用户名: 密码: 验证码:
肠毒素大肠杆菌K88生物探针制备及其快速检测分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠毒素大肠杆菌K88(ETEC K88)是一种常见的肠道微生物,也是引起仔猪腹泻和死亡的主要致病微生物。养殖业中准确、低成本、简便、快速地找出引起仔猪腹泻的原因及微生物的种类甚至是血清型一直是一个难以攻克的难题,一些很好的生物产品如疫苗、卵黄抗体等也因此在仔猪疾病预防和治疗中的不能大规模低成本应用。建立和完善针对于ETEC K88的低成本、简便、快速分析检测体系并实现在养殖业中的商业化应用是降低这一类致病微生物引起的仔猪死亡的重要手段。
     本文以ETEC K88为目标模式菌,利用生物学方法筛选和制备以K88菌毛蛋白为靶标的单克隆抗体和适配体、以ETEC K88菌体为靶标的细胞适配体适配体文库,鉴定了它们与靶标的结合性能,初步构建了基于这几种生物探针的检测体系分别用于K88菌毛蛋白和ETEC K88菌体的快速检测分析。同时,成功建立了一个新的FluMag-Cell-SELEX (FluMag Cell systematic evolution of ligands by exponential enrichment)细胞适配体筛选方法。实验结果如下:
     本文优化了ETEC K88的发酵工艺,在优化的玉米浆培养基和发酵条件的基础上制备纯度和浓度满足单克隆抗体和适配体筛选要求的K88菌毛蛋白,SDS-PAGE显示了单一条带,Bradford法测定浓度为0.642mg/ml。
     利用杂交瘤技术制备并生物素化K88菌毛蛋白的单克隆抗体(K88mAb),测定抗体效价为1:12800,亲和力常数Kaff测定为(1.616±0.033)×108M-1,流式细胞仪分析和荧光显微镜分析抗体与目标菌结合性能良好,荧光分光光度计分析该抗体和ETEC K88菌体有很好的结合特异性。初步建立了基于K88mAb的ABS-ELISA方法检测K88菌毛蛋白体系,确定其检测下限为12.53ng/ml。
     采用多孔板法SELEX技术筛选到K88菌毛蛋白的DNA适配体,其中亲和力最高的适配体Apt37Kd值达到了25±4nmol。荧光显微镜和荧光分光光度计分析该适配体与目标菌结合性能良好而且有很好的结合特异性。初步建立了基于K88菌毛蛋白适配体Apt37的Aptamer-ABS-ELISA体系检测K88菌毛蛋白,确定其检测下限为25.1ng/ml。
     分别采用SDS-PAGE和平板计数法验证了K88IMB (Immunomagnetic bead)捕获ETEC K88的可靠性,实验证明K88IMB对ETEC K88在102、103CFU/ml的低浓度下捕获率分别可达74.5%和63.8%,说明K88IMB可有效应用在接下来的实验体系中。
     经典离心分离法Cell-SELEX技术与本文建立的FluMag-Cell-SELEX技术筛选ETEC K88细胞适配体得到了相同的高重复度序列,说明FluMag-Cell-SELEX技术是成功的。亲和力最高的细胞适配体测定Kd值为15+4nM。激光共聚焦显微镜和流式细胞仪分析表明适配体Apt B12、FluMag-Cell-SELEX技术中最后一轮的富集适配体文库这两种生物探针和ETEC K88的结合性能均良好。
     建立了基于细胞适配体适配体文库的直接荧光探针分析-IMS(Immunomagnetic separation)技术相结合快速检测ETEC K88体系。以细胞适配体文库作为直接荧光探针时,检测信号比单个适配体探针更强,体系对纯培养ETEC K88的检测下限为1.1×103CFU/ml,对低至2.1×103CFU/g模拟的腹泻仔猪粪便样本都可以检测到可信信号。
Diarrhea of piglets caused by enterotoxigenic Escherichia coli K88(ETEC K88) is an important factor of both mortality and reduced growth rate resulting in heavy economic losses. Swift and precise identification of ETEC K88from infected samples is critical for the subsequent treatment of infectious diseases caused by ETEC K88. K88fimbriae, expressed on the surface of K88ETEC strains, are responsible for their adhesion and colonization on small intestinal and producing enterotoxins, as well as being special detection target to ETEC K88. In fact, in clinical diagnosis, it's very hard to simply and quickly distinguish ETEC K88from other pathogens resulting in diarrhea of early weanling piglets by the commonly used methods, which makes some very good preventive or treatment products such as specific vaccine, egg yolk antibody not in widespread use at low cost and leads to abuse of antibiotics in livestock breeding. It's necessary to develop a detection platform that's precise, convenient, rapid and low cost to reduce the loss resulting from diarrhea of piglets in breeding.
