用户名: 密码: 验证码:
围产前期日粮能量水平对奶牛能量代谢和瘤胃适应性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过四个试验探究了围产前期日粮能量水平及日粮中添加丁酸钠和丙酸钙对奶牛干物质采食量(DMI)、泌乳性能、能量代谢、瘤胃适应性、免疫力和抗氧化力等方面的影响。
     试验一研究了围产前期日粮能量水平对奶牛DMI、泌乳性能和能量代谢的影响。采用随机区组试验设计,将39头经产荷斯坦奶牛分成3个处理组,在围产前期分别饲喂3种不同能量的日粮(6.8MJNEL/kg(100NRC组),6.2MJNEL/kg(90NRC组)、5.4MJNEL/kg(80NRC组))。3个处理组奶牛在产犊后到泌乳第70天都饲喂相同的日粮。围产前期奶牛的平均DMI和泌乳净能摄入量(NEI)随日粮能量水平的升高而显著升高(P<0.05),80NRC组奶牛在分娩前24h的DMI和NDF摄入量比100NRC组分别高26.1%和63.2%(P>0.05)。低能日粮显著提高了产后1~5周的DMI、NEI和NDF摄入量、1~10周的奶产量、1~3周的乳糖含量,显著降低了1~6周的乳脂含量(P<0.05)。100NRC、90NRC和80NRC组在产前的NEI分别占需要量的149.8%、126.2%和101.1%(P<0.05),在产后1~4周分别占需要量的72.7%、73.1%和75.2%(P>0.05)。低能日粮显著提高了围产前期奶牛血浆非酯化脂肪酸(NEFA)的浓度以及产后的血糖浓度,显著降低了产后NEFA和β-羟基丁酸浓度(P<0.05):有提高产后第3天的肝脏丙酮酸羧化酶mRNA的表达丰度的趋势(P=0.08),显著降低了产后第3天的皮下脂肪组织激素敏感脂肪酶mRNA的表达丰度(P<0.05)。试验结果表明,围产前期饲喂低能日粮降低了奶牛产前的DMI变化幅度,提高了产后的DMI和奶产量,降低了体脂动员量,有利于缓解产后能量供需负平衡。
     试验二研究了围产前期日粮能量水平对奶牛瘤胃适应性的影响。14头带有永久性瘤胃瘘管的奶牛用于本试验,试验设计同试验一。低能日粮提高了奶牛产前的瘤胃液pH值,显著降低了产后的瘤胃液pH值(P<0.05)。在产后第7、8天的连续监测中,80NRC组奶牛有3个时间点的pH值低于5.6,而其他两个处理组都高于5.6。低能日粮显著降低了产前瘤胃液丙酸和丁酸浓度(P<0.05),提高了产后的挥发性脂肪酸(VFA)浓度(P<0.05),降低了产后的乙酸和丙酸比例(P<0.05)。100RNC组奶牛在产前7d的产琥珀酸丝状杆菌数量低于其他两组(P<0.05)。在产后第7天,80NRC组奶牛的产琥珀酸丝状杆菌数量显著高于其他两组,黄色瘤胃球菌数量显著高于100NRC组(P<0.05)。试验结果表明,产前饲喂低能日粮的奶牛在产后的瘤胃液VFA浓度更高,但更易受到亚急性瘤胃酸中毒的影响。
     试验三研究了围产前期日粮能量水平对母牛和初生犊牛免疫力和抗氧化力的影响。试验设计和试验奶牛同试验一。低能日粮显著提高了分娩当天和产后的血浆总抗氧化力(T-AOC)浓度和产后的IL-4浓度,显著降低了初乳IgG浓度(P<0.05),对血液IgG、丙二醛、谷胱甘肽过氧化物酶和超氧化物歧化酶浓度都没有显著影响(P>0.05);对初生犊牛Oh和24h的免疫力和抗氧化力没有显著影响(P>0.05)
     试验四研究了在围产前期日粮中添加丁酸钠和丙酸钙对奶牛泌乳性能、能量代谢和瘤胃发酵参数的影响。采用随机区组试验设计,将45头经产荷斯坦奶牛分成3个处理组。3个处理组在整个试验期都饲喂与试验一80NRC组奶牛相同的基础日粮。分别在围产前期日粮中添加Og(对照组)、200g(1.5%添加组)和400g(3.0%添加组)添加剂(丁酸钠含量为25%,丙酸钙含量为5%,DM)。试验期从预产期前21d到产后28d。添加丁酸钠和丙酸钙显著提高了分娩当天的DMI(P<0.05),对产前和产后的DMI都没有显著影响(P>0.05);显著提高了产前7d的瘤胃液总VFA和丁酸浓度及血糖浓度(P<0.05);显著降低了产后的血浆NEFA浓度(P<0.05)。1.5%和3.0%添加组奶牛在产后1-4周的奶产量比对照组分别提高了1.21和1.07kg/d(P>0.05)。试验结果表明,添加丁酸钠和丙酸钙有利于提高奶牛DMI和泌乳性能,缓解产后能量供需负平衡。
The objective of these experiments were to evaluate the effects of prepartum dietary energy density and dietary supplementation with sodium butyrate and calcium propionate on dry matter intake (DMI), lactation performance, energy metabolism, ruminal adaption, immunity and antioxidant capacity in multiparous Holstein cows.
