012, Paper Number:121338342.
    [52]Barna Keresztes, Olivier Lavialle, Gilbert Grenier, et al. Apple yield estimation during the growth season using image analysis[C]//International Conference of Agricultural Engineering, Valencia, Spain,2012.
    [53]Radnaabazar Chinchuluun, Won Suk Lee. Citrus yield mapping system in natural outdoor scenes using the watershed transform[C]//2006 ASABE Annual International Meeting. Oregon, USA, 2006, Paper Number:063010.
    [54]Radnaabazar Chinchuluun, Won Suk Lee, Reza Ehsani. Citrus yield mapping system on a canopy shake and catch harvester[C]//2007 ASABE Annual International Meeting. Minnesota, USA,2007, Paper Number:073050.
    [55]Radnaabazar Chinchuluun, Won Suk Lee, Reza Ehsani. Machine vision system for determining citrus count and size on a canopy shake and catch harvester[J]. Applied Engineering in Agriculture,2009,25(4):451-458.
    [56]蔡健荣,周小军,李玉良,等.基于机器视觉自然场景下成熟柑橘识别[J].农业工程学报,2008,24(1):175-178.
    [57]吕强,蔡健荣,赵杰文,等.自然场景下树上柑橘实时识别技术[J].农业机械学报,2012,41(2):185-188.
    [58]荀一,陈晓,李伟,等.基于轮廓曲率的树上苹果自动识别[J].江苏大学学报(自然科学版),2007,28(6):461-464.
    [59]宋怀波,何东健,潘景朋.基于凸壳理论的遮挡苹果目标识别与定位方法[J].农业工程学报,2008,24(1):175-178.
    [60]章毓晋.图像工程(上册)-图像处理[M].北京:清华大学出版社,2006.
    [61]冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2011.
    [62]张铮,王艳平,薛桂香.数字图像处理与机器视觉[M].北京:人民邮电出版社,2010.
    [63]侯学贵,陈勇,郭伟斌.除草机器人田间机器视觉导航[J].农业机械学报,2008,39(3):106-108.
    [64]陈兵旗,孙明.Visual C++实用图像处理[M].北京:清华大学出版社,2004,117-118.
    [65]孙元义.机器视觉在棉田农药喷洒机中应用的研究[D].北京:中国农业大学,2006.
    [66]D C Slaughter, D K Giles, D Downey. Autonomous robotic weed control systems:A review[J]. Computers and Electronics in Agriculture,2008,61(1):63-78.
    [67]任永新.温室环境下黄瓜采摘机器人视觉导航[D].北京:中国农业大学,2009.
    [68]何斌,马天予.Visual C++数字图像处理[M].北京:人民邮电出版社,2002.
    [69]Pablo M. Granitto, Pablo F Verdes, H. Alejandro Ceccatto. Large-scale investigation of weed seed identification by machine vision[J]. Computers and Electronics in Agriculture,2005,47(1):15-24.
    [70]Isabelle Schuster, Henning Nordmeyer, Thomas Rath. Comparison of vision-based and manual weed mapping in sugar beet[J]. Biosystems Engineering,2007,98(1):17-25.
    [71]Vapnik V. The Nature of Statistical Learning Theory[J]. New York:Springer-Verlag,1995.20-60
    [72]王津京,赵德安,姬伟,等.采摘机器人基于支持向量机苹果识别方法[J].农业机械学报,2009,40(1):148-151.
    [73]Muralidharan R, Chandrasekar C. Object recognition using support vector machine augmented by RST invariants[J]. International Journal of Computer Science Issues (IJCSI),2011,8(5):280-286.
    [74]王津京.基于支持向量机苹果采摘机器人视觉系统的研究[D].江苏大学,2009.
    [75]胡秋霞.基于图像分析的植物叶部病害识别方法研究[D].西北农林科技大学,2013.
    [76]张吉斌.基于图像处理和支持向量机的车牌识别技术研究[D].兰州交通大学,2013.
    [77]石会芳.基支持向量机及其在手写数字识别中的应用[D].重庆大学,2013.