     In this study, ETEC K88was served as target bacteria for the selections and preparations of monoclonal antibody (mAb) and DNA aptamer against K88fimbrial protein, DNA aptamer and aptamer library against ETEC K88cell. After the studies on characteristics of these bio-probes, they were used to establish rapid detection platforms for ETEC K88and its K88fimbrial protein. In the meanwhile, a technique named "FluMag-Cell-SELEX"(FluMag Cell systematic evolution of ligands by exponential enrichment) was constructed based on Cell-SELEX combined with IMS technology for the selection of DNA aptamer against cell. The methods and experiment conclusions are listed as the followings:
     The fermentation conditions of ETEC K88were optimized by the means of single factor experiment and orthogonal experiment to produce K88fimbrial protein as more as possible. Suitable purity (only one band on SDS-PAGE gel) and concentration (0.642mg/ml) of K88fimbrial protein were obtained to demand the need of selection of mAb and aptamer.
     K88mAb was prepared by hybridoma technique and biotinylated. Kaff of the mAb was determined as (1.616±0.033)×108M-1and titer as1:12800by typical avidin-biotin system ELISA (ABS-ELISA). The ability of K88mAb binding to ETEC K88was identified by fluorescence microscopy and flow cytometry. Fluorescence spectrophotometry was used to verify the specificity of mAb binding to ETEC K88. In addition, ABS-ELISA system was prelimilarily established based on K88mAb for the the rapid detection of fimbrial protein, the sensitivity of which was determined to be12.53ng/ml.
     Aptamers against K88fimbrial protein were obtained by plate SELEX as well. Apt37had the best affinity with K88fimbrial protein and its Kd (dissociation constant) was found as25±4nM via fluorescence analysis. The same as K88mAb, the binding ability between mAb and ETEC K88was identified by fluorescence microscopy. Fluorescence spectrophotometry was used to verify the specificity of mAb binding to ETEC K88. Aptamer-ABS-ELISA system was prelimilarily established based on Apt37for the the rapid detection of K88fimbrial protein, the sensitivity of which was determined to be25.1ng/ml.
     IMBs (Immunomagnetic beads) were formed by the incubation of biotinylated K88mAb and streptavidin modified MB (magnetic beads) and verified their capture efficiency to ETEC K88cell by the mean of plate count. The result revealed that74.5%,63.8%of the initial bacteria is respectively captured when the dilutions of ETEC K88at102,103CFU/ml.
     Classic Cell-SELEX and IMS-Cell-SELEX (stablished here) were done to select DNA aptamers against ETEC K88cell. From both of them, the same aptamers with high reproducibility among more than40clones were gained, indicating that the new IMS-Cell-SELEX technology for the selection of aptamer against cell was successful. Apt B12was selected to determine Kd as15±4nM and identified its affinity with ETEC K88by confocal imaging and flow cytometry. The last selection of aptamer pool during FluMag-Cell-SELEX procedures, which is so called "DNA aptamer library" in this study, was cloned by PCR and also identified its binding ability with ETEC K88. Then, both the probes were successfully used to be direct fluorescence reporter to establish a rapid detection system for ETEC K88combined with IMS technology, which yielded a detection limited as1.1×103CFU/ml for pure culture cells and2.1×103 CFU/g for artificially contaminated fecal sample when aptamer library acted as probe, whereas individual aptamer could not..
引文
[1]ELSINGHORST E A, KOPECKO D J. Molecular cloning ofepit helial cell invasion determinants from enterotoxigenic Escherichia coli. Infect Immun,1992,60(6):2409-2417.
    [2]ELSINGHORST E A, WEITZ J A. Epit helial cell invasion and adherence directed by t he enterotoxigenic Escherichia coli tiblocus is associated with a 104-kilodalton outer membrane protein. Infect Immun,1994,62(8):3463-3471.
