用户名: 密码: 验证码:
丁酸梭菌对肉鸡脂肪代谢的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在探讨丁酸梭菌对肉鸡脂肪代谢的影响及其作用机理。分体内试验和体外试验两部
     分进行研究。第一部分通过体内试验研究丁酸梭菌和屎肠球菌配伍对肉鸡生产性能、脂肪代谢和盲肠微生
     物的影响。试验选用1日龄健康罗斯308肉公鸡264只,随机分为4个处理,每个处理6个重复,
     每个重复11只鸡。处理1组饲喂基础日粮,其余3组分别在基础日粮的基础上添加丁酸梭菌1×109
     CFU/kg,屎肠球菌2×109CFU/kg,丁酸梭菌1×109CFU/kg+屎肠球菌2×10-CFU/kg。试验期为
     42d。结果发现,日粮中添加丁酸梭菌和屎肠球菌对肉鸡的生产性能、脂肪代谢和盲肠微生物均
     不存在互作效应,但日粮中添加屎肠球菌显著降低了21d肉鸡血清瘦素水平(P=0.022),提高了
     42d肉鸡肝脏中的脂肪酸合成酶(FAS)、苹果酸酶(ME)和乙酰辅酶A羧化酶(ACC)mRNA
     水平(P<0.001);日粮中添加丁酸梭菌显著提升了肉鸡的平均日采食量和日增重(P<0.05),提
     高了21d肉鸡的血清胰岛素水平(P=0.016)和42d肉鸡的肌内脂肪含量、肝脏FAS和胸肌脂蛋
     白酯酶(LPL)活性以及肝脏中FAS、ME、ACC和胸肌LPL mRNA表达(P<0.05),降低了21d
     肉鸡盲肠中拟杆菌门的数量(P=0.030)。以上结果表明,丁酸梭菌组肉鸡肌内脂肪含量的增加与
     肉鸡脂肪合成能力的增强密切相关。第二部分通过体外试验研究丁酸梭菌及其组份对脂肪代谢的影响。试验首先通过丁酸梭菌
     1×106、1×107和1×108CFU/m1分别与Caco-2细胞共培养2h,研究了丁酸梭菌对Caco-2细胞的
     细胞毒性和血管生成素样蛋白4(ANGPTL4)mRNA表达的影响。结果发现,丁酸梭菌在此添加
     剂量范围内对Caco-2细胞成活率无影响,但丁酸梭菌1×107CFU/ml显著提高了Caco-2细胞的
     ANGPTL4mRNA表达。之后就丁酸梭菌1×107CFU/ml的各组份对Caco-2细胞ANGPTL4的影
     响进行了探究,结果发现,丁酸梭菌的细胞壁成分和其代谢产物均可以促进Caco-2细胞的
     ANGPTL4mRNA表达和蛋白分泌。为了确定是否是丁酸梭菌的主要代谢产物丁酸起到了促进
     Caco-2细胞ANGPTL4产生的作用,试验就单羧酸转运蛋白1(MCT1)在丁酸梭菌代谢产物影
     响Caco-2细胞ANGPTL4中的作用和0.1mM丁酸对Caco-2细胞ANGPTL4的影响进行了研究。
     最终确定了促进Caco-2细胞ANGPTL4产生的丁酸梭菌的代谢产物的主要成分就是丁酸。此外,
     试验中还发现,活的丁酸梭菌、灭活的丁酸梭菌以及丁酸分别作用于Caco-2细胞2h后所产生的
     可溶性成分均具有降低HepG2细胞脂肪合成代谢相关基因表达的作用。以上结果表明,丁酸梭
     菌1×107CFU/ml可以通过其细菌壁成分和其主要的代谢产物如丁酸来降低脂肪生成。综上所述,丁酸梭菌本身具有的功能是降低脂肪沉积,其发挥作用的有效成分是其细菌壁成
     分和其主要的代谢产物丁酸。而丁酸梭菌提高肉鸡肌内脂肪沉积的现象可能与丁酸梭菌改变了肉
     鸡肠道中的菌群结构进而促进了肉鸡的脂肪合成有关。
Two experiments were conducted to investigate the effects of Clostridium butyricum on lipid metabolism of broiler chickens and its underlying mechanism.