     Part one was to determine the effects of reduced energy density of close-up diets on DMI, lactation performance and energy metabolism in multiparous Holstein cows. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [100NRC;6.8MJ of net energy for lactation (NEL)/kg], or a middle energy density diet (90NRC, n=13;6.2MJ NEL/kg), or a low energy density diet (80NRC, n=13;5.4MJ NEL/kg) from21day before expected day of calving. After parturition, all cows were fed the same lactation diet to70day in milk (DIM). The DMI and NEL intake prepartum were significantly decreased by the reduced energy density diets (P<0.05). The80NRC group consumed26.1%and63.2%more DMI and NDF, respectively, compared with100NRC group in the last24h before calving. The DMI, NEI and NDF intake of the first5wk of lactation, milk yield of the first10Wk of lactation and the milk lactose content of the first3wk of lactation were increased by the reduced energy density diet (P<0.05). The energy consumption for100NRC,90NRC and80NRC groups were149.8%,126.2%and101.1%of their calculated energy requirements prepartum(P<0.05), and72.7%,73.1%and75.2%during the first4wk postpartum, respectively. The reduced energy density diet increased the content of prepartum NEFA and postpartum glucose, decreased the postpartum NEFA and BHBA content (P<0.05). The hepatic PC mRNA abundance was improved (P=0.08), and the subcutaneous adipose HSL mRNA abundance was depressed (P<0.05) by the reduced energy density diet on3DIM. In conclusion, the prepartum reduced energy density diet was effective in controlling DMI change rate prepartum, and was beneficial in increasing DMI and milk yield, and decreasing the adipose tissue mobilization and alleviating negative energy balance postpartum.
     Part two was to evaluate the effects of reduced energy density of close-up diets on ruminal adaption in multiparous Holstein cows. Fourteen dairy cows were enrolled in the trail. The experimental design was same to part one. The ruminal pH of80NRC group was higher prepartum and lower during the first4wk of lactation compared with90NRC and100NRC groups (P<0.05).80NRC group had3sampling points of pH below5.6, which was determined at hourly intervals on7and8DIM, while there were not any for90NRC and100NRC groups. The reduced energy density diet depressed the average ruminal concentration of propionate and butyrate prepartum, and increased the concentration of volatile fatty acids (VFA), and decreased the ratio of acetate to propionate postpartum (P<0.05). The Fibrobacter succinogenes population for100RNC group was lower than that for90NRC and80NRC groups prepartum.80NRC group had higher population of Butyrivibrio fibrisolvens and Ruminococcus flavefaciens relative to100NRC and90NRC groups, and higher Megasphaera elsdenii population compared with100NRC group on7DIM. The results indicated that the cows fed reduced energy density diet prepartum had higher VFA concentration, but were more susceptible to subacute ruminal acidosis postpartum.
     Part three was to determine the effects of reduced energy density of close-up diets on immunity and antioxidant capacity in multiparous Holstein cows and newborn calves. The experimental design and cows were same to part one. The lower energy density diets increased the concentration of T-AOC and IL-4during the postpartum, and the concentration of T-AOC on the parturition day, and decreased the IgG concentration of colostrum (P<0.05). The immunity and antioxidant capacity of newborn calves at0h and24h were not affected by maternal energy intake during the close-up period.
     Part four was to estimate the effects of sodium butyrate and calcium propionate supplementation during close-up period on lactation performance, energy metabolism and ruminal fermentation in multiparous Holstein cows. Forty-five dairy cows were blocked and assigned randomly to1of3treatments. All the cows fed the same diet from-21d to28DIM which was same to the80NRC group diet of part one, and added0g/d (Control group),200g/d (1.5%group) and400g/d (3.0%group) sodium butyrate and calcium propionate to the3treatment diets during the close-up period, respectively. Sodium butyrate and calcium propionate supplementation increased the DMI on the parturition day(P<0.05), but had no effect on DMI prepertum and postpartum (P>0.05), improved the concentration of ruminal TVFA and acetate and blood glucose on-7d, and decreased NEFA concentration postpartum (P <0.05). The milk yields for1.5%and3.0%groups were1.21and1.07kg/d more than control group, respectively, during the first4wk of lactation(P>0.05). The results indicated that sodium butyrate and calcium propionate supplementation was beneficial in increasing DMI and milk yield, and alleviating negative energy balance during transition period.
引文
[1]李胜利,毕研亮,刘玉满,等.2011年中国奶业回顾与展望.中国畜牧杂志,2012(02):46-50.
    [2]韩敏,薛瑞益,刘晓松,等.围产期奶牛脂类代谢病监测指标的研究.内蒙古农业大学学报:自然科学版,2008(4).
    [3]Curtis C R, Erb H N, Sniffen C J, et al. Path analysis of dry period nutrition, postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. J Dairy Sci, 1985,68(9):2347-2360.
    [4]Fetrow J, Nordlund K V, Norman H D. Invited review:Culling:nomenclature, definitions, and recommendations. J Dairy Sci,2006,89(6):1896-1905.
    [5]Grummer R R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci,1995,73(9):2820-2833.
    [6]Drackley J K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period:the final frontier? J Dairy Sci,1999,82(11):2259-2273.
    [7]Martens H, Rabbani I, Shen Z, et al. Changes in rumen absorption processes during transition. Animal Feed Science and Technology,2012,172(1-2):95-102.
    [8]Drackley J K, Dann H M, Douglas G N, et al. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Italian Journal of Animal Science,2005,4(4):323-344.
    [9]Bertics S J, Grummer R R, Cadorniga-Valino C, et al. Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation. J Dairy Sci,1992,75(7):1914-1922.
    [10]Bell A W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci,1995,73(9):2804-2819.
    [11]Kertz A F, Reutzel L F, Thomson G M. Dry matter intake from parturition to midlactation. J Dairy Sci,1991,74(7):2290-2295.
    [12]左之才.不同能量水平对围产期奶牛生产性能、血液生化及内分泌因子影响的研究:[硕士论文]四川农业大学,2004.
    [13]Grummer R R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci,1995,73(9):2820-2833.
    [14]Grummer R R. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J Dairy Sci,1993,76(12):3882-3896.
    [15]Rabelo E, Rezende R L, Bertics S J, et al. Effects of pre-and postfresh transition diets varying in dietary energy density on metabolic status of periparturient dairy cows. J Dairy Sci,2005, 88(12):4375-4383.
    [16]Castaneda-Gutierrez E, Pelton S H, Gilbert R O, et al. Effect of peripartum dietary energy supplementation of dairy cows on metabolites, liver function and reproductive variables. Animal Reproduction Science,2009,112(3-4):301-315.
    [17]NRC. Nutrient Requirements of Dairy Cattle.7th edition. Washington, DC:National Academies Press,2001.