    [3]KA KAR K, SHARMA S, ASNANI P J, et al. Experimental haematogenous pyelonephritis in mice with uropat hogenic, enteropat hogenic and enterotoxigenic Escherichia coli. Antonie V an L eeuwenhoek,1986,52(2):153-161.
    [4]张赛群,朱红梅,周涵韬,黄素芳,刘波.产肠毒素性大肠杆菌K88的致病特性及其益生菌的筛选.中国兽医科技.2008,38(05):386-392
    [5]Deplancke B, Gaskins HR. Microbial modulation of innate defense:goblet cells and the intestinal mucus layer. Am J Clin Nutr,2001,73(6):1131S-1141S
    [6]Blomberg L, Conway PL. An in vitro study of ileal colonization resistance to Escherichia coli strain Bd 1107/75 08(K88) in relation to indigenous squamous gastric colonization in piglets of varying ages. Microb. Ecol. Health Dis.,1989,2:285-291
    [7]Rutter JM, Jones GW, Brown GTH, et al. Antibacterial activity in colostrum and milk associated with protection against enteric disease caused by K88-positive Escherichia coli. Infect. Immololun,1976,13:667-676.
    [8]Wilson MR, Hohmann AW, Immololunity to Escherichia coli in pigs:adhesion of enteropathogenic Escherichia coli to isolated intestinal epithelial cells. Infect Immololun,1974, 10(4):776-782.
    [9]Cox E, Houvenaghel A, Comparison of the in vitro adhesion of K88, K99, F41 and P987 positive Escherichia coli to intestinal villi of 4-to 5-week-old pigs. Vet Microbiol,1993,34(1): 7-18
    [10]Devriendt B, Stuyven E, Verdonck F, Goddeeris BM, Cox E. Enterotoxigenic Escherichia coli (K88) induce proinflammatory responses in porcine intestinal epithelial cells. Dev Comp Immunol,2010,34(11):1175-82
    [11]IMBERECHTS H, BERTSCHINGER H U, STAMM M, et al. Prevalence of F107 fimbriae on Escherichia coli isolated from pigs eith oedema disease or postweaning diarrhea. V Microbiol 1994, (40):219-230.
    [12]Van den Broeck W, Cox E, Oudega B, Goddeeris BM. The F4 fimbrial antigen of Escherichia coli and its receptors. Vet Microbiol,2000,71(3-4):223-44
    [13]成大荣,朱善元.大肠杆菌与仔猪腹泻.猪业科学,2008,(8):26-29.
    [14]Nagy B, Fekete P Z. Enterotoxigenic Escherchia coli (ETEC) in farm animals. Vet Res, 1999,30(2-3):259-284.
    [15]Melin L, Mattsson S, Katouli M, et al. Development of post-weaning diarrhoea in piglets. Relation to presence of Escherichia coli strains and rotavirus.J Vet Med B Infect Dis Vet Public Health,2004,51(1):12-22.
    [16]Ha SK, Choi C, Chae C. Prevalence of a gene encoding adhesin involved in diffuse adherence among Escherichia coli isolates in pigs with postweaning diarrhea or edema disease. J Vet Diagn Invest,2003,15(4):378-381.
    [17]Arora P, Sindhu A, Kaur H, Dilbaghi N, Chaudhury A. An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol.2013, 97(5):1829-40
    [18]Trombley Hall A, McKay Zovanyi A, Christensen DR, Koehler JW, Devins Minogue T. Evaluation of inhibitor-resistant real-time PCR methods for diagnostics in clinical and environmental samples. PLoS One,2013,8(9):e73845
    [19]Wang L, Li Y, Mustaphai A. Rapid and simultaneous quantitation of Escherichia coli 0157:H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation. J Food Prot,2007,70(6):1366-72
    [20]GB5750-2001生活饮用水检验规范.
    [21]EDBERG, ALLENMJ, SMITHDB. National field evaluation of defined substrate method for the simultaneous enumeration of total coliforms and Eseheriehia coli from drinking water. Appl Environ Microbiol,1988,54(6):1595-1601.
    [22]国家环境保护总局《水和废水检测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [23]GB/T4789.3-2010大肠菌群计数
    [24]陈玲霞,丁洪强.食品中大肠杆菌检测方法研究进展.疾病监测与控制.2010,4(6);325-326.