     Exp.1To investigate the effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism and cecal microbiota of broilers,264one-d-old male Ross308broiler chicks were randomly allocated into4treatments with6replicates in a2x2factorial arrangement and fed4diets with2levels of C. butyricum (0or1×109CFU/kg) and2levels of E.faecium (0or2×109CFU/kg) for42d. There was no significant interaction between C. butyricum and E. faecium on growth performance, lipid metabolism and cecal microbiota of broilers. However, broilers supplemented with E. faecium had lower (P=0.022) serum leptin level at d21and higher (P<0.001) fatty acid synthase (FAS), malic enzyme (ME) and acetyl-CoA carboxylase (ACC) mRNA levels in the liver at d42. Supplementation of C. butyricum improved (P<0.05) average daily feed intake and average daily gain, increased (P=0.016) serum insulin level at21d of age, enhanced (P<0.05) content of intramuscular fat, activities of FAS in the liver and lipoprotein lipase (LPL) in the breast muscle, mRNA expression of FAS, ME and ACC in the liver and LPL in the breast muscle at42d of age, but reduced (P=0.030) cecal Bacteroidetes relative abundance at21d of age. The results of this study indicate that the increased intramuscular fat content of broilers fed C. butyricum as observed may be the result of enhanced lipogenesis.
     Exp.2The objective of this study was to assess the possibility that C. butyricum and its potential components and metabolites could regulate lipogenesis. Co-culture experiments of Caco-2cells and1×106,1×107, and1×108CFU/ml of C. butyricum were set up to test the cytotoxicity of C. butyricum and the changes of angiopoietin-like protein4(ANGPTL4) mRNA expression. It was found that cell viability was not affected by C. butyricum and ANGPTL4mRNA expression in Caco-2cells was highly induced by1×107CFU/ml of C. butyricum. Co-culture experiment of Caco-2cells and potential components of C. butyricum was set up to monitor any ensuing alteration in ANGPTL4. It was observed that bacterial wall components and potentially secreted substances from C. butyricum could induce ANGPTL4mRNA expression and protein secretion. To determine whether butyrate could affect the ANGPTL4production in Caco-2cells, the role of monocarboxylate transporter1(MCT1) in mediating potentially secreted factors from C. butyricum-induced ANGPTL4production in Caco-2cells and the effect of0.1mM of butyrate on ANGPTL4production in Caco-2cells were investigated. It's confirmed that butyrate was the factor secreted by C. butyricum that stimulate ANGPTL4production. Besides, the soluble factors secreted by live C. butyricum-Caco-2cells interaction, bacterial wall components-Caco-2cells interaction, and the main metabolites butyrate-Caco-2cells interaction reduced lipogenic genes expression in HepG2cells. The results of this study indicate that1×107CFU/ml of C. butyricum could reduce lipogenesis through the bacterial wall components and the metabolites such as butyrate.
     In conclusion, C. butyricum per se could reduce lipogenesis through both the bacterial wall components and the metabolites such as butyrate. However, the enhanced intramuscular fat of broilers in C. butyricum-supplemented groups observed in this study may be partially attributed to a changed microecological environment which promoted fat synthesis.