    [18]DRACKLEY J K. Interrelationships of prepartum dry matter intake with postpartum intake and hepatic lipid accumulation. J. Dairy Sci,2003(86):104-105.
    [19]Drackley J.K.H M D G. Physiological and pathological adaptations in dairy cows that may increase suseptibility to periparturient diseases and disorders. Italian Journal of Animal Science, 2005,4:323-344.
    [20]Douglas G N, Overton T R, Bateman H N, et al. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows. J Dairy Sci,2006,89(6):2141-2157.
    [21]Janovick N A, Boisclair Y R, Drackley J K. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science,2011,94(3):1385-1400.
    [22]苏华维.中国荷斯坦奶牛围产期能量平衡及其调控研究:[博士论文]中国农业大学,2011.
    [23]Janovick N A, Boisclair Y R, Drackley J K. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science,2011,94(3):1385-1400.
    [24]Beever D E. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance. Anim Reprod Sci,2006,96(3-4):212-226.
    [25]Holcomb C S, Van Horn H H, Head H H, et al. Effects of prepartum dry matter intake and forage percentage on postpartum performance of lactating dairy cows. J Dairy Sci, 2001,84(9):2051-2058.
    [26]Moorby J M, Dewhurst R J, Tweed J K, et al. Effects of altering the energy and protein supply to dairy cows during the dry period.2. Metabolic and hormonal responses. J Dairy Sci, 2000,83(8):1795-1805.
    [27]Dann H M, Litherland N B, Underwood J P, et al. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. J Dairy Sci, 2006,89(9):3563-3577.
    [28]Guo J, Peters R R, Kohn R A. Effect of a transition diet on production performance and metabolism in periparturient dairy cows. J Dairy Sci,2007,90(11):5247-5258.
    [29]Dann H M, Litherland N B, Underwood J P, et al. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. J Dairy Sci, 2006,89(9):3563-3577.
    [30]Overton T R, Waldron M R. Nutritional management of transition dairy cows:strategies to optimize metabolic health. Journal of Dairy Science,2004,87:E1O5-E119.
    [31]Bell A W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci,1995,73(9):2804-2819.
    [32]Horst R L, Goff J P, Reinhardt T A, et al. Strategies for preventing milk fever in dairy cattle. J Dairy Sci,1997,80(7):1269-1280.
    [33]张克春,谭勋.围产期奶牛葡萄糖、脂肪和钙代谢的研究动态.乳业科学与技术,2007(02):92-94.
    [34]Bertics S J, Grummer R R, Cadorniga-Valino C, et al. Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation. J Dairy Sci,1992,75(7):1914-1922.
    [35]刘国文,王哲.围产期奶牛能量代谢障碍性疾病的研究进展.黑龙江畜牧兽医,2004(08):78-79.
    [36]李红梅.干奶期不同能量摄食对奶牛糖异生的影响:[硕士论文]东北农业大学,2006.
    [37]Drackley J K, Overton T R, Douglas G N. Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period. Journal of Dairy Science, 2001,84, Supplements 100-E112.
    [38]Reynolds C K, Aikman P C, Lupoli B, et al. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J Dairy Sci,2003,86(4):1201-1217.
    [39]Seal C J 和R. Nutritional Implications of Gastrointestinal and Liver Metabolism in Ruminants. Nutrition Research Reviews,1993,6(1):185-208.
    [40]Rigout S, Hurtaud C, Lemosquet S, et al. Lactational effect of propionic acid and duodenal glucose in cows. J Dairy Sci,2003,86(1):243-253.
    [41]Oba M, Allen M S. Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. J Dairy Sci,2003,86(9):2922-2931.
    [42]Bava L, Rapetti L, Crovetto G M, et al. Effects of a nonforage diet on milk production, energy, and nitrogen metabolism in dairy goats throughout lactation. J Dairy Sci,2001,84(11):2450-2459.
    [43]李红梅,李艳飞,夏成,等.不同能量摄入对奶牛肝脏PC和PEPCK mRNA表达水平的影响.中国农业科学,2005(12):2515-2519.
    [44]Greenfield R B, Cecava M J, Donkin S S. Changes in mRNA expression for gluconeogenic enzymes in liver of dairy cattle during the transition to lactation. J Dairy Sci,2000,83(6): 1228-1236.
    [45]Bobe G, Lindberg G L, Reutzel L F, et al. Effects of lipid supplementation on the yield and composition of milk from cows with different β-lactoglobulin phenotypes. Journal of Dairy Science,2009,92(1):197-203.
    [46]Velez J C, Donkin S S. Feed restriction induces pyruvate carboxylase but not phosphoenolpyruvate carboxykinase in dairy cows. J Dairy Sci,2005,88(8):2938-2948.
    [47]Loor J J, Dann H M, Guretzky N A, et al. Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. Physiol Genomics,2006,27(1):29-41.
    [48]Al-Trad B, Wittek T, Penner G B, et al. Expression and activity of key hepatic gluconeogenesis enzymes in response to increasing intravenous infusions of glucose in dairy cows. J Anim Sci,2010,88(9):2998-3008.
    [49]Douglas G N, Rehage J, Beaulieu A D, et al. Prepartum Nutrition Alters Fatty Acid Composition in Plasma, Adipose Tissue, and Liver Lipids of Periparturient Dairy Cows. Journal of Dairy Science,2007,90(6):2941-2959.
    [50]White H M, Koser S L, Donkin S S. Characterization of bovine pyruvate carboxylase promoter 1 responsiveness to serum from control and feed-restricted cows. J Anim Sci, 2011,89(6):1763-1768.
    [51]White H M, Koser S L, Donkin S S. Differential regulation of bovine pyruvate carboxylase promoters by fatty acids and peroxisome proliferator-activated receptor-a agonist. Journal of Dairy Science,2011,94(7):3428-3436.
    [52]徐闯,夏成,刘国文,等.应用竞争PCR检测丙酸盐对体外培养牛肝细胞丙酮酸羧化酶mRNA水平的影响.中国兽医学报,2005(04):397-399.