    [25]赵春霞,张哲海,厉以强,梅率华,郭晓颖,沈燕飞.酶底物法检测环境水样大肠菌群的探讨.中国环境科学学会学术年会论文集,2009:502-507
    [26]张林波,王洪喜,柴晓杰,阎凤周.仔猪产肠毒素性大肠杆菌的血清学鉴定.吉林农业大学学报,1997,19(3):78-80
    [27]刘书亮,陶勇,王红宁,吴琦,黄勇,柳萍.规模化猪场致病性大肠杆菌血清型鉴定.西南农业学报.2000,13:74-77
    [28]冯贤管,妙东.仔猪断奶腹泻大肠杆菌鉴定及其血清型分析.现代农业科技,2011,11:348-350
    [29]GB/T 4789.6-2003致泻大肠埃希氏菌检验
    [30]Kovacs-Nolan J, Mine Y. Egg yolk antibodies for passive immunity. Annu Rev Food Sci Technol,2012,3:163-82
    [31]Xu Y, Li X, Jin L, Zhen Y, Lu Y, Li S, You J, Wang L. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases:a review. Biotechnol Adv.2011,29(6):860-8
    [32]Li H, Ding X, Peng Z, Deng L, Wang D, Chen H, He Q. Aptamer selection for the detection of Escherichia coli K88. Can J Microbiol,2011,57:453-459
    [33]Ozalp VC, Bayramoglu G, Arica MY, Oktem HA. Design of a core-shell type immuno-magnetic separation system and multiplex PCR for rapid detection of pathogens from food samples. Appl Microbiol Biotechnol,2013,97(21):9541-9551
    [34]Lund A, Hellemann AL, Vartdal F. Rapid isolation of K88+ Escherichia coli by using immunomagnetic particles. J Clin Microbiol,1988,26(12):2572-5
    [35]缪佳铮,张虹.仪器分析方法在食品微生物快速检测方面的应用.食品研究与开发,2009,3(03):166-169
    [36]Bruno JG, Richarte AM, Phillips T, Savage AA, Sivils JC, Greis A, Mayo MW. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid Leishmania detection in sandflies. J Fluoresc.2014, 24(1):267-77
    [37]Cho IH, Irudayaraj J. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int J Food Microbiol,2013,164(1):70-5
    [38]Kim MA, Jeon HS, Shin SY, Baik BJ, Yang YM, Lee KY, Kim JG. Rapid Detection of S. Mutans Surface Antigen I/II Using a Sensitive Monoclonal Anti-Ag I/II Antibody by ELISA. Monoclon Antib Immunodiagn Immunother,2013,32(5):336-40
    [39]Jain A, Nair PR, Alam MA. Flexure-FET biosensor to break the fundamental sensitivity limits of nanobiosensors using nonlinear electromechanical coupling. Proc Natl Acad Sci U S A, 2013,109(24):9304-8
    [40]Kar P, Shankar K. Biodiagnostics using oriented and aligned inorganic semiconductor nanotubes and nanowires. J Nanosci Nanotechnol,2013,13(7):4473-96
    [41]Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z. An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods,2014,98C:94-98.
    [42]Bruno JG, Carrillo MP, Phillips T, Andrews CJ. A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc,2010,20(6):1211-23
    [43]Buranachai C, Thavarungkul P, Kanatharana P. A novel reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon. J Fluoresc,2012,22(6):1617-25
    [44]FITZMAURICE J, G LENNON M, DUFFY G, et al. Application of realtime-PCR and RT-PCR assays for the detection and quantitation of VT 1 and VT 2 toxin genes in E. coli O157:H7. Molecular and Cellular Probes,2004,18:123-132.
    [45]ATLAS R M, BEJ A K, MCCARTY S, et al. Monitoring microbial pathogens and indicator microorganisms in water by using the polymerase chain reaction and gene probes. ASTM Special Technical Publication,1991,1102:445-454.
    [46]FRICKER EJ, FRICKER C R, Application of the polymerase chain reaction to the identification of Escherichia coli and coliforms in water. Lett Appl Microbiol,1994,19(1):44-6.
    [47]Souza TB1, Lozer DM, Kitagawa SM, Spano LC, Silva NP, Scaletsky IC. Real-time multiplex PCR assay and melting curve analysis for identifying diarrheagenic Escherichia coli. J Clin Microbiol,2013,51(3):1031-3.