引文
[1]Julian R J, Summers J, Wilson J B. Right ventricular failure and ascites in broiler chickens caused by phosphorus-deficient diets. Avian Diseases,1986,30(3):453-459
    [2]Ley R E, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America,2005,102(31):11070-11075
    [3]Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology:human gut microbes associated with obesity. Nature,2006,444(7122):1022-1023
    [4]Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444(7122):1027-1031
    [5]Guo X, Xia X, Tang R, et al. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology,2008,47(5):367-373
    [6]Guo X, Xia X, Tang R, et al. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe,2008,14(4):224-228
    [7]Angelakis E, Raoult D. The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PloS one [electronic resource],2010,5(5):e10463
    [8]Murayama T, Mita N, Tanaka M, et al. Effects of orally administered Clostridium butyricum MIYAIRI 588 on mucosal immunity in mice. Veterinary Immunology and Immunopathology,1995, 48(3-4):333-342
    [9]Nakanishi S, Tanaka M. Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli. Anaerobe,2010,16(3):253-257
    [10]Patterson J A, Burkholder K M. Application of prebiotics and probiotics in poultry production. Poultry Science,2003,82(4):627-631
    [11]Bohmer B M, Branner G R, Roth-Maier D A. Precaecal and faecal digestibility of inulin (DP 10-12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. Journal of Animal Physiology and Animal Nutrition,2005,89(11-12):388-396
    [12]Awad W A, Ghareeb K, Abdel-Raheem S, et al. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science,2009,88(1):49-56
    [13]Samli H E, Senkoylu N, Koc F, et al. Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Archives of animal nutrition,2007, 61(1):42-49
    [14]Yang C M, Cao G T, Ferket P R, et al. Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poultry Science,2012,91(9): 2121-2129
    [15]Samli H E, Dezcan S, Koc F, et al. Effects of Enterococcus faecium supplementation and floor type on performance, morphology of erythrocytes and intestinal microbiota in broiler chickens. British Poultry Science,2010,51(4):564-568
    [16]Zhang B, Yang X, Guo Y, et al. Effects of dietary lipids and Clostridium butyricum on the performance and the digestive tract of broiler chickens. Archives of animal nutrition,2011,65(4): 329-339
    [17]Yang X, Zhang B, Guo Y, et al. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poultry Science,2010,89(2):254-260
    [18]Zhang B, Yang X, Guo Y, et al. Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens. Animal,2011,5(12):1909-1915
    [19]Murphy W J, Eizirik E, O'Brien S J, et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science,2001,294(5550):2348-2351
    [20]Gill S R, Pop M, Deboy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science,2006,312(5778):1355-1359
    [21]Backhed F, Ley R E, Sonnenburg J L, et al. Host-bacterial mutualism in the human intestine. Science,2005,307(5717):1915-1920
    [22]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(44):15718-15723
    [23]Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora. Science,2005,308(5728):1635-1638
    [24]Greiner T, Backhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends in endocrinology and metabolism:TEM,2011,22(4):117-123
    [25]张丽萍.不同品种猪肠道微生物与体脂、ANGPTL4基因关系的研究:[博士学位论文].四川:四川农业大学,2007
    [26]Rehman H U, Vahjen W, Awad W A, et al. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of animal nutrition,2007,61(5):319-335
    [27]Wostmann B S. Germfree and gnotobiotic animal models:background and applications.1996
    [28]Umesaki Y, Setoyama H, Matsumoto S, et al. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology,1993,79(1):32-37
    [29]Falk P G, Hooper L V, Midtvedt T, et al. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiology and molecular biology reviews: MMBR,1998,62(4):1157-1170
    [30]Berg R D. The indigenous gastrointestinal microflora. Trends in Microbiology,1996,4(11): 430-435
    [31]王桂军,魏建忠,李郁.肠道共生微生物群落与家禽健康.中国畜牧兽医,2007,34(02):153-155
    [32]Fons M, Gomez A, Karjalainen T. Mechanisms of colonisation and colonisation resistance of the digestive tract Part 2:Bacteria/bacteria interactions. Microbial ecology in health and disease,2000, 12(2):240-246