    [53]Pullen D L, Palmquist D L, Emery R S. Effect on days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides. J Dairy Sci, 1989,72(1):49-58.
    [54]Drackley J K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period:the final frontier? J Dairy Sci,1999,82(11):2259-2273.
    [55]Emery R S, Liesman J S, Herdt T H. Metabolism of long chain fatty acids by ruminant liver. The Journal of nutrition,1992,122(3 Suppl):832.
    [56]Collins S, Kuhn C M, Petro A E, et al. Role of leptin in fat regulation. Nature,1996,380 (6576):677.
    [57]牛淑玲.围产期奶牛干物质摄入减少及脂肪动员的神经内分泌调控机制:[博士论文]吉林大学,2005.
    [58]Louet J F, Le May C, Pegorier J P, et al. Regulation of liver carnitine palmitoyltransferase I gene expression by hormones and fatty acids. Biochemical Society transactions,2001,29(Pt 2):310.
    [59]McGarry J D, Brown N F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem,1997,244(1):1-14.
    [60]张永宏,孙玉成,高妍,等.胰岛素、胰高血糖素对体外培养脂肪细胞胰高血糖素受体mRNA丰度的影响.中国兽医学报,2007(06):862-864.
    [61]祝兴林,王哲,孙玉成,等.不同能量摄入对围产期奶牛脂肪组织胰岛素受体mRNA丰度的影响.黑龙江畜牧兽医,2006(8):10-14.
    [62]牛淑玲,张才,张国才,等.不同能量摄入水平对围产期奶牛脂肪组织Leptin mRNA和HSL mRNA表达的影响.中国兽医学报,2007(06):870-873.
    [63]张辉.脂联素对围产期奶牛脂肪动员的相关性研究:[博士论文]吉林大学,2007.
    [64]Andrews A H, Laven R, Maisey I. Treatment and control of an outbreak of fat cow syndrome in a large dairy herd. Vet Rec,1991,129(10):216-219.
    [65]Tall A R, Puppione D L, Kunitake S T, et al. Organization of the core lipids of high density lipoproteins in the lactating bovine. The Journal of biological chemistry,1981,256(1):170.
    [66]Christie W W, Noble R C, Clegg R A. The hydrolysis of very low density lipoproteins and chylomicrons of intestinal origin by lipoprotein lipase in ruminants. Lipids,1986,21(3):252-253.
    [67]Kleppe B B, Aiello R J, Grummer R R, et al. Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro. J Dairy Sci,1988,71(7):1813-1822.
    [68]Graulet B, Gruffat D, Durand D, et al. Fatty acid metabolism and very low density lipoprotein secretion in liver slices from rats and preruminant calves. Journal of biochemistry,1998,124(6): 1212-1219.
    [69]Grum D E, Drackley J K, Younker R S, et al. Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. J Dairy Sci,1996,79(10):1850-1864.
    [70]Garnsworthy PC 和 T. The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Animal Science,1982,35(1):113-119.
    [71]Treacher R J, Reid I M, Roberts C J. Effect of body condition at calving on the health and performance of dairy cows. Animal Science,1986,43(1):1-6.
    [72]周建平,张俊育.脂肪肝影响围产期奶牛繁殖力的机理研究.畜牧兽医学报,1997,28(2):115-119.
    [73]何剑斌,田文儒,胡春山,等.应用血中生化指标监测围产期奶牛脂肪肝.黑龙江畜牧兽医,1997(06):4-7.
    [74]Laven R A, Andrews A H. Control of fatty liver syndrome in a Jersey herd by a change of diet and the use of recombinant bovine somatotrophin. Vet Rec,1998,142(2):36-39.
    [75]贺普霄,蒋孝娴,高巨星,等.奶牛肝脏代谢障碍的研究.中国奶牛,1990(04):48-51.
    [76]何生虎,晁向阳,王明成.奶牛酮病的发病机理研究现状及进展.草食家畜,2004(3):15-17.
    [77]孙斌赵凯王洪等.奶牛酮病及其研究进展.黑龙江八一农垦大学学报,1999,3(11):48-51.
    [78]Smith T R, Hippen A R, Beitz D C, et al. Metabolic characteristics of induced ketosis in normal and obese dairy cows. J Dairy Sci,1997,80(8):1569-1581.
    [79]肖玲,边四辈.奶牛酮病研究.乳业科学与技术,2002(3):26-29.
    [80]Liefers S C, Veerkamp R F, Te P M, et al. Leptin concentrations in relation to energy balance, milk yield, intake, live weight, and estrus in dairy cows. J Dairy Sci,2003,86(3):799-807.
    [81]Dale H, Vik-Mo L, Fjellheim P. A field survey of fat mobilization and liver function of dairy cows during early lactation. Relationship to energy balance, appetite and ketosis. Nord Vet Med, 1979,31(3):97-105.
    [82]Duffield T F, Kelton D F, Leslie K E, et al. Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. The Canadian veterinary journal. La revue veterinaire canadienne,1997,38(11):713-718.
    [83]Simmons C R, Bergen W G, Vandehaar M J, et al. Protein and fat metabolism in cows given somavubove before parturition. J Dairy Sci,1994,77(7):1835-1847.
    [84]Bergman E N, Heitmann R N. Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed Proc,1978,37(5):1228-1232.
    [85]NRC. Nutrient requirements of dairy cattle.6th edition. Washington, DC:National Academies Press,1989.
    [86]Putnam D E, Varga G A. Protein density and its influence on metabolite concentration and nitrogen retention by Holstein cows in late gestation. J Dairy Sci,1998,81 (6):1608-1618.
    [87]Curtis C R, Erb H N, Sniffen C J, et al. Path analysis of dry period nutrition, postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. J Dairy Sci, 1985,68(9):2347-2360.
    [88]Park A F, Shirley J E, Titgemeyer E C, et al. Effect of protein level in prepartum diets on metabolism and performance of dairy cows. J Dairy Sci,2002,85(7):1815-1828.
    [89]Crawley D D A L. Effecs of level and source of rumen degradable protein fed prepartum on postpartum performance of dairy cows. J. Dairy Sci,1995(78 (Suppl.l)):266.
