用户名: 密码: 验证码:
微型电化学生物传感器的设计及其在细胞生化参数检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活体细胞对外界刺激如药物、环境因素变化和受体作用等产生响应,会引起细胞代谢等功能性变化,外在表现为生化参数的改变。利用微型化电化学生物传感器,可以将细胞培养在传感器表而,细胞内的生理变化引起胞外环境的变化,胞外的电解质溶液与传感器之间形成电化学池,从而将这些参数的变化通过二级换能器转换为电信号输出,最终实现定量化监测和细胞水平的分析。将传感器微型化和建立良好的细胞-芯片耦合是关键问题所在。鉴于此,采用微机械加工技术开展的基于细胞传感器的微电极阵列、叉指型阻抗传感器、场效应传感器等具有良好的生物相容性,得到了广泛的研究,并已在药物筛选、环境监测等领域得到了初步应用。
     本文从微型电化学生物传感器的设计和制备等关键技术入手,对基于电解质/金属-绝缘层-半导体(Electrolyte/metal-insulator-silicon, EIS/MIS)结构和和光伏检测技术的传感器、金微电极、碳微电极等传感器进行了研究,实现了离体原代肾细胞在传感器表而的良好耦合以及胞外酸化率、胞外氧化还原电位检测、葡萄糖溶液浓度检测,为EIS/MIS结构半导体器件拓展了新的生物学应用领域。此外,本文将碳微加工(Carbon micro-electromechanical systems, C-MEMS)工艺用于碳微电极的制备,实现了碳电极的微型化,成功应用于胰岛素溶液的检测,为细胞分泌的研究提供了一种新的可行性方法。本论文的主要内容和贡献如下
     1.提出了一种新的有效的细胞胞外氧化还原电位检测的方法
     细胞胞外氧化还原电位(Extracellular redox potential, ERP)反应了细胞外微环境的氧化还原状态,与细胞的增殖、分化、凋亡及癌细胞侵蚀都有着密切的关系。本文采用基于MIS结构的传感器和流动注射微腔体联用的方法,为细胞水平的氧化还原电位测试提供了一个可行的解决方案。测试无需添加其他氧化还原介质。研究表明,线粒体电子传递链对ERP有较大的影响。
     2.提出了一种从细胞释放H+和自由电子活性两种角度研究细胞生命代谢活动的集成传感器的设计和可行性
     本文提出了同时检测胞外酸化率和胞外氧化还原电位的一种集成传感器的设计,该集成传感器的性能可与单独的EIS、MIS传感器相媲美。此外,本文对正常生理状态下的细胞酸化率和ERP两种参数进行了初步的研究,获得了与单独测试类似的结果,验证了该设计的可行性。该设计有望应用于揭示细胞代谢机理的研究和药物分析测试中。
     3.研制了一种新的电位型葡萄糖传感器
     本文将PPy-GOD (Polypyrrole-glucose oxidase)超薄膜修饰在MIS结构传感器上获得了比使用同种修饰薄膜的其他类型传感器更高的灵敏度。MIS传感器所采用的光伏检测技术与流动注射微腔体联用,有利于提高传感器本身的灵敏度和响应时间。
     4.提出了将C-MEMS工艺制备碳微电极用于胰岛素的检测
     采用C-MEMS工艺将光刻胶热解制备的碳微电极具有较好的电化学性能,在其表面电沉积纳米RuOx颗粒之后实现了胰岛素的电化学检测,这是继玻碳电极、碳糊电极、碳纤维微电极之后,首次将C-MEMS应用于胰岛素测试的研究。采用C-MEMS工艺的优势在于,可根据实际检测需要灵活设计电极的结构和尺(?),有利于胰岛素传感器的微型化和集成化。
Living cells can respond to external stimuli, such as drugs and environmental change, or receptor functions. This induces the functional change of cell metabolism and variations in biochemical parameters, which can be detected using micro fabricated electrochemical biosensors. Cells are generally cultured on the sensor surface, and the extracellular electrolyte together with the sensor form a micro electrochemical cell, thus the biochemical parameter change induced by the physiological state of cells can be output as a physical electric signal through the transformation of transducers. By doing this, the quantitative detection and analysis in cellular level can be realized. The miniaturization of sensors and the cell-chip coupling are the key issues. In view of this the micro-electromechanical systems (MEMS) technologies are widely applied in the construction of cell-based biosensor, such as microelectrode array (MEA), interdigitated electrodes (IDE) and field effect transistor (FET). With good biocompatibility, these cell-based biosensors have been widely studied and preliminary applications have been achieved in drug screening, and environmental monitoring.
