用户名: 密码: 验证码:
生长猪常用七种饲料原料净能预测方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用72头杜x长×大三元杂交健康去势公猪,借助猪开放式呼吸测热装置,通过5个能量代谢试验,评价生长猪常用7种饲料原料净能(Net energy,NE)并构建其净能预测方程。试验一研究绝食法和回归法对测定生长猪绝食产热量(Fasting heat production,FHP)的影响。试验选用体重为43±1.4kg的去势公猪6头,饲喂同一饲粮,采用随机区组设计。试验期为20d,其中预试期7d,正式期13d,正式期的前5d饲喂水平为2600kJ ME/kg Bw0.6·d-1,第6-8d饲喂水平为2倍维持代谢能(Metabolizable energy for maintenance,MEm)即2×893kJ ME/kg BW0.6·d-1,第9-11d饲喂水平为1倍维持代谢能水平即893kJ ME/kg BW0.6·d-1,最后2d绝食。结果表明,通过三个饲喂水平线性回归测得生长猪绝食产热量为694kJ/kg BW0.6·d-1(FHP=694+0.27MEintake,R2=0.85:MEintake为绝食前采食量),利用绝食法测得生长猪绝食产热量(774kJ/kg BW0.6·d-1)高于回归法测得数据。试验二研究直接法与替代法对生长猪玉米净能测定的影响。试验选用体重为34±1.1kg的去势公猪18头,随机平均分为3个饲粮处理,即玉米饲粮组,基础饲粮组和试验饲粮组,每个饲粮处理6头猪,分为3批(期)。试验每期15d,包括7d预试期,8d呼吸测热室内的正式期。正式期前5d饲喂水平2400kJ ME/kg BW0.6·d-1,第6-7d饲喂1倍维持代谢能水平948kJ ME/kg BW0.6·d-1,最后1d绝食。结果表明:利用直接法和替代法测得玉米消化能(Digestible energy,DE).代谢能(Metabolizable energy,ME)和NE分别为16.65与16.42、16.31与16.15和13.21与13.69MJ/kg DM,代谢能用于净能的效率(K)分别为80.99%与84.77%,两种方法测得数据差异均不显著(P>0.05)。试验三研究不同基础饲粮对生长猪豆粕净能测定的影响。试验选用体重为36±1.4kg的去势公猪24头,随机平均分为4个饲粮处理,其中饲粮1为玉米型基础饲粮,饲粮2和3分别是两种不同替代比例的豆粕试验饲粮;饲粮4是以玉米-豆粕型饲粮(饲粮3)为基础饲粮的豆粕试验饲粮。试验共分为4批(期),每期的试验时间同试验二。结果表明,不同基础饲粮及同种基础饲粮不同替代比例对测定豆粕的DE、ME、 NE以及能量转化效率间差异均不显著。试验四以玉米-豆粕型基础饲粮,利用替代法分别测定生长猪麦麸、小麦、玉米酒精糟及其可溶物(Dried distillers grains with solubles,DDGS)、菜籽粕和棉籽粕净能值,并通过原料净能值与其营养成分间逐步回归建立净能预测方程。试验选用体重为27±0.5kg的去势公猪12头,采用6×3双尤丁方试验设计,即12头猪分为2组,每组6头猪,平均分到6种试验饲粮处理,即1个基础饲粮和5个不同饲料原料替代基础饲粮后的试验饲粮,每种饲粮处理6头猪,分6期交替进行,每期试验时间同试验二。结果表明,麦麸、小麦、DDGS、菜籽粕和棉籽粕净能分别为7.78、11.44、10.21、8.38和7.32MJ/kg DM,通过试验二(玉米)、试验三(豆粕)和试验四的5种饲料原料净能值与其化学组分进行逐步回归分析,得出7种原料净能预测方程为NE=1.46+0.63GE-0.37ADF(R2=0.94,RSD:0.54)。试验五设计6种不同营养结构的混合饲粮,分别测定其净能值,并结合前4个试验的试验饲粮,通过对饲粮净能值与其化学组分进行逐步回归分析,建立饲料原料净能最优预测方程。试验选用体重为35±1.5kg的去势公猪12头,试验设计同试验四。结果表明,分别以本试验6种饲粮和本研究前4个试验10种饲料合计16种饲粮为基础,通过饲粮净能值与其化学组分进行逐步回归分析,建立的饲料原料净能预测方程为NE=-10.19+0.97DE+0.08St+0.55ADF(R2=0.84,RSD=0.46)。
A total of72crossbred barrows (Duroc×Large White×Landrace) were used to determine the net energy (NE) value and establish the NE prediction equations of seven ingredients in growing pigs using open-circuit respiratory chambers, five energy metabolism experiments were conducted in this study. In Exp.1,6crossbred barrows with an initial body weight (BW) of43±1.4kg were used to evaluate the fasting and regression methods to predict fasting heat production (FHP) in growing pigs. Six pigs were housed in open-circuit respiratory chambers for20d. A typical corn-soybean meal ration was fed throughout the experiment. The first7d were an adaptation to the diets, the next5d pigs were fed at2600kJ ME/kg BW0.6·-1, then fed at2×ME for maintenance (MEm) for3d, then fed at1RMEm for3d, and then fasted for2d. Fasting and regression methods were used to predict FHP. The predicted FHP for fasting and regression methods were774and694kJ/kg BW0.6·-1, respectively. In Exp.2,18barrows (initial BW=34±1.1kg) were selected to determine the NE value of corn using direct and substitution methods. Pigs were randomly allotted to3diets. The first diet (Corn) was formulated to contain97.5%corn and