    [90]尹福泉,嘎尔迪.围产前期不同蛋白质水平日粮对奶牛生产性能的影响.黑龙江畜牧兽医,2008(11):22-24.
    [91]Elliot J M. The glucose economy of the lactating dairy cow.1976.
    [92]Strang B D, Bertics S J, Grummer R R, et al. Effect of long-chain fatty acids on triglyceride accumulation, gluconeogenesis, and ureagenesis in bovine hepatocytes. J Dairy Sci, 1998,81(3):728-739.
    [93]Overton T R, Drackley J K, Douglas G N, et al. Hepatic gluconeogenesis and whole-body protein metabolism of periparturient dairy cows as affected by source of energy and intake of the prepartum diet. J. Dairy Sci,1998,81(Suppl 1):295.
    [94]Goodlad R A. Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Q J Exp Physiol,1981,66(4):487-499.
    [95]Lane M A, Jesse B W. Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep. J Dairy Sci,1997,80(4):740-746.
    [96]Mentschel J, Leiser R, Mulling C, et al. Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Arch Tierernahr,2001,55(2):85-102.
    [97]Dirksen G U, Liebich H G, Mayer E. Adaptive changes of the ruminal mucosa and their functional and clinical significance. Bovine Pract,1985,20:116-120.
    [98]Liebich H G, Dirksen G, Arbel A, et al. Feed-dependent changes in the rumen mucosa of high-producing cows from the dry period to eight weeks post partum. Zentralbl Veterinarmed A, 1987,34(9):661-672.
    [99]Penner G B, Beauchemin K A, Mutsvangwa T. Severity of ruminal acidosis in primiparous holstein cows during the periparturient period. J Dairy Sci,2007,90(1):365-375.
    [100]Andersen J B, Sehested J, Ingvartsen K L N. Effect of Dry Cow Feeding Strategy on Rumen pH, Concentration of Volatile Fatty Acids and Rumen Epithelium Development. Acta Agriculturae Scandinavica, Section A-Animal Science,1999,49(3):149-155.
    [101]Martens H, Rabbani I, Shen Z, et al. Changes in rumen absorption processes during transition. Animal Feed Science and Technology,2012,172(1-2):95-102.
    [102]Goff J P, Horst R L, Jardon P W, et al. Field trials of an oral calcium propionate paste as an aid to prevent milk fever in periparturient dairy cows. J Dairy Sci,1996,79(3):378-383.
    [103]刘国文,王哲.围产期奶牛能量代谢障碍性疾病的研究进展.黑龙江畜牧兽医,2004(08):78-79.
    [104]Kimura K, Goff J P, Kehrli M J, et al. Phenotype analysis of peripheral blood mononuclear cells in periparturient dairy cows. J Dairy Sci,1999,82(2):315-319.
    [105]Goff J P, Horst R L. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci,1997,80(7):1260-1268.
    [106]Kehrli M J, Goff J P. Periparturient hypocalcemia in cows:effects on peripheral blood neutrophil and lymphocyte function. J Dairy Sci,1989,72(5):1188-1196.
    [107]李大刚,王加启.围产应激对奶牛营养与生理状况的影响.中国奶牛,2004(06):25-27.
    [108]Myllys V, Rautala H. Characterization of clinical mastitis in primiparous heifers. J Dairy Sci, 1995,78(3):538-545.
    [109]Moyes K M, Drackley J K, Salak-Johnson J L, et al. Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation. J Dairy Sci,2009,92(9):4301-4316.
    [110]Sartorelli P, Paltrinieri S, Agnes F. Non-specific immunity and ketone bodies. I:In vitro studies on chemotaxis and phagocytosis in ovine neutrophils. Zentralbl Veterinarmed A, 1999,46(10):613-619.
    [111]Zerbe H, Schneider N, Leibold W, et al. Altered functional and immunophenotypical properties of neutrophilic granulocytes in postpartum cows associated with fatty liver. Theriogenology,2000,54(5):771-786.
    [112]Grinberg N, Elazar S, Rosenshine I, et al. Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect Immun,2008,76(6):2802-2807.
    [113]van Knegsel A T, de Vries R G, Meulenberg S, et al. Natural antibodies related to energy balance in early lactation dairy cows. J Dairy Sci,2007,90(12):5490-5498.
    [114]Loiselle M C, Ster C, Talbot B G, et al. Impact of postpartum milking frequency on the immune system and the blood metabolite concentration of dairy cows. J Dairy Sci,2009,92(5): 1900-1912.
    [115]Spears J W, Weiss W P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J,2008,176(1):70-76.
    [116]龙淼,邢欣,张日和,等.围产期奶牛生产性疾病研究进展.中国奶牛,2009(4):35-38.
    [117]Goff J P. Major advances in our understanding of nutritional influences on bovine health. J Dairy Sci,2006,89(4):1292-1301.
    [118]Overton T R, Waldron M R. Nutritional management of transition dairy cows:strategies to optimize metabolic health. J Dairy Sci,2004,87:E105-E119.
    [119]Rabelo E, Rezende R L, Bertics S J, et al. Effects of pre-and postfresh transition diets varying in dietary energy density on metabolic status of periparturient dairy cows. J Dairy Sci, 2005,88(12):4375-4383.
    [120]Castaneda-Gutierrez E, Pelton S H, Gilbert R O, et al. Effect of peripartum dietary energy supplementation of dairy cows on metabolites, liver function and reproductive variables. Animal Reproduction Science,2009,112(3-4):301-315.
    [121]Dann H M, Litherland N B, Underwood J P, et al. Diets During Far-Off and Close-Up Dry Periods Affect Periparturient Metabolism and Lactation in Multiparous Cows. Journal of Dairy Science,2006,89(9):3563-3577.
    [122]Guo J, Peters R R, Kohn R A. Effect of a Transition Diet on Production Performance and Metabolism in Periparturient Dairy Cows. Journal of Dairy Science,2007,90(11):5247-5258.