     Based on the important techniques in the sensor design and fabrication, the electrolyte/metal-insulator-silicon (EIS/MIS) structured sensor, gold microelectrode and carbon microelectrode have been studied in this thesis. Good coupling of primary kidney cells on the EIS/MIS sensor surface are demonstrated in vitro, and the detection of cells acidification rate, the extracellular redox potential (ERP) are successfully realized. The MIS sensor can also be applied for the construction of potentiometric glucose sensor with high sensitivity, which expands the applications of MIS sensor in biology. Besides, the carbon micro-electromechanical systems (C-MEMS) technology is successfully used for the fabrication of carbon microelectrode, which facilitates the miniaturization of carbon electrode. Then the carbon microelectrode is applied for insulin detection, which provides a new potential, feasible way for the study of exocytosis. The major contents and contributions of this thesis are given as follows:
     1. A new effective method for ERP detection is studied
     The ERP value, which reflects the redox state of extracellular environment, has close relationship with cell proliferation, differentiation, apoptosis and cancer erosion. Based on the MIS sensor and the micro chamber with flow injection system, this thesis provides a feasible solution for ERP detection without addition of other redox mediators. It is found that the mitochondrial electron transport chain has important effect on ERP detection.
     2. An integrated sensor for simultaneous detection of acidification rate and ERP is demonstrated to be feasible
     This thesis proposes an integrated sensor design for the simultaneous detection of the two parameters. The integrated sensor has comparable performance with separate EIS or MIS sensor. The study of the two parameters under physiological state is primarily carried out, which demonstrates the feasibility of the sensor design. This design has potential application in revealing the cell metabolism mechanism and drug analysis and testing.
     3. A new type potentiometric glucose sensor with high sensitivity is developed
     An ultra thin polypyrrole-glucose oxidase (PPy-GOD) film is modified on the MIS sensor surface, and much higher sensitivity for glucose detection is obtained in comparison with other types of sensor with the same PPy-GOD film. The application of photovoltage technology and the micro chamber with flow injection system, contribute to the improved sensor sensitivity and response time.
     4. Carbon microelectrode fabricated with C-MEMS technology is applied for insulin detection
     The carbon microelectrode fabricated through the pyrolysis of photoresist with C-MEMS technology has good electrochemical performance. After electrodeposition of nano RuOx particles on the carbon surface, insulin oxidation is electro-catalyzed and its electrochemical detection is achieved. This is the first application of C-MEMS technology for insulin detection after glassy carbon, carbon paste and carbon fiber electrode. C-MEMS technology has the advantages of flexible design of the electrode structure and dimensions, which is propitious to the miniaturization and integration of insulin sensor.
引文
1 Turner, A. P., Karube, I.& Wilson. G. S. Biosensors:fundamentals and applications. Vol.21 770 (Oxford University Press Oxford,1987).
    2 Grieshaber, D., MacKenzie, R., Voros, J.& Reimhult, E. Electrochemical biosensors-Sensor principles and architectures. Sensors 8,1400-1458 (2008).
    3 Ronkainen, N. J., Halsall, H. B.& Heineman, W. R. Electrochemical biosensors. Chemical Society Reviews 39,1747-1763 (2010).
    4 Niwa, O., Morita, M.& Tabei, H. Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries:consideration of redox cycling and collection efficiency. Analytical Chemistry 62,447-452 (1990).
    5 Popovtzer. R. et al. Novel integrated electrochemical nano-biochip for toxicity detection in water. Nano letters 5,1023-1027 (2005).
    6 Clark, L. C.& Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102,29-45 (1962).
    7 Updike, S.& Hicks, G. The enzyme electrode. Nature 214,986-988 (1967).
    8 Guilbault, G. G.& Montalvo Jr, J. G. Urea-specific enzyme electrode. Journal of the American Chemical Society 91,2164-2165(1969).
    9 Shichiri, M., Yamasaki, Y., Kawamori. R., Hakui, N.& Abe, H. Wearable artificial endocrine pancreas with needle-type glucose sensor. The Lancet 320, 1129-1131 (1982).
    10 Cass, A. E. et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry 56,667-671 (1984).
    11 Yun, Y. et al. Nanotube electrodes and biosensors. Nano Today 2,30-37 (2007).
    12 Van Emon, J. M. Immunoassay and other bioanalytical techniques. (CRC Press, 2007).
    13刘向阳.生物传感器:未来举足轻重的应用技术.中国医疗器械信息 13, 48-54 (2007).
    14 Liu, Y., Che, Y.& Li, Y. Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method. Sensors and Actuators B:Chemical 72,214-218 (2001).
    15 卢智远.牛中奇,刘启,周永军&梁安慧.一种微生物检测的生物I电化学方法研究.传感技术学报18,481-483(2005).
    16 Mullett, W., Lai, E. P.& Yeung, J M. Immunoassay of fumonisins by a surface plasmon resonance biosensor. Analytical Biochemistry 258,161-167 (1998).