    [48]Fujioka M1, Otomo Y, Ahsan CR. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli. J Microbiol Methods.2013, 92(3):289-92.
    [49]Botkin DJ1, Galli L, Sankarapani V, Soler M, Rivas M, Torres AG Development of a multiplex PCR assay for detection of Shiga toxin-producing Escherichia coli, enterohemorrhagic E. coli, and enteropathogenic E. coli strains. Front Cell Infect Microbiol,2012,14:2-8.
    [50]Hegde Al, Ballal M, Shenoy S. Detection of diarrheagenic Escherichia coli by multiplex PCR. Indian J Med Microbiol,2012,30(3):279-84.
    [51]Zboromyrska Yl, Hurtado JC, Salvador P, et al. Aetiology of traveller's diarrhoea: Evaluation of a multiplex PCR tool to detect different enteropathogens. Clin Microbiol Infect. 2014 Mar 13. doi:10.1111/1469-0691.12621.
    [52]Fujioka M, Kasai K, Miura T, Sato T, Otomo Y. Rapid diagnostic method for the detection of diarrheagenic Escherichia coli by multiplex PCR. Jpn J Infect Dis,2009, 62(6):476-80.
    [53]Franklin MAI, Francis DH, Baker D, Mathew AG. A PCR-based method of detection and differentiation of K88+ adhesive Escherichia coli. J Vet Diagn Invest,1996,8(4):460-3.
    [54]王娜,何苗,施汉昌.环境中大肠杆菌快速生物检测技术研究进展.安全与环境学报,2006,6(3):127-131
    [54]VANDEKERCHOVE D G F, KERR P G. CALLEBAUT A P, et al. Development of a capture E LISA for the detection of antibodies to enteropathogenic Escherichia coli (EPEC) in rabbit flocks using intimin-specific monoclonal antibodies. Veterinary Microbiology,2002, 88(4):351-366.
    [55]PADHYE N V, DOY LE M P. Production and characterization of amonoclonal antibody specific for enterohemorrhagic Escherichia coli of serorypes O157:H7 and O26:11. J Clin Microbiol,1991,29:99-103.
    [56]PARK C H, VANDE L N M, HIXON D L. Rapid immunoassay for detection of Escherichia coli 0157 directly from stool specimens. J Clin Microbiol,1996,34:988-90.
    [57]ABUK NESHA R A, DARWISH F. Coupling of enzymatic and immunoassay steps to detect E. coli:a new, highly sensitive tandem technique for the analysis of low levels of bacteria. Talanta,2005,65(2):343-348.
    [58]SUN Ke jiang, GUO Hong, ZHANG Dong fa, et al. Enzyme linked immunosorbent assay for detecting O157:H7. Disease Surveillance,2001,16(9):353-355.
    [59]China Institute of Veterinary Drug Control. Research and application of enzyme linked immunosorbent assay for detecting E. coli kit. Bulletin of Agricultural Science and Technology, 1997, (8):39.
    [60]Payne D, Moore N, Lambert P. Use of an enzyme-linked immunosorbent assay (ELISA) to measure the expression of the K88 fimbrial antigen by enterotoxigenic Escherichia coli (ETEC). J Immunol Methods,1993,159(1-2):283-9.
    [61]MARTINA B, HERBERT S, ALMUT C, et al. Cattle can be a resevoir of sorbitol-fermenting Shiga toxin-producing Escherichia coli 0157:H (-) strains and a source of human diseases. J Clin Microbio,2000,38(9):3470-3473.
    [62]Y U H. Use of an immunomagnetic separation-fluorescent immunoassay (IMS-FIA) for rapid and high throughput analysis of environmental water samples. Analytica Chimica Acta, 1998,376(1):77-81.
    [63]Y U H. Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. Journal oflmmunological Methods,1998,218 (1-2):1-8.
    [64]Lund A, Hellemann AL, Vartdal F. Rapid isolation of K88+ Escherichia coli by using immunomagnetic particles. J Clin Microbiol,1988,26(12):2572-5.