was used to determine the energy content in corn directly, while the second diet (Corn-Soybean meal-Basal diet) was formulated to contain72.5%corn and25.0%soybean meal, and the third diet (Corn-Soybean meal-Test diet) substituted40%of the energy supplied by the Corn-Soybean meal-Basal diet with corn. These2diets were used to calculate the energy content in corn using the substitution method. The DE, ME, NE content and k value in corn determined by the direct method were16.65,16.31,13.21MJ/kg DM, and80.99%, respectively, which were not different from the DE, ME, NE content and k value in corn determined by the substitution method which were16.42,16.15,13.69MJ/kg DM, and84.77%, respectively. In Exp.3,24barrows (initial BW=36±1.4kg) were used to determine the NE of soybean meal by the different basal diets methods for growing pigs. Pigs were randomly allotted to4diets. Three diets (1,2, and3) and two diets (3and4) were used to determine the energy value of soybean meal by using the corn basal (Corn-Basal) diet or the corn-soybean meal basal (Corn-SBM-Basal) diet method, respectively. The average DE, ME, NE, and RE content in soybean meal (17.36,16.52,10.62, and5.06MJ/kg DM, respectively) determined by the Corn-SBM-Basal diet method, was not different from the Corn-Basal diet method. In Exp.4,12barrows (initial BW=27±0.5kg) were used to determine the NE value of wheat bran, wheat, dried distillers grains with soluble (DDGS), canola meal, and cottonseed meal, and establish prediction equations for NE content of ingredients. Pigs received one corn-soybean meal basal diet and five experimental diets containing wheat bran, wheat, DDGS, canola meal, and cottonseed meal, respectively. Measurements were conducted on6pigs per experimental diets. The average values for wheat bran, wheat, DDGS, canola meal, and cottonseed meal were7.78,11.44,10.21,8.38, and7.32MJ/kg DM for NE, respectively. Stepwise regression analysis performed by the chemical composition and the NE value of the ingredients, the NE values could be accurately predicted from the chemical characteristics. The equation was as follows:NE=1.46+0.63GE-0.37ADF, with R2=0.94, residual standard deviation (RSD)=0.54MJ/kg, and P<0.01. In Exp.5,12barrows (initial BW=35±1.5kg) were randomly allotted to6mixed diets formulated by corn, soybean meal, wheat bran, wheat, DDGS, canola meal, and cottonseed meal, and each mixed diet was fed to six pigs. The chemical composition of each mixed diet was determined, and the results were used to establish prediction equations for the NE content from chemical characteristics. The equation for NE was established by the stepwise regression between chemical composition and energy value of the16diets (Include10diets in Exp.2,3and4), and the equation was as follows:NE=-10.19+0.97DE+0.08Starch+0.05ADF with R2=0.84, RSD=0.46MJ/kg, and P<0.01.
引文
蔡永久.2002.饲料配方能量指标的优选.中国饲料,13:27-29.
    程起方,冯仰廉,李胜利,等.2003.大型开路循环式双呼吸测热室的测试.中国畜牧杂志,39(3):18-20.
    符林升,熊本海,高华杰.2009.猪饲料营养价值评定及营养需要的研究进展.中国饲料,10:34-39.