    17 Volokhov, D., Rasooly, A., Chumakov, K.& Chizhikov, V. Identification of Listeria species by microarray-based assay. Journal of Clinical Microbiology 40. 4720-4728 (2002).
    18 Chowdhury, A. D., De, A., Chaudhuri, C. R., Bandyopadhyay, K.& Sen. P. Label free polyaniline based impedimetric biosensor for detection of E. coli O157:H7 Bacteria. Sensors and Actuators B:Chemical (2012).
    19 Furtado, R., Alves. C., Moreira, A., Azevedo, R.& Dutra. R. A novel xyloglucan film-based biosensor for toxicity assessment of ricin in castor seed meal. Carbohydrate Polymers (2012).
    20 Ferracci, G. et al. A label-free biosensor assay for botulinum neurotoxin B in food and human serum. Analytical Biochemistry 410,281-288 (2011).
    21 Yang, M., Sun, S., Bruck, H. A., Kostov, Y.& Rasooly. A. Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB). Biosensors and Bioelectronics 25,2573-2578 (2010).
    22 Carlson, M. et al. An automated, handheld biosensor for aflatoxin. Biosensors and Bioelectronics 14,841-848 (2000).
    23 Starodub, N., Dzantiev, B., Starodub, V.& Zherdev, A. Immunosensor for the determination of the herbicide simazine based on an ion-selective field-effect transistor. Analytica Chimica Acta 424,37-43 (2000).
    24 Morales, M., Gonzalez, M., Reviejo, A.& Pingarron, J. A composite amperometric tyrosinase biosensor for the determination of the additive propyl gallate in foodstuffs. Microchemical Journal 80,71-78 (2005).
    25刘国艳,袁庆 & 柴春彦.检测鱼肉新鲜度的酶生物传感器的研制.中国动物检疫23,28-29(2006).
    26 周仕林&刘冬.生物传感器在环境监测中的庆用.理化检验:化学分册47.120-124(2011).
    27 Weinberger, S. R., Morris, T. S.& Pawlak, M. Recent trends in protein biochip technology. Pharmacogenomics 1,395-416 (2000).
    28 Grow, A. E., Wood, L. L., Claycomb, J. L.& Thompson, P. A. New biochip technology for label-free detection of pathogens and their toxins. Journal of Microbiological Methods 53,221-233 (2003).
    29 Marcello, A., Sblattero, D., Cioarec, C., Maiuri, P.& Melpignano, P. A deep-blue OLED-based biochip for protein microarray fluorescence detection. Biosensors and Bioelectronics (2013).
    30 Chen, T. K., Luo, G.& Ewing, A. G. Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC 12) cells at the zeptomole level. Analytical Chemistry 66,3031-3035 (1994).
    31 Bruns, D.& Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377,62-65 (1995).
    32 蔡华.基于集成芯片的多功能细胞生理自动分析仪研究,浙江大学,(2010).
    33 Malinski, T.& Taha, Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358,676-678 (1992).
    34 Paras, C. D.& Kennedy, R. T. Electrochemical detection of exocytosis at single rat melanotrophs. Analytical Chemistry 67,3633-3637 (1995).
    35 Guenat, O. T. et al. in TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems,12th International Conference on,2003.1063-1066 (IEEE).
    36 李毅.微纳集成传感器及其在重金属检测中应用的研究[D],杭州:浙江大学,(2010).
    37 Primiceri, E. et al. Automatic transwell assay by an EIS cell chip to monitor cell migration. Lab on a Chip 11,4081-4086 (2011).
    38 Wang, J. et al. Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro. Biosensors 2,127-170 (2012).
    39 Shi, B.-X., Wang, Y., Zhang, K., Lam, T.-L.& Chan, H. L.-W. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes. Biosensors and Bioelectronics 26,2917-2921 (2011).
    40 Berry, M. N.& Grivell, M. B. in Bioelectrochemistry of Cells and Tissues 134-158 (Springer,1995).
    41 Nonner, W.& Eisenberg, B. Electrodiffusion in ionic channels of biological membranes. Journal of Molecular Liquids 87,149-162 (2000).
    42 Karube, I., Nakahara, T., Matsunaga, T.& Suzuki, S. Salmonella electrode for screening mutagens. Analytical Chemistry 54,1725-1727 (1982).
    43 Li, X.-M., Schwartz, R. M., Cesar, E. Y.& Wang, H. Y. An integrated microcomputer system using immobilized cellular electrodes for drug screening. Computers in Biology and Medicine 18,367-376 (1988).
    44 James, A. M. Thermal and energetic studies of cellular biological systems. (John Wright,1987).
    45 Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. Biomedical Engineering, IEEE Transactions on,342-351 (1972).
    46 Thedinga, E. et al. Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicology and applied pharmacology 220,33-44 (2007).
    47 Mohri, S. et al. Measurements of CO2. lactic acid and sodium bicarbonate secreted by cultured cells using a flow-through type pH/CO2 sensor system based on ISFET. Sensors and Actuators B:Chemical 115,519-525 (2006).