    [123]Chapinal N, Veira D M, Weary D M, et al. Technical Note:Validation of a System for Monitoring Individual Feeding and Drinking Behavior and Intake in Group-Housed Cattle. Journal of Dairy Science,2007,90(12):5732-5736.
    [124]Ferguson J D, Galligan D T, Thomsen N. Principal descriptors of body condition score in Holstein cows. J Dairy Sci,1994,77(9):2695-2703.
    [125]Oxender W D, Askew E W, Benson J D, et al. Biopsy of liver, adipose tissue and mammary gland of lactating cows. J Dairy Sci,1971,54(2):286-288.
    [126]Smith T R, McNamara J P. Regulation of bovine adipose tissue metabolism during lactation. 6. Cellularity and hormone-sensitive lipase activity as affected by genetic merit and energy intake. J Dairy Sci,1990,73(3):772-783.
    [127]Greenfield R B, Cecava M J, Donkin S S. Changes in mRNA expression for gluconeogenic enzymes in liver of dairy cattle during the transition to lactation. J Dairy Sci,2000,83(6): 1228-1236.
    [128]Al-Trad B, Wittek T, Penner G B, et al. Expression and activity of key hepatic gluconeogenesis enzymes in response to increasing intravenous infusions of glucose in dairy cows. J Anim Sci,2010,88(9):2998-3008.
    [129]Janovick N A, Boisclair Y R, Drackley J K. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science,2011,94(3):1385-1400.
    [130]Douglas G N, Overton T R, Bateman H N, et al. Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows. J Dairy Sci,2006,89(6):2141-2157.
    [131]Janovick N A, Drackley J K. Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. Journal of Dairy Science,2010,93(7):3086-3102.
    [132]Minor D J, Trower S L, Strang B D, et al. Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows. J Dairy Sci,1998,81(1):189-200.
    [133]Beever D E. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance. Anim Reprod Sci,2006,96(3-4):212-226.
    [134]Grummer R R, Mashek D G, Hayirli A. Dry matter intake and energy balance in the transition period. Vet Clin North Am Food Anim Pract,2004,20(3):447-470.
    [135]Rukkwamsuk T, Wensing T, Geelen M J. Effect of overfeeding during the dry period on regulation of adipose tissue metabolism in dairy cows during the peri parturient period. J Dairy Sci, 1998,81(11):2904-2911.
    [136]Donkin S S, Armentano L E. Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine. Am J Physiol,1994,266(4 Pt 2):R1229-R1237.
    [137]Canfield R W, Butler W R. Energy balance and pulsatile LH secretion in early postpartum dairy cattle. Domest Anim Endocrinol,1990,7(3):323-330.
    [138]Kelly J M. Changes in serum B hydroxybutyrate concentrations in dairy cows kept under commercial farm conditions. Vet Rec,1977,101 (25):499-502.
    [139]Roche J R. Milk production responses to pre-and postcalving dry matter intake in grazing dairy cows. Livestock Science,2007,110(1):12-24.
    [140]Rukkwamsuk T, Wensing T, Geelen M J. Effect of overfeeding during the dry period on the rate of esterification in adipose tissue of dairy cows during the periparturient period. J Dairy Sci, 1999,82(6):1164-1169.
    [141]Holtenius K, Agenas S, Delavaud C, et al. Effects of feeding intensity during the dry period.2. Metabolic and hormonal responses. J Dairy Sci,2003,86(3):883-891.
    [142]Chikhou F H, Moloney A P, Allen P, et al. Long-term effects of cimaterol in Friesian steers:I. Growth, feed efficiency, and selected carcass traits. J Anim Sci,1993,71 (4):906-913.
    [143]Jitrapakdee S A W J. Structure, function and regulation of pyruvate carboxylase. The Biochemical journal,1999,340 (Pt 1)(1):1-16.
    [144]Velez J C, Donkin S S. Feed restriction induces pyruvate carboxylase but not phosphoenolpyruvate carboxykinase in dairy cows. J Dairy Sci,2005,88(8):2938-2948.
    [145]Janovick N A. Prepartum energy intake and its relationship to periparturient inflammation and metabolic dysfunction in dairy cows:[ProQuest, UMI Dissertations Publishing,2008.
    [146]Al-Trad B, Wittek T, Penner G B, et al. Expression and activity of key hepatic gluconeogenesis enzymes in response to increasing intravenous infusions of glucose in dairy cows. J Anim Sci,2010,88(9):2998-3008.
    [147]Drackley J K, Overton T R, Douglas G N. Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period. Journal of Dairy Science, 2001,84, Supplements 100-E112.
    [148]Loor J J. Temporal gene expression profiling of liver from periparturient dairy cows reveals complex adaptive mechanisms in hepatic function. Physiological Genomics,2005,23(2):217-226.
    [149]牛淑玲,张才,王哲,等.外源性牛重组瘦蛋白(Leptin)对初生小牛脂肪细胞形态及甘油三酯含量的影响.中国兽医学报,2005(03):295-298.
    [150]Yokoo H, Saitoh T, Shiraishi S, et al. Distinct Effects of Ketone Bodies on Down-Regulation of Cell Surface Insulin Receptor and Insulin Receptor Substrate-1 Phosphorylation in Adrenal Chromaffin Cells. Journal of Pharmacology and Experimental Therapeutics,2003,304(3): 994-1002.
    [151]祝兴林,王哲,刘国文,等.酮病、脂肪肝奶牛胰岛素受体mRNA丰度.中国兽医学报,2007,27(1):103-105,110.
    [152]Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med,2001,7(1):53-58.
    [153]McNamara S, O'Mara F P, Rath M, et al. Effects of different transition diets on dry matter intake, milk production, and milk composition in dairy cows. J Dairy Sci,2003,86(7):2397-2408.
    [154]CHANEY A L, MARBACH E P. Modified reagents for determination of urea and ammonia. Clin Chem,1962,8:130-132.
    [155]Hu W, M M. Statistical evaluation of early-and mid-lactation dairy cow responses to dietary sodium bicarbonate addition. Animal Feed Science and Technology,2005,119(1):43-54.