    胡官波,陈达图,易孟霞,等.2013.猪饲料原料净能测定方法及其影响因素.饲料与畜牧,10:42-45.
    胡琴.生长肥育猪玉米和豆粕净能值测定:[博士毕业论文].北京:中国农业大学,2011.
    李爱科.肉牛对低质粗饲料能量转化效率的研究:[博士毕业论文].北京:中国农业大学,1990.
    李德发.2003.猪的营养.北京:中国农业科学技术出版社.pp 43-77.
    李坤,孙国强,宋恩亮,等.2011.牛能量需要量测定方法研究进展.家畜生态学报,32(1):5-8.
    宁冬,呙于明,王永伟,等.2013.间接测热法和回归法估测棉籽粕和玉米蛋白粉在蛋鸡中的代谢能和净能值.动物营养学报,25(5):968-977.
    任建安,李宁,黎介寿.2001.能量代谢监测与营养物质需要量.中国实用外科杂志,21(10):631-637.
    王康宁.2010.猪禽饲料NE测定及其需要量研究.饲料与畜牧,5:8-11.
    杨嘉实.1983.猪用回流密闭式呼吸装置.中国畜牧兽医学报,14(4):243-247.
    杨嘉实,苏秀霞,黄礼光.1987.禽用密闭式呼吸测热器简介.吉林农业科学,4:60-67.
    杨嘉实,冯仰廉.2004.畜禽能量代谢.北京:中国农业出版社,pp 32-61.
    杨嘉实.2008.畜禽能量代谢研究的简史回顾和今后发展的建议.中国畜牧杂志,44(13):61-64.
    杨凤.2001.动物营养学.第二版.北京:中国农业出版社,pp 96-97.
    张子仪,吴克谦,吴同礼,等.1981.应用回归分析评定鸡饲料表观代谢能值的研究.畜牧兽医学报,12(4):223-229.
    张桂凤.生长猪豆粕净能预测方程的构建:[博士毕业论文].北京:中国农业大学,2013.
    中华人民共和国国家技术监督局.GB/T6435-2006.饲料水分的测定方法.北京:中国标准出版社,2007-03-01.
    中华人民共和国国家技术监督局.GB/T6432-1994.饲料中粗蛋白质的测定方法.北京:中国标准出版社,1995-01-01.
    中华人民共和国国家技术监督局.GB/T 6433-2006.饲料中粗脂肪的测定方法.北京:中国标准出版社,2006-09-01.
    中华人民共和国国家技术监督局.GB/T6434-2006.饲料中粗纤维的测定方法.北京:中国标准出版社,2006-11-01.
    中华人民共和国国家技术监督局.GB/T 20806-2006.饲料中中性洗涤纤维的测定方法.北京:中 国标准出版社,2007-03-01.
    中华人民共和国农业部.NY/T 1459-2007.饲料中酸性洗涤纤维的测定方法.北京:中国标准出版社,2008-03-01.
    中华人民共和国国家技术监督局.GB/T 6436-2002.饲料中钙的测定.北京:中国标准出版社,2002-07-01.
    中华人民共和国国家技术监督局.GB/T 6437-2002.饲料中总磷的测定.北京:中国标准出版社,2002-07-01.
    中华人民共和国国家技术监督局.GB/T 6438-2007.饲料中粗灰分的测定.北京:中国标准出版社,2007-09-01.
    中华人民共和国农业部.NY/T 65-2004.猪饲养标准.2004.北京:中国农业出版社,2004-09-01.
    周纪曾.1986.动物能量代谢的测定.中国兽医科技,3:38.
    朱立鑫,谯仕彦.2009.猪净能体系及其研究进展.中国畜牧杂志,45(15):61-64.
    Adeola, O.2001. Digestion and balance techniques in pigs. In:A. J. Lewis, and L. L Southern (ed.) Swine Nutrition,2nd edition. Washington, DC:CRC Press, pp 903-916.
    Allee, G. L., J. E. Pettigrew, J. F. Patience, et al.2009. North American Swine Energy System: Experimental Strategy and Methods. J. Anim. Sci.,87 (E-Suppl.3):98. (Abstr.)
    AOAC.2007. Official methods of analysis.18th ed. Association of Official Analytical Chemists. Arlington, VA.