    [33]Cebra J J. Influences of microbiota on intestinal immune system development. The American journal of clinical nutrition,1999,69(5):1046S-1051S
    [34]Mazmanian S K, Liu C H, Tzianabos A O, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell,2005,122(1):107-118
    [35]Varel V H, Yen J T. Microbial perspective on fiber utilization by swine. Journal of Animal Science, 1997,75(10):2715-2722
    [36]杨凤.动物营养学.北京:中国农业出版社,2000
    [37]张日俊.消化道微生物与宿主营养素的吸收和代谢研究.中国饲料,2003, (02):11-14
    [38]May T, Mackie R I, Fahey G C J, et al. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scandinavian Journal of Gastroenterology,1994,29(10):916-922
    [39]Yen J T. Anatomy of the digestive system and nutritional physiology. Swine nutrition,2001,2(1): 31
    [40]Forsythe S J, Parker D S. Nitrogen metabolism by the microbial flora of the rabbit caecum. The Journal of applied bacteriology,1985,58(4):363-369
    [41]Williams B A, Verstegen M W, Tamminga S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews,2001, 14(2):207-228
    [42]Macfarlane S, Macfarlane G T. Proteolysis and amino acid fermentation. Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology. GR Gibson and GT Macfarlane, ed. CRC Press, Boca Raton, FL,1995,75-100
    [43]Yen J T, Nienaber J A, Hill D A, et al. Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine. Journal of Animal Science,1991,69(5): 2001-2012
    [44]Towle H C. Glucose and cAMP:adversaries in the regulation of hepatic gene expression. Proceedings of the National Academy of Sciences of the United States of America,2001,98(24): 13476-13478
    [45]胡忠宏.短链脂肪酸对肉仔鸡小肠功能的影响及有关作用机制:[博士学位论文].北京:中国农业大学,2006
    [46]侯爱华,吴斌辉.细菌纤维小体的结构和功能.纤维素科学与技术,2002,10(1):50-56
    [47]杨欣.丁酸梭菌与日粮油脂调控肉仔鸡肌肉品质的研究:[博士学位论文].北京:中国农业大学,2010
    [48]Kersten S, Mandard S, Tan N S, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. The Journal of biological chemistry, 2000,275(37):28488-28493
    [49]Yoon J C, Chickering T W, Rosen E D, et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Molecular and Cellular Biology,2000,20(14):5343-5349
    [50]Mandard S, Zandbergen F, van Straten E, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. The Journal of biological chemistry,2006,281(2):934-944
    [51]Preiss-Landl K, Zimmermann R, Hammerle G, et al. Lipoprotein lipase:the regulation of tissue specific expression and its role in lipid and energy metabolism. Current Opinion in Lipidology,2002, 13(5):471-481
    [52]Lithell H, Boberg J, Hellsing K, et al. Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in the fasting and the fed states. Atherosclerosis,1978,30(1):89-94
    [53]Hooper L V, Wong M H, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science,2001,291(5505):881-884
    [54]Lowe M E. Structure and function of pancreatic lipase and colipase. Annual Review of Nutrition, 1997,17(1):141-158
    [55]Zimmerman A W, Veerkamp J H. New insights into the structure and function of fatty acid-binding proteins. Cellular and molecular life sciences:CMLS,2002,59(7):1096-1116
    [56]Fischer S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory. Proceedings of the National Academy of Sciences of the United States of America,1983,80(6):1579-1583
    [57]Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology,1993,59(3):695-700
    [58]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 1998,73(1):127-141
    [59]倪学勤,Gong Joshua, Yu Hai,等.采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性.畜牧兽医学报,2008,39(7):955-961
    [60]高启禹,吴襟,徐光翠,等.寡糖对SPF大鼠肠道微生物多样性影响的研究.生物技术,2006,16(5):28-30
    [61]苏勇,姚文,朱伟云.益生菌Lactobacillus amylovorus S1对仔猪后肠菌群的影响.微生物学报,2006,46(6):961-966
    [62]von Wintzingerode F, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis. Ferns Microbiology Reviews,1997, 21(3):213-229
    [63]Matsuki T, Watanabe K, Fujimoto J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Applied and Environmental Microbiology,2004,70(12):7220-7228
    [64]Bartosch S, Fite A, Macfarlane G T, et al. Characterization of bacterial communities in feces from
     abdominal fat content:further evidence of a glucose-insulin imbalance in the fat line. The Journal of nutrition,1982,112(10):1961-1973
    [79]Hrdinka C, Zollitsch W, Knaus W, et al. Effects of dietary fatty acid pattern on melting point and composition of adipose tissues and intramuscular fat of broiler carcasses. Poultry Science,1996,75(2): 208-215