    [156]Nagaraja T G, Titgemeyer E C. Ruminal Acidosis in Beef Cattle:The Current Microbiological and Nutritional Outlook. Journal of Dairy Science,2007,90:E17-E38.
    [157]Rabelo E, Rezende R L, Bertics S J, et al. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows. J Dairy Sci, 2003,86(3):916-925.
    [158]Osborne J K, Mutsvangwa T, Alzahal O, et al. Effects of monensin on ruminal forage degradability and total tract diet digestibility in lactating dairy cows during grain-induced subacute ruminal acidosis. J Dairy Sci,2004,87(6):1840-1847.
    [159]Palmonari A, Stevenson D M, Mertens D R, et al. pH dynamics and bacterial community composition in the rumen of lactating dairy cows. Journal of Dairy Science,2010,93(l):279-287.
    [160]Cooper R J, Klopfenstein T J, Stock R A, et al. Effects of imposed feed intake variation on acidosis and performance of finishing steers. J Anim Sci,1999,77(5):1093-1099.
    [161]Gozho G N, Plaizier J C, Krause D O, et al. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J Dairy Sci, 2005,88(4):1399-1403.
    [162]Allen M S. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci,1997,80(7):1447-1462.
    [163]Goad D W, Goad C L, Nagaraja T G. Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. J Anim Sci,1998,76(1):234-241.
    [164]Rabelo E, Bertics S J, Mackovic J, et al. Strategies for increasing energy density of dry cow diets. J Dairy Sci,2001,84(10):2240-2249.
    [165]Dijkstra J. Mathematical modeling and integration of rumen fermentation processes:[PhD Thesis],1993.
    [166]Bergman E N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev,1990,70(2):567-590.
    [167]Dirksen G U, Liebich H G, Mayer E. Adaptive changes of the ruminal mucosa and their functional and clinical significance. Bovine Pract,1985,20:116-120.
    [168]Hinders R G, Owen F G. Relation of ruminal parakeratosis development to volatile fatty acid absorption. J Dairy Sci,1965,48(8):1069-1073.
    [169]Greenwood R H, Morrill J L, Titgemeyer E C, et al. A new method of measuring diet abrasion and its effect on the development of the forestomach. J Dairy Sci,1997,80(10):2534-2541.
    [170]Weimer P J, Waghorn G C, Odt C L, et al. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J Dairy Sci,1999,82(1):122-134.
    [171]Russell J B. Rumen microbiology and its role in ruminant nutrition. Cornell University,2002.
    [172]Martinez M E, Ranilla M J, Tejido M L, et al. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. Ⅱ. Protozoa population and diversity of bacterial communities. J Dairy Sci,2010,93(8):3699-3712.
    [173]Wang X, Li X, Zhao C, et al. Correlation between Composition of the Bacterial Community and Concentration of Volatile Fatty Acids in the Rumen during the Transition Period and Ketosis in Dairy Cows. Applied and Environmental Microbiology,2012,78(7):2386-2392.
    [174]Fernando S C, Purvis H T, Najar F Z, et al. Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet. Applied and Environmental Microbiology,2010,76(22): 7482-7490.
    [175]Klieve A V, Hennessy D, Ouwerkerk D, et al. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol,2003,95(3):621-630.
    [176]K T, S A, K O, et al. Rumen Bacterial Community Transition During Adaptation to High-grain Diet. Anaerobe,2000,6(5):273.
    [177]Counotte G H, Prins R A, Janssen R H, et al. Role of Megasphaera elsdenii in the Fermentation of dl-[2-C]lactate in the Rumen of Dairy Cattle. Appl Environ Microbiol,1981,42(4): 649-655.
    [178]Curtis C R, Erb H N, Sniffen C J, et al. Path analysis of dry period nutrition, postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. J Dairy Sci,1985,68(9): 2347-2360.
    [179]Goff J P, Horst R L. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci,1997,80(7):1260-1268.
    [180]Kimura K, Goff J P, Kehrli M J. Effects of the presence of the mammary gland on expression of neutrophil adhesion molecules and myeloperoxidase activity in periparturient dairy cows. J Dairy Sci,1999,82(11):2385-2392.
    [181]Moyes K M, Drackley J K, Salak-Johnson J L, et al. Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation. Journal of Dairy Science,2009,92(9):4301-4316.
    [182]Sordillo L M, Aitken S L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol,2009,128(1-3):104-109.
    [183]Pahlavani M A, Harris M D. Effect of in vitro generation of oxygen free radicals on T cell function in young and old rats. Free Radic Biol Med,1998,25(8):903-913.
    [184]Zhu M J, Du M, Hess B W, et al. Maternal Nutrient Restriction Upregulates Growth Signaling Pathways in the Cotyledonary Artery of Cow Placentomes. Placenta,2007,28(4):361-368.
    [185]Cheng-gang Z R D Q. Effects of Different Energy Levels on Nutrient Utilization and Serum Biochemical Parameters of Early-Weaned Calves.中国农业科学:英文版,2010(5):729-735.
    [186]Louey S, Cock M L, Stevenson K M, et al. Placental insufficiency and fetal growth restriction lead to postnatal hypotension and altered postnatal growth in sheep. Pediatr Res,2000,48(6): 808-814.
    [187]Micke G C, Sullivan T M, Soares M R, et al. Heifer nutrition during early-and mid-pregnancy alters fetal growth trajectory and birth weight. Anim Reprod Sci,2010,117(1-2): 1-10.
    [188]Gao F Y C L. Effect of maternal undernutrition during late pregnancy on growth and development of ovine fetal visceral organs.2009:22,1633-1639.
    [189]McMillen I C, Adams M B, Ross J T, et al. Fetal growth restriction:adaptations and consequences. Reproduction (Cambridge, England),2001,122(2):195-204.
    [190]Redmer D A, Wallace J M, Reynolds L P. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest Anim Endocrinol,2004,27(3):199-217.
    [191]Gao F, Liu Y C, Zhang Z H, et al. Effect of prepartum maternal energy density on the growth performance, immunity, and antioxidation capability of neonatal calves. Journal of Dairy Science, 2012,95(8):4510-4518.