    48 Mohri, S. et al. Application of a flow-through type pH/CO2 sensor system based on ISFET for evaluation of the glucose dependency of the metabolic pathways in cultured cells. Sensors and Actuators B:Chemical 134,447-450 (2008).
    49 Owicki, J. C.& Wallace Parce, J. Biosensors based on the energy metabolism of living cells:the physical chemistry and cell biology of extracellular acidification. Biosensors and Bioelectronics 7,255-272 (1992).
    50 Hafeman, D. G., Parce, J. W.& McConnell, H. M. Light-addressable potentiometric sensor for biochemical systems. Science 240,1182-1185 (1988).
    51 Adami, M., Sartore, M.& Nicolini, C. PAB:a newly designed potentiometric alternating biosensor system. Biosensors and Bioelectronics 10,155-167 (1995).
    52 Wolf, B., Brischwein, M., Baumann, W., Ehret. R.& Kraus, M. Monitoring of cellular signalling and metabolism with modular sensor-technique:The PhysioControl-Microsystem (PCM(?)). Biosensors and Bioelectronics 13, 501-509(1998).
    53 Humphries, G. M., Miller, D. L., Libby, J. M.& Schwartz, H. L. (Google Patents, 1992).
    54 Yicong, W. et al. A novel microphysiometer based on MLAPS for drugs screening. Biosensors and Bioelectronics 16,277-286 (2001).
    55 董家乐.基于可视阵列传感对细胞代谢过程的研究,重庆大学,(2011).
    56 Schilling, E. A., Kamholz, A. E.& Yager, P. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Analytical Chemistry 74,1798-1804 (2002).
    57 Heyries, K. A. et al. Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosensors and Bioelectronics 23,1812-1818 (2008).
    58 Ramser, K. et al. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab on a Chip 5, 431-436(2005).
    59 Jang, K., Sato, K., Igawa, K., Chung, U.-i.& Kitamori, T. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Analytical and Bioanalytical Chemistry 390,825-832 (2008).
    60 Garcfa-Aljaro, C., Munoz-Berbel, X., Jenkins, A. T. A., Blanch, A. R.& Munoz, F. X. Surface plasmon resonance assay for real-time monitoring of somatic coliphages in wastewaters. Applied and Environmental Microbiology 74, 4054-4058 (2008).
    61 Chaiswing, L.& Oberley, T. D. Extracellular/microenvironmental redox state. Antioxidants & Redox Signaling 13,449-465 (2010).
    62 Iyer, S. S. et al. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology 296, L37-L45 (2009).
    63 Jonas, C. R., Ziegler, T. R., Gu, L. H.& Jones, D. P. Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radical Biology and Medicine 33,1499-1506 (2002).
    64 Ramirez. A. et al. Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-β.American Journal of Physiology-Lung Cellular and Molecular Physiology 293, L972-L981 (2007).
    65 Stanic. B.. Katsuyama, M.& Miller, F. J. An oxidized extracellular oxidation-reduction state increases Noxl expression and proliferation in vascular smooth muscle cells via epidermal growth factor receptor activation. Arteriosclerosis, Thrombosis, and Vascular Biology 30,2234-2241 (2010).
    66 Imhoff, B. R.& Hansen. J. M. Extracellular redox environments regulate adipocyte differentiation. Differentiation 80,31-39 (2010).
    67 Nkabyo, Y. S.. Ziegler, T. R.. Gu, L. H., Watson. W. H.& Jones. D. P. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 283, G1352-G1359 (2002).
    68 Jiang, S. et al. Oxidant-induced apoptosis in human retinal pigment epithelial cells:dependence on extracellular redox state. Investigative Ophthalmology & Visual Science 46,1054-1061 (2005).
    69 Chaiswing, L., Zhong, W., Cullen, J. J., Oberley, L. W.& Oberley, T. D. Extracellular redox state regulates features associated with prostate cancer cell invasion. Cancer Research 68,5820-5826 (2008).
    70 Allyn, W. P.& Baldwin,I. Oxidation-reduction potentials in relation to the growth of an aerobic form of bacteria. Journal of Bacteriology 23,369-398 (1932).
    71 Ward, W. E. The apparent oxidation-reduction potentials of bright platinum electrodes in synthetic media cultures of bacteria. Journal of Bacteriology 36, 337(1938).
    72 Cater, D.. Phillips, A.& Silver, I. The measurement of oxidation-reduction potentials, pH, and oxygen tension in tumours. Proceedings of the Royal Society of London. Series B-Biological Sciences 146,382-399(1957).
    73 Kjaergaard, L. in Advances in Biochemical Engineering, Volume 7,131-150 (Springer,1977),
    74 Kwong, S. C., Randers, L.& Rao, G. On-line assessment of metabolic activities based on culture redox potential and dissolved oxygen profiles during aerobic fermentation. Biotechnology progress 8,576-579 (1992).