    Ayoade, D. I., E. Kiarie, M. T. Neto, et al.2012. Net energy of diets containing wheat-corn distillers dried grains with solubles as determined by indirect calorimetry, comparative slaughter, and chemical composition methods. J. Anim. Sci.,90:4373-4379.
    Bakker, G. C. M.1996. Interaction between carbohydrates and fat in pigs:Impact on energy evaluation of feeds. Ph.D. Thesis, ID-DLO Lelystad, The Netherlands.
    Baldwin, R. L.1995. Energy requirements for maintenance and production. In:R. L. Baldwin (ed.) Modeling Ruminant Digestion and Metabolism. Chapman and Hall, London, UK. pp 148-188.
    Baldwin, R. L. and A. C. Bywater.1984. Nutritional energetics of animals. Annu. Rev. Nutr., 4:101-114.
    Ball, R. O., and F. X. Aherne.1987. Influence of dietary nutrient density, level of feed intake and weaning age on young pigs. II. Apparent nutrient digestibility and incidence and severity of diarrhea. Can. J. Anim. Sci.,67:1105-1115.
    Bath, D. L., M. Ronning, J. H. Meyer, et al.1965. Caloric equivalent of live weight loss of dairy cattle. J. Dairy. Sci.,48:374-380.
    Bikker, P., M. Verstegen, and R. Campbell.1996. Performance and body composition of finishing gilts (45 to 85 kg) as affected by energy intake and nutrition in earlier life:II. Protein and lipid accretion in body components. J. Anim. Sci.,74:817-826.
    Birkett, S., and K. de. Lange.2001a. Limitations of conventional models and a conceptual framework for a nutrient flow representation of energy utilization by animals. Br. J. Nutr.,86:647-659.
    Birkett, S., and K. de. Lange.2001b. Calibration of a nutrient flow model of energy utilization by growing pigs. Br. J. Nutr.,86:675-689.
    Bolarinwa, O. A. and O. Adeola.2012. Direct and regression methods do not give different estimates of digestible and metabolizable energy of wheat for pigs. J. Anim. Sci.,90:390-392.
    Boisen, S.1998. A new protein evaluation system for pig feeds and its practical application. Acta. Agr. Scand.A-An.,48:1-11.
    Boisen, S.2003. A new concept for feed evaluation based on standardised digestible amino acids and potential physiological energy of nutrient fractions in pig feeds. Publ-Eur. Assoc. Anim. Prod., 109:129-132.
    Boisen, S., and M. W. A. Verstegen.1998. Evaluation of feedstuffs and pig diets. Energy or nutrient-based evaluation systems? I. Limitations of present energy evaluation systems. Acta Agr. Scand. A-An.,48:86-94.
    Boisen, S., and M. W. A. Verstegen.2000. Developments in the measurement of the energy content of feeds and energy utilisation in animals. In:P. Moughan, and M. Visser-Reyneveld. Feed evaluation: principles and practice. Wageningen, The Netherlands:Wageningen Press, pp 57-76.
    Boisen, S., and P. Tybirk.2007. A new practical feed evaluation system for pigs. In:Energy and protein metabolism and nutrition (I Ortigues-Marty, eds), EEAP publication No.124, Wageningen Academic Publishers, The Netherlands, pp 567-568.
    Brown, D., and L. Mount.1982. The metabolic body size of the growing pig. Livest. Prod. Sci., 9:389-398.
    Brouwer, E.1965. Report of sub-committee on constants and factors. In Energy Metabolism: Proceedings of the 3rd Symposium of the European Association for Animal Production.Troon, Scotland:Academic Press, pp 441-443.
    Campbell, R. G., M. R. Taverner, and D. M. Curie.1984. Effect of feeding level and dietary protein content on the growth, body composition and rate of protein deposition in pigs growing from 45 to 90 kg. Anim. Prod.,38:233-240.
    Canh, T. T., A. J. A. Aarnink, J. B. Schutte, et al.1998. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs. Livest. Prod. Sci.,56:181-191.
    Chwalibog, A.1991. Energetics of animal production. Acta. Agr. Scand.,41:147-160.
    Chwalibog, A, A-H. Tauson, and G. Thorbek.2004. Energy metabolism and substrate oxidation in pigs during feeding, starvation and re-feeding. J. Anim. Physiol. Anim. Nutr (Berl).,88:101-12.
    Chueh, W. C., and S. M. Haile.2010. A thermochemical study of ceria:exploiting an old material for new modes of energy conversion and CO2 mitigation. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences.,368:3269-3294.