    [80]Leclercq B, Hermier D, Salichon M R. Effects of age and diet on plasma lipid and glucose concentrations in genetically lean or fat chickens. Reproduction, nutrition, development,1984,24(1): 53-61
    [81]Eckel R H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. The New England journal of medicine,1989,320(16):1060-1068
    [82]Mourot J, Guy G, Lagarrigue S, et al. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser). Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,2000,126(1):81-87
    [83]周顺伍.动物生物化学.北京:中国农业出版社,1999
    [84]Griffin H D, Whitehead C C, Broadbent L A. The relationship between plasma triglyceride concentrations and body fat content in male and female broilers-a basis for selection? British Poultry Science,1982,23(1):15-23
    [85]Griffin H D, Whitehead C C. Identification of lean or fat turkeys by measurement of plasma very low density lipoprotein concentration. British Poultry Science,1985,26(1):51-56
    [86]Kouba M, Hermier D, Bernard-Griffiths M A. Comparative study of hepatic VLDL secretion in vivo in the growing turkey (Meleagris gallopavo) and chicken (Gallus domesticus). Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,1995,110(1):47-55
    [87]刘皙洁,张桂春,张维生.半胱胺、大豆黄酮对肉仔鸡脂肪代谢的影响.东北农业大学学报,2003,34(2):171-175
    [88]Legrand P, Mallard J, Bernard-Griffiths M A, et al. Hepatic lipogenesis in genetically lean and fat chickens. In vitro studies. Comparative biochemistry and physiology. B, Comparative biochemistry, 1987,87(4):789-792
    [89]Fischer P W, Goodridge A G. Coordinate regulation of acetyl coenzyme A carboxylase and fatty acid synthetase in liver cells of the developing chick in vivo and in culture. Archives of Biochemistry and Biophysics,1978,190(1):332-344
    [90]Takai T, Yokoyama C, Wada K, et al. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. The Journal of biological chemistry,1988,263(6):2651-2657
    [91]Iritani N, Fukuda E, Inoguchi K. A possible role of Z protein in dietary control of hepatic triacylglycerol synthesis. Journal of Nutritional Science and Vitaminology,1980,26(3):271-277
    [92]Choi D H, Choi J H, Whang S K, et al. Regulation of acetyl CoA carboxylase mRNA in rat liver by high carbohydrate diet and insulin. Yonsei Medical Journal,1989,30(3):235-245
    [93]Hardie D G, Carling D. The AMP-activated protein kinase-fuel gauge of the mammalian cell? European journal of biochemistry/FEBS,1997,246(2):259-273
    [94]Hillgartner F B, Charron T, Chesnut K A. Triiodothyronine stimulates and glucagon inhibits transcription of the acetyl-CoA carboxylase gene in chick embryo hepatocytes:glucose and insulin amplify the effect of triiodothyronine. Archives of Biochemistry and Biophysics,1997,337(2): 159-168
    [95]蔡元丽.应激影响肉仔鸡脂肪沉积的分子生物学机制:[博士学位论文].山东:山东农业大学,2009
    [96]Clarke S D, Abraham S. Gene expression:nutrient control of pre-and posttranscriptional events. FASEB journal:official publication of the Federation of American Societies for Experimental Biology,1992,6(13):3146-3152
    [97]Blake W L, Clarke S D. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat. The Journal of nutrition,1990,120(12):1727-1729
    [98]Coupe C, Perdereau D, Ferre P, et al. Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning. The American journal of physiology,1990,258(1 Pt 1):E126-E133
    [99]Kim T S, Freake H C. High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-specific manner. The Journal of nutrition,1996,126(3):611-617
    [100]Back D W, Goldman M J, Fisch J E, et al. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. The Journal of biological chemistry,1986,261(9):4190-4197
    [101]Wilson S B, Back D W, Morris S J, et al. Hormonal regulation of lipogenic enzymes in chick embryo hepatocytes in culture. Expression of the fatty acid synthase gene is regulated at both translational and pretranslational steps. The Journal of biological chemistry,1986,261(32): 15179-15182
    [102]Paulauskis J D, Sul H S. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. The Journal of biological chemistry,1988,263(15):7049-7054
    [103]Soncini M, Yet S F, Moon Y, et al. Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice. The Journal of biological chemistry,1995,270(51):30339-30343
    [104]Wilson J, Kim S, Allen K G, et al. Hepatic fatty acid synthase gene transcription is induced by a dietary copper deficiency. The American journal of physiology,1997,272(6 Pt 1):E1124-E1129