    [78]Chang C C, Lin C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):27:1-27:27.
    [79]彭卫绘,谈乐斌.基于MATLAB的粘连小球球径提取方[J].计算机系统应用,2012,21(6):191-194.
    [80]丁伟杰,范影乐,庞全.一种改进的基于分水岭算法的粘连分割研究[J].计算机工程与应用,2007,43(10):70-72.
    [81]Mohamed Ali Hamdi. Modified algorithm marker-controlled watershed transform for image segmentation based on curvelet threshold[J]. Canadian Journal on Image Processing and Computer Vision,2011,2(8):88-91.
    [82]Manisha Bhagwat, Krishna R K, Pise V E. Image segmentation by improved watershed transformation in programming environment MATLAB [J]. International Journal of Computer Science & Communication,2010,1(2):171-174.
    [83]Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism:Exploring Photo Collections in 3D[C]//SIGGRAPH Conf. Proc.,2006.
    [84]Noah Snavely, Steven M. Seitz, Richard Szeliski. Modeling the World from Internet Photo Collections[J]. International Journal of Computer Vision,2008,80(2):189-210.
    [85]M.I.A. Lourakis and A.A. Argyros. The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm. Tech. Rep.340, Inst. Of Computer Science-FORTH, Heraklion, Crete, Greece. Available from http://www.ics.forth.gr/-lourakis/sba.
    [86]Debadeepta Dey, Lily Mummert, Rahul Sukthankar. Classification of Plant Structures from Uncalibrated Image Sequences[C]//WACV, IEEE,2012, pp.329-336.
    [87]Lowe, David G. Object recognition from local scale-invariant features[C]//Proceedings of the International Conference on Computer Vision, pp.1150-1157.
    [88]Lowe, D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110.
    [89]Lowe, D.G., Local feature view clustering for 3D object recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,Kauai, Hawaii,2001, pp.682-688.
    [90]王永明,王贵锦主编.图像局部不变性特征与描述[M].国防工业出版社,2010.
    [91]万国伟.面向建筑物的三维点云生成、增和重建技术研究[D].国防科学技术大学,2011.
    [92]Y. Furukawa, J. Ponce. Accurate, Dense, and Robust Multiview Stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8):1362-1376.
    [93]Furukawa Y, Curless B, Seitz S M, Szeliski R. Manhattan-world stereo[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE,2009. 1422-1429.
    [94]Furukawa Y, Ponce J. Carved visual hulls for image-based modeling[J]. International Journal of Computer Vision,2009,81(1):53-67.
    [95]Furukawa Y, Curless B, Seitz S M, Szeliski R. Towards internet-scale multi-view stereo[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE,2010.1434-1441.
    [96]王洋,张涛,李欢利,等.应用SFM和多视图面片实现牙模三维重建[J].计算机测量与控制,2013,21(4):1067-1070.
    [97]徐德.机器人视觉测量与控制(第二版)[M].国防工业出版社,2011.
    [98]张鲜妮,王磊.基于MATLAB的七参数坐标系统转换问题分析[J].北京:中国科技论文在线,2008-12-31.
    [99]王保丰,徐宁,余春平,等.两种空间直角坐标系转换参数初值快速计算的方法[J].宇航计测技术,2008,27(4):20-24.
    [100]肖晖.利用相机旋转运动实现全局一致的三维重建[J].测绘科技情报,2006,3:12-16.
    [101]Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proc. IEEE int'l conf. on neural networks Vol. IV, pp.1942-1948. Piscataway, NJ,1995.
    [102]Eberhart R C, Kennedy J. A new optimizer using particle swarm theoryfC]//Proceedings of the sixth international symposium on micro machine and human science pp.39-43. Piscataway, NJ, Nagoya, Japan,1995.
    [103]Bratton D, Kennedy J. Defining a standard for particle swarm optimization[C]//Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, pp.120-127.
    [104]黄少荣.粒子群优化算法综述[J].计算机工程与设计,2009,30(8):1997-1980.
    [105]周驰,高海兵,高亮,等.粒子群优化算法[J].计算机应用研究,2003,12:7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700