    [65]Aydin M, Herzig GP, Jeong KC, Dunigan S, Shah P, Ahn S. Rapid and sensitive detection of Escherichia coli O157:H7 in milk and ground beef using magnetic bead-based immunoassay coupled with tyramide signal amplification. J Food Prot,2014,77(1):100-5.
    [66]Li SI, Liu H, Deng Y, Lin L, He N. Development of a magnetic nanoparticles microarray for simultaneous and simple detection of foodborne pathogens. J Biomed Nanotechnol, 2013,9(7):1254-60.
    [67]Czajka J1, Batt CA. A solid phase fluorescent capillary immunoassay for the detection of Escherichia coli O157:H7 in ground beef and apple cider. J App1 Bacteriol,1996,81(6):601-7.
    [68]YULSL, REED S A, GOLDEN M H. Time-resolved fluorescence immunoassay (TRFIA) for the detection of Escherichia coli O157:H7 in apple cider. Journal of Microbiological Methods,2002,49:63-68.
    [69]Caruso G1, Crisafi E, Mancuso M. Immunofluorescence detection of Escherichia coli in seawater:a comparison of various commercial antisera. J Immunoassay Immunochem,2002, 23(4):479-96.
    [70]Caruso G1, Mancuso M, Crisafi E. Combined fluorescent antibody assay and viability staining for the assessment of the physiological states of Escherichia coli in seawaters. J Appl Microbiol,2003,95(2):225-33.
    [71]府伟灵.生物芯片概述.第三军医大学学报,2002,24(1):1-2.
    [72]李谨.基因芯片技术的发展与应用.中国兽医杂志,2007,8(43):87-89.
    [73]CHIZHIK OV V, RASOOLY A, CHUMAK OV K, et al. Microarray analysis of microbial virulence factors. Appl Environ Microbiol,2001,67(7):3258-63.
    [74]RUAN C, Y ANGL, LI Y. Immunobiosens or chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Analytical Chemistry,2002, 74(18):4814-4820.
    [75]Jackson SA1, Patel IR, Barnaba T, LeClerc JE, Cebula TA. Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies. BMC Genomics,2011,12:349.
    [76]Bingle LE, Constantinidou C, Shaw RK, Islam MS, Patel M, Snyder LA, Lee DJ, Perm CW, Busby SJ, Pallen MJ. Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains. PLoS One,2014,9(1). doi: 10.1371/journal.pone.0080160.eCollection 2014.
    [77]Geue L1, Monecke S, Engelmann I, Braun S, Slickers P, Ehricht R. Rapid microarray-based DNA genoserotyping of Escherichia coli. Microbiol Immunol,2014, 58(2):77-86.
    [78]许拉,黄倢,杨冰.病原检测基因芯片应用及在水产病害检测的前景.海洋水产研究,2008,29(1):109-114.
    [79]冯永强,阎小君,苏成芝.基因芯片技术.国外医学分子生物学分册,2000,22(1):1-5.
    [80]刘雷山,金小宝,朱家勇.基因芯片技术在新基因发现中的应用.生物技术通讯,2007,8(2):325-328.
    [81]李晨,黄倢.细菌检测基因芯片的简述及其在水产上的应用.中国农学通报,2010,26(4):41-44
    [82]P LOMER M, G UI LBAULT G G, HOCKB. Development of a piezo-electric immunosens or for the detection of enterobacteria. Enzyme Microb Technol,1992,14:230-235.
    [83]HOWE E, HARDING G. A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosensors and Bioelectronics,2000, 15(11-12):641-649.
    [84]DEOBAGK AR D D, LIMAYE V, SINHA S, et al. Acoustic wave immunosensing of Escherichia coli in water. Sensors and Actuators B,2005,104:85-89.
    [85]MEEUSEN C A, ALOCI LJA E C, OSBURN W. Detection of E. coli O157:H7 using a surface plasmon resonance biosensor. Biotechnology Techniques,1998,12(7):571-576.
    [86]MUHAMMAD T, ZARINI A, EVANGE LY N C. Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sensor s Journal,2003,3(4):345-351.
    [87]ERWIN Y G, LEONHARD M, WALTRAUD S, et al. Chemiluminescence multichannel immunosens or for biodetection. Analytica Chimica Acta,2002,475:3-12.
    [88]Tong MQ1, Shang SQ, Wu YD, Zhao ZY. Rapid diagnosis of neonatal sepsis by 16S rRNA genes PCR amplification and genechip hybridization. Zhonghua Er Ke Za Zhi,2004, 42(9):663-7.