    75 Eyer, K.& Heinzle, E. On-line estimation of viable cells in a hybridoma culture at various DO levels using ATP balancing and redox potential measurement. Biotechnology Bioengineering 49,277-283 (1996).
    76 Higareda, A. E., Possani, L. D.& Ramirez, O. T. The use of culture redox potential and oxygen uptake rate for assessing glucose and glutamine depletion in hybridoma cultures. Biotechnology Bioengineering 56,555-563 (1997).
    77 Reichart, O., Szakmar, K., Jozwiak. A., Felfoldi, J.& Baranyai. L. Redox potential measurement as a rapid method for microbiological testing and its validation for coliform determination. International Journal of Food Microbiology 114,143-148 (2007).
    78 Zheng, J. et al. Using oxidation-reduction potential to optimize lactic acid production by Lactobacillus paracasei. Chinese Journal of Bioprocess Engineering 6,73-77 (2008).
    79 Koo, B.-S., Gong, Y.-J., Kim, S.-Y., Kim, C.-W.& Lee, H.-C. Improvement of Coenzyme Q10 Production by Increasing the NADH/NAD+ Ratio in Agrobacterium tumefaciens. Bioscience, Biotechnology, and Biochemistry 74, 895-898(2010).
    80 Anderson, C. L., Iyer, S. S., Ziegler, T. R.& Jones, D. P. Control of extracellular cysteine/cystine redox state by HT-29 cells is independent of cellular glutathione. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293,R1069-R1075 (2007).
    81 Pluschkell, S. B.& Flickinger, M. C. Improved methods for investigating the external redox potential in hybridoma cell culture. Cytotechnology 19,11-26 (1995).
    82 Adami, M., Martini, M.& Piras, L. Characterization and enzymatic application of a redox potential biosensor based on a silicon transducer. Biosensors and Bioelectronics 10,633-638 (1995).
    83 Rabinowitz. J. D., Vacchino, J. F., Beeson, C.& McConnell, H. M. Potentiometric measurement of intracellular redox activity. Journal of the American Chemical Society 120,2464-2473 (1998).
    84 Lollike, K., Borregaard, N.& Lindau. M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. The Journal of Cell Biology 129,99-104 (1995).
    85 Zhou, Z.& Misler, S. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. Proceedings of the National Academy of Sciences 92,6938-6942 (1995).
    86 Huang, L., Shen, H., Atkinson, M. A.& Kennedy, R. T. Detection of exocytosis at individual pancreatic beta cells by amperometry at a chemically modified microelectrode. Proceedings of the National Academy of Sciences 92,9608-9612 (1995).
    87 赵崇军.微电极技术.抚顺石油学院学报 18,15-21(1998).
    88 Niwa, O.& Tabei, H. Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes. Analytical Chemistry 66,285-289 (1994).
    89 http://commons.wikimedia.org/wiki/File:Biological_cell.svg.
    90 Palade, G. E. Intracellular aspects of the process of protein secretion. Science 189,347-358(1975).
    91 Sudhof, T. C. The synaptic vesicle cycle. Annual Review of Neuroscience 27,509 (2004).
    92 Miller, D. L., Olson, J. C., Parce, J. W.& Owicki, J. C. Cholinergic stimulation of the Na+/K+ adenosine triphosphatase as revealed by microphysiometry. Biophysical Journal 64,813-823 (1993).
    93 Tang, H. et al. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Analytical Biochemistry 331,89-97 (2004).
    94 Kong, T. et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensors and Actuators B:Chemical 138,344-350 (2009).
    95 Wang, L. et al. Amperometric Glucose Biosensor Based on Silver Nanowires and Glucose Oxidase. Sensors and Actuators B:Chemical (2012).
    96 Wingard. L. B. et al. Immobilized glucose oxidase in the potentiometric detection of glucose. Applied Biochemistry and Biotechnology 9,95-104 (1984).
    97 Ngeontae, W. et al. Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sensors and Actuators B:Chemical 137, 320-326 (2009).
    98 Rahman. M. M., Ahammad. A., Jin, J.-H.. Ahn, S. J.& Lee. J.-J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10.4855-4886 (2010).
    99 Park. S., Boo, H.& Chung, T. D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta 556,46-57 (2006).
    100 Wang, J., Wu, L.-H., Lu, Z., Li, R.& Sanchez, J. Mixed ferrocene-glucose oxidase-carbon-paste electrode for amperometric determination of glucose. Analytica Chimica Acta 228,251-257 (1990).
    101 Cai, C.& Chen, J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry 332,75-83 (2004).
    102 Zhao, S., Zhang, K., Bai, Y., Yang, W.& Sun, C. Glucose oxidase/colloidal gold nanoparticles immobilized in Nation film on glassy carbon electrode:direct electron transfer and electrocatalysis. Bioelectrochemistry 69,158-163 (2006).