    Close, W. H., F. Berschauer, and R. P. Heavens.1983. The influence of protein:energy value of the ration and level of feed intake on the energy and nitrogen metabolism of the growing pig. J. Nutr., 49:255.
    Close, W. H., and L. E. Mount.1978a. The effects of plane of nutrition and environmental temperature on the energy metabolism of the growing pig.1. Heat loss and critical temperature. Br. J. Nutr., 40:413-421.
    Cozannet, P., C. Primot, C. Gady, et al.2010. Energy value of wheat distillers grains with solubles for growing pigs and adult sows. J. Anim. Sci.,88:2382-2392.
    de Goey, L. W, and R. C. Ewan.1975a. Effect of level of intake and diet dilution on energy metabolism in the young pig. J. Anim. Sci.,40:1045-1051.
    de Goey, L. W. and R. C. Ewan.1975b. Energy values of corn and oats for young swine. J. Anim. Sci., 40:1052-1057.
    de Lange, K., J. van. Milgen, J. Noblet, et al.2006. Previous feeding level influences plateau heat production following a 24 h fast in growing pigs. Br. J. Nutr.,95:1082-1087.
    Ewan, R. C.2001. Energy utilization in swine nutrition. In:A. J. Lewis and L. L. Shouthern (ed.) Swine Nutrition.2nd edition. Washington, DC:CRC Press, pp 85-94.
    Fairbairn, S. L., J. F. Patience, H. L. Classen, et al.1999. The energy content of barley fed to growing pigs:Characterizing the nature of its variability and developing prediction equations for its estimation. J. Anim. Sci.,77:1502-1512.
    Fernandez, J. A. and J. N. Jorgensen.1986. Digestibility and absorption of nutrients as affected by fibre content in the diet of the pig. Quantitative aspects. Livest. Prod. Sci.,15:53-71.
    Frape, D. L. and M. G. Tuck.1977. Determining the energy values of ingredients in pig feeds. Proc. Nutr. Soc,36:179-187.
    Just, A.1975. Feed evaluation in pigs. World Rev. Anim. Prod.,11:18-30.
    Just, A.1982a. The net energy value of balanced diets for growing pigs. Livest. Prod. Sci.,8:541-555.
    Just, A.1982b. The net energy value of crude (catabolized) protein for growth in pigs. Livest. Prod. Sci., 9:349-360.
    Kil, D. Y., F. Ji, L. L. Stewart, et al.2011. Net energy of soybean oil and choice white grease in diets fed to growing and finishing pigs. J. Anim. Sci.,89:448-459.
    Kil, D.Y., F. Ji, R. B. Hinson, et al.2009. Comparison of measured values for NE in diets and ingredients fed to pigs and values predicted from European energy systems. J. Anim. Sci.,87 (E-Suppl.3):100. (Abstr.)
    Kim, J. C, B. P. Mullan, J. M. Heo, et al.2009. Variation in digestible energy content of Australian sweet lupins (Lupinus angustifolius L.) and the development of prediction equations for its estimation. J. Anim. Sci.,87:2565-2573.
    Kleiber, M.1975. The fire of life. In:E. Robert (ed.) An Introduction to Animal Energetics.2nd edition. London, New York:Krieger Publishing Co., pp 411-435.
    Kornegay, E. T.1978. Soybean hulls for growing, finishing swine. Feedstuff's,50:24-26.
    Koong, L. J., J. A. Nienaber, and H. J. Mersmann.1983. Effects of plane of nutrition on organ size and fasting heat production in genetically obese and lean pigs. J. Nutr.,113:1626-1631.
    Koong, L. J., J. A. Nienaber, J. C. Pekas, et al.1982. Effects of plane of nutrition on organ size and fasting heat production in pigs. J. Nutr.,112:1638-1642.
    Labussiere, E., J. van Milgen, C. F. de Lange, et al.2011. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. J. Nutr.,141:1855-1861.
    Le Bellego, L., J. van Milgen, and J. Noblet.2002. Effect of high temperature and low protein diets on performance of growing finishing pigs. J. Anim. Sci.,80:691-701.
    Le Bellego, L., J. van Milgen, S. Dubois, et al.2001. Energy utilization of low-protein diets in growing pigs. J. Anim. Sci.,79:1259-1271.
    Le Goff, G., and J. Noblet.2001. Comparative digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci.,79:2418-2427.