    [192]Yang R, Le G, Li A, et al. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition,2006,22(11):1185-1191.
    [193]Richard M J, Portal B, Meo J, et al. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clinical Chemistry,1992,38(5): 704-709.
    [194]Hafeman D G, Sunde R A, Hoekstra W G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. The Journal of Nutrition,1974,104(5):580-587.
    [195]韩雪.复合抗氧化剂对动物氧化应激与自由基代谢的影响:[硕士论文]上海交通大学,2010.
    [196]Sordillo L M. Factors affecting mammary gland immunity and mastitis susceptibility. Livestock Production Science,2005,98(1):89-99.
    [197]Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture:how should you do it and what do the results mean? Br J Pharmacol,2004,142(2): 231-255.
    [198]刘艳辉,赵德明.围产期奶牛高发代谢病血清中酶及自由基含量变化动态的试验.中国 兽医杂志,2010(12):33-34.
    [199]雷金龙,吴树清,王玲玲,等.围产期奶牛血清中GSH-Px、SOD、MDA的比较研究.中国奶牛,2008(06):38-43.
    [200]王艳明.日粮脂肪和能量水平对奶牛氧化应激、生产性能的影响及抗氧化剂添加效果研究:[博士论文]浙江大学,2010.
    [201]P Y B. Cellular defenses against damage from reactive oxygen species.1994:74,139-162.
    [202]陶勇,李亚东.硒的作用机制及其对动物免疫机能的作用.动物科学与动物医学,2000,17(4):11-12.
    [203]Ghiselli A, Serafini M, Natella F, et al. Total antioxidant capacity as a tool to assess redox status:critical view and experimental data. Free Radic Biol Med,2000,29(11):1106-1114.
    [204]Newbern D F M. Placental hormones and the control of maternal metabolism and fetal growth. Current Opinion in Endocrinology, Diabetes and Obesity,2011,6(18):409-416.
    [205]Zhu J, Paul W E. CD4 T cells:fates, functions, and faults. Blood,2008,112(5):1557-1569.
    [206]Miyawaki T, Suzuki T, Butler J L, et al. Interleukin-2 effects on human B cells activatedin vivo. Journal of clinical immunology,1987,7(4):277-287.
    [207]Bloom B R, Salgame P, Diamond B. Revisiting and revising suppressor T cells. Immunol Today,1992,13(4):131-136.
    [208]Kuhn R, Rajewsky K, Muller W. Generation and Analysis of Interleukin-4 Deficient Mice. Science,1991,254(5032):707-710.
    [209]Coffman R L, Ohara J, Bond M W, et al. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol,1986,136(12):4538-4541.
    [210]Lundgren M, Persson U, Larsson P, et al. Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. European journal of immunology,1989,19(7):1311-1315.
    [211]Gemmell E, S G. Cytokines and T cell switching. Critical reviews in oral biology and medicine:an official publication of the American Association of Oral Biologists,1994,5(3-4):249.
    [212]Van Snick J. Interleukin-6:An Overview. Annual Review of Immunology,1990,8(1): 253-278.
    [213]Godden S. Colostrum Management for Dairy Calves. Veterinary Clinics of North America: Food Animal Practice,2008,24(1):19-39.
    [214]Bielmann V, Gillan J, Perkins N R, et al. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle. J Dairy Sci,2010,93(8):3713-3721.
    [215]Quigley J R, Drewry J J. Nutrient and immunity transfer from cow to calf pre-and postcalving. J Dairy Sci,1998,81(10):2779-2790.
    [216]Kehoe S I, Jayarao B M, Heinrichs A J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci,2007,90(9):4108-4116.
    [217]Shen J S, Chai Z, Song L J, et al. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. Journal of Dairy Science, 2012,95(10):5978-5984.
    [218]Beharka A A, Nagaraja T G, Morrill J L, et al. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. J Dairy Sci, 1998,81(7):1946-1955.
    [219]Guilloteau P, Zabielski R, David J C, et al. Sodium-butyrate as a growth promoter in milk replacer formula for young calves. J Dairy Sci,2009,92(3):1038-1049.
    [220]Britton R, Krehbiel C. Nutrient Metabolism by Gut Tissues. Journal of Dairy Science, 1993,76(7):2125-2131.
    [221]Hill T M, Aldrich J M, Schlotterbeck R L, et al. Effects of Changing the Fat and Fatty Acid Composition of Milk Replacers Fed to Neonatal Calves. The Professional Animal Scientist, 2007,23(2):135.
    [222]Guilloteau P, Zabielski R, David J C, et al. Sodium-butyrate as a growth promoter in milk replacer formula for young calves. J Dairy Sci,2009,92(3):1038-1049.
    [223]Guilloteau P, Savary G, Jaguelin-Peyrault Y, et al. Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves. J Dairy Sci,2010,93(12): 5842-5850.
    [224]Goff J P, Horst R L. Calcium salts for treating hypocalcemia:carrier effects, acid-base balance, and oral versus rectal administration. J Dairy Sci,1994,77(5):1451-1456.
    [225]Goff J P. The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet J,2008,176(1):50-57.
    [226]Pehrson B, Svensson C, Jonsson M. A comparative study of the effectiveness of calcium propionate and calcium chloride for the prevention of parturient paresis in dairy cows. J Dairy Sci, 1998,81(7):2011-2016.
    [227]DeFrain J M, Hippen A R, Kalscheur K F, et al. Effects of feeding propionate and calcium salts of long-chain fatty acids on transition dairy cow performance. J Dairy Sci,2005,88(3): 983-993.
    [228]Bigner D R, Goff J P, Faust M A, et al. Acidosis Effects on Insulin Response During Glucose Tolerance Tests in Jersey Cows. Journal of Dairy Science,1996,79(12):2182-2188.
    [229]Kara A D, Orman A, Udum D, et al. Effects of calcium propionate by different numbers of applications in first week postpartum of dairy cows on hypocalcemia, milk production and reproductive disorders. Italian Journal of Animal Science,2010,8(2):259-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700