    103 Wei, A. et al. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Applied Physics Letters 89, 123902-123902-123903 (2006).
    104 Usman Ali, S. M., Nur, O., Willander, M & Danielsson, B. Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. Nanotechnology, IEEE Transactions on 8,678-683 (2009).
    105 Poghossian, A. Method of fabrication of ISFET-based biosensors on an Si-SiO2-Si structure. Sensors and Actuators B:Chemical 44,361-364 (1997).
    106 Luo. X.-L., Xu. J.-J., Zhao, W.& Chen, H.-Y. Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sensors and Actuators B:Chemical 97, 249-255 (2004).
    107 Seki. A., Ikeda. S.-i., Kubo, I.& Karube,1. Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose. Analytica Chimica Acta 373,9-13(1998).
    108 Nicol. D.& Smith, L. Amino-acid sequence of human insulin. Nature 187,483 (1960).
    109 Carneiro, D. M., Levi, J. U.& Irvin III, G. L. Rapid insulin assay for intraoperative confirmation of complete resection of insulinomas. Surgery 132, 937-943 (2002).
    110 Deberg, M., Houssa, P., Frank. B. H., Sodoyez-Goffaux, F.& Sodoyez, J.-C Highly specific radioimmunoassay for human insulin based on immune exclusion of all insulin precursors. Clinical Chemistry 44,1504-1513 (1998).
    111 Lutz, T.& Rand, J. Comparison of five commercial radioimmunoassay kits for the measurement of feline insulin. Research in Veterinary Science 55,64-69 (1993).
    112 Liu, J.-M.& Yan, X.-P. Ultrasensitive, selective and simultaneous detection of cytochrome c and insulin based on immunoassay and aptamer-based bioassay in combination with Au/Ag nanoparticle tagging and ICP-MS detection. Journal of Analytical Atomic Spectrometry 26,1191-1197 (2011).
    113 Pu, Y. et al. Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst 136,4138-4140 (2011).
    114 Frasconi, M., Tortolini, C., Botre, F.& Mazzei. F. Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Analytical Chemistry 82,7335-7342 (2010).
    115 Gobi, K. V., Iwasaka, H.& Miura, N. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin. Biosensors and Bioelectronics 22.1382-1389(2007).
    116 Xu, M., Luo, X.& Davis, J. J. The label free picomolar detection of insulin in blood serum. Biosensors and Bioelectronics (2012).
    117 Salimi, A., Roushani, M., Soltanian, S.& Hallaj, R. Picomolar detection of insulin at renewable nickel powder-doped carbon composite electrode. Analytical Chemistry 79,7431-7438 (2007).
    118 Gorski, W., Aspinwall, C. A., Lakey. J. R.& Kennedy, R. T. Ruthenium catalyst for amperometric determination of insulin at physiological pH. Journal of Electroanalytical Chemistry 425,191-199 (1997).
    119 Wang, J.& Zhang, X. Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Analytical Chemistry 73,844-847 (2001).
    120 Wang, J. et al. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Analytica Chimica Acta 581,1-6 (2007).
    121 Kennedy, R. T., Huang, L.. Atkinson, M. A.& Dush, P. Amperometric monitoring of chemical secretions from individual pancreatic. beta.-cells. Analytical Chemistry 65,1882-1887(1993).
    122 Maghasi, A. T., Halsall, H. B., Heineman, W. R.& Rodriguez Rilo, H. L. Detection of secretion from pancreatic islets using chemically modified electrodes. Analytical Biochemistry 326,183-189 (2004).
    123 Wang, J., Lu, J., Hocevar, S. B., Farias, P. A.& Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry 72, 3218-3222(2000).
    124 Wang, J. Stripping analysis at bismuth electrodes:a review. Electroanalysis 17, 1341-1346(2005).
    125 Wasmus, S.& Kuver, A. Methanol oxidation and direct methanol fuel cells:a selective review. Journal of Electroanalytical Chemistry 461,14-31 (1999).
    126 Wang, J. Analytical Electrochemistry. (Wiley-VCH,2006).
    127 McCreery, R. L. Carbon electrodes:structural effects on electron transfer kinetics. Electroanalytical Chemistry 17,221-374 (1991).
    128 Chen, P.& McCreery, R. L. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Analytical Chemistry 68,3958-3965 (1996).
    129 Lyons. A., Hale, L.& Wilkins, C. Photodefinable carbon films:Control of image quality. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 3,447-452 (1985).
    130 Kim, J.. Song, X., Kinoshita, K., Madou, M.& White. R. Electrochemical studies of carbon films from pyrolyzed photoresist. Journal of the Electrochemical Society 145,2314-2319(1998).