    Le Goff, G., J. van Milgen, and J. Noblet.2002a. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs, and adult sows. Anim. Sci.,74:503-515.
    Le Goff, G., S. Dubois, J. van Milgen, et al.2002. Influence of dietary fibre level on digestive and metabolic utilisation of energy in growing and finishing pigs. Anim. Res.,51:245-260.
    Li, S., Sauer, W. C., and Fan, M. Z.1993. The effect of dietary crude protein level on ileal and fecal amino acid digestibility in early-weaned pigs. J. Anim. Physiol. Anim. Nutr (Berl).,70:117-128.
    Liu, D. W., D. F. Li, and F. L. Wang.2014. Determination and prediction of net energy content from the chemical composition of seven ingredients fed to growing pigs. (Submitted).
    Lloyd, L. E., and E. W. Crampton.1955. The apparent digestibility of the crude protein of the pig ration as a function of its crude protein and crude fiber content. J. Anim. Sci.,14:693-699.
    McCracken, K., and S. D. Rao.1989. Protein:energy interactions in boars of high lean deposition potential. In:Y. van der Honing, and W. H. Close (ed.) Energy Metabolism of Farm Animals, Proceedings of the 11th Symposium, Lunteren, Wageningen, The Netherlands:Pudoc, pp 13-16.
    Moehn, S., J. Atakora, and R.O. Ball.2005. Using net energy for diet formulation:potential for the Canadian pig industry. Adv. Pork Prod.,16:119-129.
    Morgan, C. A., C. T. Whittemore, P. Phillips, et al.1987. The prediction of the energy value of compounded pig foods from chemical analysis. Anim. Feed Sci. Technol.,17:81-107.
    Mount, L. E.1969. The respiratory quotient in the newborn pig. Br. J. Nutr.,23:407.
    M6hn, S., and C. F. de Lange.1998. The effect of body weight on the upper limit to protein deposition in a defined population of growing gilts. J. Anim. Sci.,76:124-133.
    Noblet, J.2000. Digestive and metabolic utilization of feed energy in swine:application to energy evaluation systems. J. Appl. Anim. Res.,17:113-132.
    Noblet, J.2006. Recent advances in energy evaluation of feeds for pigs. In:Recent advances in Animal Nutrition 2005, Eds. P.C. Garnsworthy and J. Wiseman. Nottingham University Press, Nottingham. pp 1-26.
    Noblet, J.2007. Recent developments in net energy research for swine. Adv. Pork Prod.,18:149-156.
    Noblet, J.2007. Net energy evaluation of feeds and determination of net energy requirements for pigs. Revista Brasileira de Zootecnika.,36:277-284.
    Noblet, J., C. Karege, and S. Dubois.1991. Influence of growth potential on energy requirements for maintenance in growing pigs. In:Energy Metabolism of Farm Animals (Eds. C. Wenk and M. Boessinger). EAAP Publication, Zurich, Switzerland, pp 107-110.
    Noblet, J., C. Karege, S. Dubois, et al.1999. Metabolic utilization of energy and maintenance requirements in growing pigs:effects of sex and genotype. J. Anim. Sci.,77:1208-1216.
    Noblet, J., and G. Le Goff.2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Tech.,90:35-52.
    Noblet, J., H. Fortune, C. Dupire, et al.1993. Digestible, metabolizable and net energy values of 13 feedstuffs for growing pigs:effect of energy system. Anim. Feed Sci. Tech.,42:131-149.
    Noblet, J., H. Fortune, X. S. Shi, et al.1994a. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci,.72:344-354.
    Noblet, J., and J. M. Perez.1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci.,71:3389-3398.
    Noblet J., and J. van Milgen.2004. Energy value of pig feeds:effect of pig body weight and energy evaluation system. J. Anim. Sci.,82(E. Suppl.):E229-E238.
    Noblet, J. and J. van Milgen.2013. Energy and energy metabolism in swine. In:L. I. Chiba, editor, Sustainable swine nutrtion. Wiley-Blackwell, Ames, IA. pp 33-35.
    Noblet, J., and M. Etinne.1987a. Metabolic utilization of energy and maintenance requirements in lactating sows. J. Anim. Sci.,64:774-781.
    Noblet, J., and M. Etinne.1987b. Metabolic utilization of energy and maintenance requirements in pregnant sows. Livest. Prod. Sci.,16:243-257.