    [89]伍诚意,曹峰子,梁之昶等.用于检测仔猪致病菌的23 S rRNA基因芯片的研制.中国兽医科学,2010,40(03):258-264.
    [90]Beraldo LG1, Borges CA2, Maluta RP2 et al. Detection of Shiga toxigenic (STEC) and enteropathogenic (EPEC) Escherichia coli in dairy buffalo. Vet Microbiol,2014,170(1-2):162-6
    [91]Fakruddin MD1, Sultana M2, Ahmed MM1, Chowdhury A1, Choudhury N2. Multiplex PCR (polymerase chain reaction) assay for detection of E. coli O157:H7, Salmonella sp., Vibrio cholerae and Vibrioparahaemolyticus in spiked shrimps (Penaeus monodon). Pak J Biol Sci,2013, 16(6):267-74.
    [92]王彩虹,佘锐萍,张群远.生物芯片技术在生物医学上的应用.中国兽医科技,2001,31(7):43-45.
    [93]范保星,刘又宁,孟凡义等SARS病毒全基因组芯片在临床检测中的应用.解放军医学杂志,2003,28(11):998-1000.
    [94]周琦,赖平安,汪琳等.基因芯片技术快速检测SARS病毒.检验检疫科学,2003,13(5):33-36.
    [95]韩雪清,林祥梅,侯义宏等.禽流感病毒分型基因芯片的研制.微生物学报,2008,48(9):1241-1249.
    [96]王娜,何苗,施汉昌.水环境中大肠杆菌多特征抗原及抗体的制备研究.环境科学,2007,28(5):1142-1146
    [97]黄海燕,陈萍,陈亮.出血性大肠杆菌0157主要毒力因子单克隆抗体的制备.中国人兽共患病学报,2009,25(2):122-126
    [98]Li G1, Hong J, Ren X, Yin J, Feng S, Huo G. Prokaryotic expression of Stx1B subunit of Escherichia coli O157:H7 used to generate monoclonal antibody. Hybridoma (Larchmt),2010, 29(4):283-9.
    [99]Szakal D D1, Schneider G, Pal T. A colony blot immune assay to identify enteroinvasive Escherichia coli and Shigella in stool samples. Diagn Microbiol Infect Dis,2003,45(3):165-71.
    [100]Dean-Nystrom EA1, Casey TA, Schneider RA, Nagy B. A monoclonal antibody identifies 2134P fimbriae as adhesins on enterotoxigenic Escherichia coli isolated from postweaning pigs. Vet Microbiol,1993,37(1-2):101-14.
    [101]赵志晶,刘秀梅.出血性大肠杆菌单克隆抗体的制备与鉴定.卫生研究,2002,31(2):108-111.
    [102]陈慧珠,罗玉芳,马东尤,许文香,杨正时.人源大肠杆菌不耐热肠毒素单克隆抗体的研究.中国人兽共患病杂志,1987,3(6):21-23
    [103]Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science,1994,263(5152):1425-1429
    [104]Choi J H, Chen K H, Strano M S. Aptamer-capped nanocrystal quantum dots:a new method for label-free protein detection. J Am Chem Soc,2006,128(49):15584-15585
    [105]Ikanovic M, Rudzinski W E, Bruno J G, Allman A, Carrillo M P, Dwarakanath S, Bhahdigadi S, Rao P, Kiel J L, Andrews C J. Fluo-rescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc,2007,17(2):193-199
    [106]Liu J, Lee J H, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem,2007,79(11):4120-4125
    [107]Merino E J, Weeks K M. Facile conversion of aptamers into sensors using a 2'-ribose-linked fluorophore. J Am Chem Soc,2005,127(37):12766-12767
    [108]Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem,2005,77(4):1147-1156
    [109]Yang M, Peng Z, Ning Y, Chen Y, Zhou Q, Deng L. Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes. Sensors (Basel),2013,13(5):6865-81.