    131 Kostecki, R., Song. X.& Kinoshita, K. Electrochemical analysis of carbon interdigitated microelectrodes. Electrochemical and Solid-State Letters 2, 465-467(1999).
    132 Kostecki, R. et al. Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396,36-43 (2001).
    133 Ranganathan, S., Mccreery, R., Majji, S. M.& Madou, M. Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications. Journal of the Electrochemical Society 147,277-282 (2000).
    134 Lee, J. A. et al. An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sensors and Actuators B:Chemical 129,372-379 (2008).
    135杨秋梅.生物芯片碳微电极的C-MEMS制务工艺研究.华中科技大学,(2007).
    136姚园媛. C-MEMS工艺制备碳微结构实验研究,华中科技大学,(2008).
    137 Jenkins, G. M.& Kawamura, K. Polymeric carbons-carbon fibre, glass and char. (Cambridge University Press,1976).
    138 Malladi, K., Wang, C.& Madou, M. Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis. Carbon 44,2602-2607 (2006).
    139 Min, H.-S. et al. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. Journal of Power Sources 178,795-800 (2008).
    140 Burckel, D. B. et al. Lithographically defined porous carbon electrodes. Small 5, 2792-2796 (2009).
    141 Chen, W. et al. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. Nanotechnology, IEEE Transactions on 9,734-740 (2010).
    142 del Campo, F. J. et al. Fabrication of PPF electrodes by a rapid thermal process. Journal of the Electrochemical Society 158, H63-H68 (2011).
    143 Spoerke, E. D., Polsky. R., Bruce Burckel, D., Wheeler, D. R.& Bunker. B. C Rapid thermal pyrolysis of interferometrically patterned resist. Carbon (2012).
    144 Massobrio. G., Martinoia, S.& Grattarola, M. Light-addressable chemical sensors:modelling and computer simulations. Sensors and Actuators B: Chemical 7,484-487 (1992).
    145 Sartore. M., Adami. M.& Nicolini, C. Computer simulation and optimization of a light addressable potentiometric sensor. Biosensors and Bioelectronics 7,57-64 (1992).
    146 Colalongo, L. et al. Modeling of light-addressable potentiometric sensors. Electron Devices, IEEE Transactions on 44,2083-2090 (1997).
    147 Martinoia, S., Grattarola, M.& Massobrio, G. Modelling non-ideal behaviours in H+-sensitive FETs with SPICE. Sensors and Actuators B:Chemical 7,561-564 (1992).
    148 Yates, D. E., Levine, S.& Healy, T. W. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 170,1807-1818 (1974).
    149 Fung, C. D., Cheung, P. W.& Ko, W. H. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. Electron Devices, IEEE Transactions on 33,8-18 (1986).
    150 Ward, K., Hawkridge, F., Brahim, S., Lewis, K. L.& Rhoten, M. C. (Google Patents,2006).
    151 Wang, J., Zhao, H., Zhang, Q., Cai, H.& Wang. P. Application of a metal-insulator-semiconductor (MIS) sensor for extracellular redox potential detection. Sensors and Actuators B:Chemical (2013).
    152 Balakireva, L., Kantere, V.& Rabotnova, I. in Biotechnology and Bioengineering Symposium.769.
    153 Gu, R.-A. et al. Raman spectroscopic studies of Fe(CN)63-/4- redox process at gold electrode surfaces. (1997).
    154 Jones, D. P. et al. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. The FASEB Journal 18, 1246-1248(2004).
    155 Jones, D. P., Mody Jr, V. C., Carlson, J. L., Lynn, M. J.& Sternberg Jr, P. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radical Biology and Medicine 33. 1290-1300(2002).
    156 Go, Y.-M.& Jones, D. P. Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology 474,165-179 (2010).
    157 Jones, D. P. et al. Redox state of glutathione in human plasma. Free Radical Biology and Medicine 28,625-635 (2000).
    158 Dahm,k L. J.& Jones, D. P. Rat jejunum controls luminal thiol-disulfide redox. The Journal of Nutrition 130,2739-2745 (2000).
    159 Tsai, L. W.& Sapolsky, R. M. Rapid stimulatory effects of testosterone upon myotubule metabolism and sugar transport, as assessed by silicon microphysiometry. Aggressive Behavior 22,357-364 (1996).
    160 Ges, I. A., Dzhura, I. A.& Baudenbacher, F. J. On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes. Biomedical Microdevices 10,347-354 (2008).
    161 Ferrick, D. A., Neilson, A.& Beeson, C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discovery Today 13,268-274 (2008).
    162 Lindahl, P.& Oberg, K. The effect of rotenone on respiration and its point of attack. Experimental Cell Research 23,228-237 (1961).