    Noblet, J., and M. Etinne.1989. Estimation of sow milk nutrient output. J. Anim. Sci.,67:3352-3359.
    Noblet, J., W. H. Close, R.P. Heavens, et al.1985b. Studies on the energy metabolism of the pregnant sow.Uterus and mammary tissue development. Br. J. Nutr.,53:251-265.
    Noblet, J., and X. S. Shi.1993. Comparative digestibility of energy and nutrients in growing pigs fed ad libitum and adult sows fed at maintenance. Livest. Prod. Sci.,34:137-152.
    Noblet, J., and X. S. Shi.1994. Effect of body weight on digestive utilization of energy and nutrients of ingredients and diets in pigs. Livest. Prod. Sci.,37:323-338.
    Noblet, J., X. S. Shi, and S. Dubois.1993a. Energy cost of standing activity in sows. Livest. Prod. Sci., 34:127-136
    Noblet, J., X. S. Shi, and S. Dubois.1993b. Metabolic utilization of dietary energy and nutrients for maintenance energy requirements in sows:Basis for a net energy system. Br. J. Nutr.,70:407-419.
    Noblet, J., X. S. Shi, and S. Dubois.1994b. Effect of body weight on net energy value of feeds for growing pigs. J. Anim. Sci.,72:648-657.
    Noblet, J., and Y. Henry.1991. Energy evaluation systems for pig diets. In:E. S. Batterham (ed.) Manipulating Pig Production III. Attwood, Australia:Australasian Pig Science Association, pp 87-110.
    Noblet, J., and Y. Henry.1993. Energy evaluation systems for pig diets:a review. Livest. Prod. Sci.,36: 121-141.
    NRC.1998. Nutrient Requirements of Swine. National Academy Press, Washington, DC.
    NRC.2012. Nutrient Requirements of Swine. National Academy Press, Washington, DC.
    Oresanya, T. F., A. D. Beaulieu, and J. F. Patience.2008. Investigations of energy metabolism in weanling barrows:the interaction of dietary energy concentration and daily feed (energy) intake. J. Anim. Sci.,86:348-363.
    Partridge, G. G.2001. The role of carbohydrase enzymes in pig nutrition. Pages 161-197 in Enzymes in Farm Animal Nutrition. M. R. Bedford and G. G. Partridge, ed. CABI Publishing, Oxon, UK.
    Pedersen, C., M. G. Boersma, and H. H. Stein.2007. Digestibility of energy and phosphorus in 10 samples of distillers dried grains with solubles fed to growing pigs. J. Anim. Sci.,85:1168-1176.
    Perez, J. M., B. Ramoelintsalama, and D. Bourdon.1980. Energy evaluation of barley for pigs. Prediction from analyses of fiber content. J. Rech. Porcine Fr.,12:273-284.
    Pettigrew, J. E.2008. North American swine energy system. Research report. National Pork Board, Des Moines, USA.
    Pettigrew, J. E.2009. Effective nutrient utilization in the nonruminant animal. Pages 47-54 in Proc.30th Western Nutr. Conf., Winnipeg, MB, Canada.
    Pettigrew, J. E, G. L. Allee, J. F. Patience, et al.2009. North American Swine Energy System: Introduction. J. Anim. Sci.,87 (E-Suppl.3):97. (Abstr.)
    Quiniou, N., S. Dubois, and J. Noblet.1995. Effect of dietary crude protein level on protein and energy balances in growing pigs:comparison of two measurement methods. Livest. Prod. Sci.,41:51-61.
    Ramonet, Y., J. van Milgen, J. Y. Dourmad, et al.2000. The effect of dietary fibre on energy utilisation and partitioning of heat production over pregnancy in sows. Br. J. Nutr.,84:85-94.
    Regnault, L.1990. "Multifunction cell with a variable volume chamber and a fluid supply circuit for an ink jet printing head." U. S. Patent No.4,910,529.20 Mar.
    Renaudeau, D., N. Quiniou, and J. Noblet.2001. Effect of high ambient temperature and dietary protein level on performance of multiparous lactating sows. J. Anim. Sci.,79:1240-1249.
    Reynolds, C. K.2000. Measurement of energy metabolism. In:M. K. Theodorou, and J. France (ed.) Feeding Systems and Feed Evaluation Models. Oxon, U. K:CAB International, pp 87-107.