    [110]Duan Y F, Ning Y, Yang S et al. Fluorescent aptasensor for the determination of Salmonella typhimurium based on a grapheneoxide platform. MicrochimActa,2014, DOI10.1007/s00604-014-1170-4
    [111]David HJ, Peter GS, Aptamers come of age-at last. Nature,2006, (4):588-596
    [112]Tuerk C, Gold L, Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science,1990, (249):505-510
    [113]Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346 (6287):818-822
    [114]Tanaka Y, Akagi K, Nakamura Y, et al. RNA aptamers targeting the carboxyl terminus of KRAS oncoprotein generated by an improved SELEX with isothermal RNA amplification. Oligonucleotides,2007,17(1):12-21
    [115]Naimuddin M, Kitamura K, Kinoshita Y, et al. Selection-by-function:efficient enrichment of cathepsin E inhibitors from a DNA library. Journal of Molecular Recognition,2007, 20(1):58-68
    [116]Nitsche A, Kurth A, Dunkhorst A, et al. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnology,2007,7(15):1-12
    [117]Shigdar S, Lin J, Yu Y, et al. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule (EpCAM). Cancer Sci,2011,102(5):991-8.
    [118]Shamah SM, Healy JM, Cload ST. Complex target SELEX. Acc Chem Res,2008, 41(1):130-138
    [119]Avci-Adali M, Metzger M, Perle N, et al. Pitfalls of cell-systematic evolution of ligands by exponential enrichment (SELEX):existing dead cells during in vitro selection anticipate the enrichment of specific aptamers. Oligonucleotides,2010,20(6):317-323
    [120]邵宁生,李少华,黄燕苹SELEX技术及Aptamer研究的新进展.生物化学与生物物理进展,2006,33(4):329-333
    [121]张慧卿,方念,张和.适配子筛选技术.中国生物工程杂志,2008,28(1):113-118
    [122]MurphyM B, Fuller S T, Richards on PM, et al. An improved method for the in vitro evolution of aptamers and app lications in protein detection and purification. Nucleic Acids Res, 2003,31(18):e110
    [123]Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem,2005,383(1):83-91
    [124]Mendonsa S D, BowserM T. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem,2004,76(18):5387-5392.
    [125]Tang J, Xie J, Shao N, et al. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis,2006,27(7):1303-1311.
    [126]Mosing R K, Mendonsa S D, Bowser M T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem,2005,77(19):6107-6712.
    [127]Cox J C, Ellingt on A D. Automated selection of anti-protein aptamers. BioorgMed Chem,2001,9(10):2525-2531
    [128]Eulberg D, Buchner K, Maasch C, et al. Development of an automated in vitro selection protocol to obtain RNA-based aptamers:identification of a biostable substance P antagonist. Nucleic Acids Res,2005,33(4):e45.
    [129]Hybarger G, Bynum J, Williams R F, et al. A microfluidic SELEX prototype. Anal Bioanal Chem,2006,384(1):191-198
    [130]Kovacs-Nolan J, Mine Y (2012) Egg yolk antibodies for passive immunity. Annu Rev Food Sci Technol,2012,3:163-82.
    [131]Xu Y, Li X, Jin L, Zhen Y, Lu Y, Li S, You J, Wang L (2011) Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases:a review. Biotechnol Adv,2011,29(6):860-8
    [132]Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods,1987,100(1-2):173-9
    [133]Christopher M.Dundas, Daniel Demonte, Sheldon Park. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol,2013,97:9343-9353
    [134]Tsai TY, Lee WJ, Huang YJ, Chen KL, Pan TM. Detection of viable enterohemorrhagic Escherichia coli O157 using the combination of immunomagnetic separation with the reverse transcription multiplex TaqMan PCR system in food and stool samples. J Food Prot,2006, 69(10):2320-8
    [135]Wang L, Li Y, Mustaphai A. Rapid and simultaneous quantitation of Escherichia coll 0157:H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation. J Food Prot,2007,70(6):1366-72
    [136]Salehi TZ, Tadjbakhsh H, Atashparvar N, Nadalian MG, Mahzounieh MR. Detection and identification of Salmonella Typhimurium in bovine diarrhoeic fecal samples by immunomagnetic separation and multiplex PCR assay. Zoonoses Public Health,2007, 54(6-7):231-6
    [137]Ozalp VC, Bayramoglu G, Arica MY, Oktem HA. Design of a core-shell type immuno-magnetic separation system and multiplex PCR for rapid detection of pathogens from food samples. Appl Microbiol Biotechnol,2013,97(21):9541-9551

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700