    163 Turrens, J. F. Superoxide production by the mitochondrial respiratory chain. Bioscience Reports 17,3-8 (1997).
    164 Kushnareva, Y., Murphy, A. N.& Andreyev, A. Complex 1-mediated reactive oxygen species generation:modulation by cytochrome c and NADP+ oxidation-reduction state. Biochemical Journal 368,545 (2002).
    165 Wang, J. et al. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS),2011,16th International.2122-2125 (IEEE).
    166 Trojanowicz, M., Matuszewski, W.& Podsiadla. M. Enzyme entrapped polypyrrole modified electrode for flow-injection determination of glucose. Biosensors and Bioelectronics 5,149-156(1990).
    167 Hammerle, M., Schuhmann, W.& Schmidt. H.-L. Amperometric polypyrrole enzyme electrodes:effect of permeability and enzyme location. Sensors and Actuators B:Chemical 6,106-112 (1992).
    168 Schuhmann, W. Amperometric substrate determination in flow-injection systems with polypyrrole-enzyme electrodes. Sensors and Actuators B:Chemical 4, 41-49(1991).
    169 Foulds, N. C.& Lowe, C. R. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. Journal of the Chemical Society, Faraday Transactions 182,1259-1264 (1986).
    170 Trojanowicz, M.& Hitchman, M. L. A potentiometric polypyrrole-based glucose biosensor. Electroanalysis 8,263-266 (1996).
    171 Adeloju, S.& Wallace, G. Conducting polymers and the bioanalytical sciences: new tools for biomolecular communications. Analyst 121,699-703 (1996).
    172 Michael, E. Electrocatalysis using electroactive polymers, electroactive composites and microheterogeneous systems. Analyst 119,805-826 (1994).
    173 Guerrieri, A., De Benedetto, G., Palmisano, F.& Zambonin, P. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes:a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer. Biosensors and Bioelectronics 13,103-112(1998).
    174 Adeloju, S., Barisci, J.& Wallace, G. Electroimmobilisation of sulphite oxidase into a polypyrrole film and its utilisation for flow amperometric detection of sulphite. Analytic Chimica Acta 332,145-153 (1996).
    175 Adeloju, S., Shaw, S.& Wallace, G. Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor. Analytica Chimica Acta 341,155-160(1997).
    176 Fernando, J. C. et al. Rapid detection of anticholinesterase insecticides by a reusable light addressable potentiometric biosensor. Journal of Agricultural and Food Chemistry 41,511-516(1993).
    177 Shimizu, M., Kanai. Y.. Uchida, H.& Katsube. T. Integrated biosensor employing a surface photovoltage technique. Sensors and Actuators B:Chemical 20,187-192(1994).
    178 Wang. J., Zhao. H., Du, L., Cai, H.& Wang, P. Construction of a photovoltaic glucose sensor applying a metal-insulator-silicon structure in combination with ultra-thin polypyrrole-glucose oxidase film. Proceedings of the 14th International Meeting on Chemical Sensors,148-151 (2012).
    179 Wang, J., Zhao, H., Du. L., Cai, H.& Wang. P. An enzyme-metal-insulator-silicon structured sensor using surface photovoltage technology for potentiometric glucose detection. Sensors and Actuators B: Chemical (2012).
    180 Adeloju, S. B.& Moline, A. N. Fabrication of ultra-thin polypyrrole-glucose oxidase film from supporting electrolyte-free monomer solution for potentiometric biosensing of glucose. Biosensors and Bioelectronics 16,133-139 (2001).
    181 Yuan, J., Wang, K.& Xia, X. Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing. Advanced Functional Materials 15,803-809 (2005).
    182 Van Belle, T. L., Coppieters, K. T.& Von Herrath, M. G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews 91, 79-118(2011).
    183 Cox, J. A.& Gray, T. J. Flow injection amperometric determination of insulin based upon its oxidation at a modified electrode. Analytical Chemistry 61, 2462-2464(1989).
    184 Wang, J. et al. in The 6th WACBE World Congress on Bioengineering.43-44.
    185 刘清君.神经芯片及其在生物嗅觉传感机理中的研究,浙江大学,(2006).
    186 余辉.多功能光寻址细胞传感器的设计及其应用的研究,浙江大学,(2011).
    187 Brischwein, M. et al. Functional cellular assays with multiparametric silicon sensor chips. Lab on a Chip 3,234-240 (2003).
    188 Ceriotti, L. et al. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Analytical Biochemistry 371,92-104 (2007).
    189 McKenzie, J. R., Palubinsky, A. M., Brown, J. E., McLaughlin, B.& Cliffel. D. E. Metabolic Multianalyte Microphysiometry Reveals Extracellular Acidosis is an Essential Mediator of Neuronal Preconditioning. ACS Chemical Neuroscience 3,510-518(2012).
    190 Snider, R. M., Ciobanu. M., Rue, A. E.& Cliffel, D. E. A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Analytica Chimica Acta 609,44-52 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700