    Rijnen, M. M. J. A.2003. Energetic utilization of dietary fiber in pigs. Ph.D. Thesis, University of Wageningen, Wageningen, the Netherlands.
    Rijnen, M., M. W. A. Verstegen, M. Heetkamp, et al.2003. Effects of two different dietary fermentable carbohydrates on activity and heat production in group-housed growing pigs. J. Anim. Sci., 81:1210-1219.
    Sauber, T. E., and F. N. Owens.2001. Cereal grains and by-products for swine. Pages 785-802 in Swine Nutrition. A. L. Lewis and L. L. Southern, eds. CRC Press, Boca Raton, FL.
    Sauvant, D., J. M. Perez, and G. Tran.2004. Tables of composition and nutritional value of feed materials:pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen Academic Pub.
    Schrama, J. W., M. W. Bosch, M. W. A. Verstegen, et al.1998. The energetic value of nonstarch polysaccharides in relation to physical activity in group-housed, growing pigs. J. Anim. Sci., 76:3016-3023.
    Sibbald, I. R., J. D. Summers, and S. J. Slinger.1960. Factors affecting the metabolizable energy content of poultry feeds. Poult. Sci.,39:544-556.
    Skiba, F., J. Noblet, P. Callu, et al.2002. Effects of grinding process and pelleting on nutritional value of full-fat rapeseed for growing pigs. In 346mes Jouraees de la Recherche Porcine, sous l'egide de l'Association Franccaise de Zootechnie, Paris, France,5-7 fevrier 2002. (pp.67-73). Institut Technique du Pore.
    Soenke, M, A. Jacob, and O. Ronald.2005. Using net energy for diet formulation:Potential for the canadian pig industry. Adv. Pork. Prod.,16:119-129.
    Stanogias, G, and G, R, Pearce,1985, The digestion of fibre by pigs, I. The effects of amount and type of fibre on apparent digestibility, nitrogen balance and rate of passage. Br. J. Nutr.,53:513-530.
    Thonney, M. L., R. W. Touchberry, R. D. Goodrich, et al.1976. Intraspecies relationship between fasting heat production and body weight:A reevaluation of W.75. J. Anim. Sci.,43:692-704.
    van Milgen, J.2002. Modeling biochemical aspects of energy metabolism in mammals. J. Nutr., 132:3195-3202.
    van Milgen, J., A. Valancogne, S. Dubois, et al.2008. InraPorc:A model and decision support tool for the nutrition of growing pigs. Anim. Feed Sci. Technol.,143:387-405.
    van Milgen, J., J. Bernier, Y. Lecozler, et al.1998. Major determinants of fasting heat production and energetic cost of activity in growing pigs of different body weight and breed/castration combination. Br. J. Nutr.,79:509-517.
    van Milgen, J., and J. Noblet.2000. Modelling energy expenditure in pigs. In:J. P. McNamara, J. France, and D. E. Beever (ed.) Modelling Nutrient Utilization in Farm Animals. Oxon, UK:CAB International, pp 103-114.
    van Milgen, J., and J. Noble.2003. Partitioning of energy intake to heat, protein, and fat in growing pigs. J. Anim. Sci.,81:86-93.
    van Milgen, J., J. Noblet, and S. Dubois.2001. Energetic efficiency of starch, protein and lipid utilization in growing pigs. J. Nutr.,131:1309-1318.
    Van Oeckel, M. J., J. Vanacker, N. Warrants, et al.2005. The impact of different crude fibre sources in the diet of fattening pigs on the nitrogen excretion via faeces and urine:In:Green Pork Production, 25-27 May, Paris, France, pp 89-90.
    Verstegen, M. W. A.2001. Developments towards net energy systems in feeds and animals. In: Proceedings of Western Nutrition Conference. Canada:Saskatoon, pp 170-184.
    Villamide, M. J.1996. Methods of energy evaluation of feed ingredients for rabbits and their accuracy. Anim. Feed Sci. Technol.,57:211-223.
    Young, V. R.1991. Nutrient interactions with reference to amino acid and protein metabolism in non-ruminants; particular emphasis on protein-energy relations in man. Zeitschrift. Fur. Ernahrungswissenschaft.,30:239-267.
    Zijlstra, R. T., C. F. M. De Lange, and J. F. Patience.1999. Nutritional value of wheat for growing pigs: Chemical composition and digestible energy content. Can. J. Anim. Sci.,79:187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700