    [105]Yin D, Griffin M J, Etherton T D. Analysis of the signal pathways involved in the regulation of fatty acid synthase gene expression by insulin and somatotropin. Journal of Animal Science,2001, 79(5):1194-1200
    [106]李艳.糖皮质激素和热应激对蛋鸡肝脏脂肪代谢影响:[硕士学位论文].山东:山东农业大学,2011
    [107]杨烨,冯玉兰.鸡苹果酸酶基因的营养和激素调控的传导机制.福建畜牧兽医,2004,26(6):7-8
    [108]Morris S J, Winberry L K, Fisch J E, et al. Developmental and nutritional regulation of the messenger RNAs for fatty acid synthase, malic enzyme and albumin in the livers of embryonic and newly-hatched chicks. Molecular and Cellular Biochemistry,1984,64(1):63-68
    [109]Pilo B, Etches R J, George J C. Effects of corticosterone infusion on the lipogenic activity and ultrastructure of the liver of laying hens. Cytobios,1985,44(179S):273-285
    [110]Goodridge A G, Crish J F, Hillgartner F B, et al. Nutritional and hormonal regulation of the gene for avian malic enzyme. The Journal of nutrition,1989,119(2):299-308
    [111]Goodridge A G, Thurmond D C, Baillie R A, et al. Nutritional and hormonal regulation of the gene for malic enzyme. Zeitschrift fur Ernahrungswissenschaft,1998,37 (Suppl 1):8-13
    [112]Horton J D, Goldstein J L, Brown M S. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation,2002,109(9): 1125-1131
    [113]Shimano H. Sterol regulatory element-binding proteins (SREBPs):transcriptional regulators of lipid synthetic genes. Progress in Lipid Research,2001,40(6):439-452
    [114]Gondret F, Ferre P, Dugail I. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. Journal of Lipid Research,2001,42(1):106-113
    [115]Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell, 1974,3(2):127-133
    [116]唐雪.脱氢表雄酮对肉鸡肝脏脂肪代谢的影响及其细胞分子生物学机理研究:[博士学位论文].江苏:南京农业大学,2009
    [117]Unger R H, Zhou Y T. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes,2001,50 (Suppl 1):S118-S121
    [118]张振波.猪脂蛋白脂酶(LPL)和激素敏感脂肪酶(HSL)基因的序列和多态性分析及体外表达的研究:[博士学位论文].湖北:华中农业大学,2005
    [119]Olsson H, Stralfors P, Belfrage P. Phosphorylation of the basal site of hormone-sensitive lipase by glycogen synthase kinase-4. Febs Letters,1986,209(2):175-180
    [120]苗志国.金华猪与长白猪脂肪代谢和消化功能发育差异的研究:[博士学位论文].浙江:浙江大学,2008
    [121]Nilsson N O, Stralfors P, Fredrikson G, et al. Regulation of adipose tissue lipolysis:effects of noradrenaline and insulin on phosphorylation of hormone-sensitive lipase and on lipolysis in intact rat adipocytes. Febs Letters,1980,111(1):125-130
    [122]Larsen T S, Nilsson N O, Belfrage P. Seasonal changes in hormone-sensitive lipase activity in adipose tissue from Norwegian and Svalbard reindeer. Acta Physiologica Scandinavica,1985,125(4): 735-738
    [123]McNamara J P, McFarland D C, Bai S. Regulation of bovine adipose tissue metabolism during lactation.3. Adaptations of hormone-sensitive and lipoprotein lipases. Journal of Dairy Science,1987, 70(7):1377-1384
    [124]Smith T R, McNamara J P. Regulation of bovine adipose tissue metabolism during lactation.6. Cellularity and hormone-sensitive lipase activity as affected by genetic merit and energy intake. Journal of Dairy Science,1990,73(3):772-783
    [125]杨在清,马志科,孙超,等.猪脂肪沉积的品系差异及其cAMP勺调控作用.畜牧兽医学报,1996,27(6):489-494
    [126]姚焰础.苏尼特羔羊肌内脂肪细胞分化相关因子和肌内脂肪代谢关键酶基因表达发育规律的研究:[博士学位论文].内蒙古:内蒙古农业大学,2008
    [127]Kim I, Kim H G, Kim H, et al. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. The Biochemical journal,2000,346(Pt 3):603-610
    [128]Ge H, Yang G, Yu X, et al. Oligomerization state-dependent hyperlipidemic effect of angiopoietin-like protein 4. Journal of Lipid Research,2004,45(11):2071-2079
    [129]Feng S Q, Chen X D, Xia T, et al. Cloning, chromosome mapping and expression characteristics of porcine ANGPTL3 and -4. Cytogenetic and Genome Research,2006,114(1):44-49
    [130]Inaba T, Matsuda M, Shimamura M, et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. The Journal of biological chemistry,2003, 278(24):21344-21351
    [131]Samuel B S, Gordon J I. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proceedings of the National Academy of Sciences of the United States of America,2006, 103(26):10011-10016
    [132]Akiyama T E, Lambert G, Nicol C J, et al. Peroxisome proliferator-activated receptor beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet. The Journal of biological chemistry,2004,279(20):20874-20881
    [133]Goldberg I J. Lipoprotein lipase and lipolysis:central roles in lipoprotein metabolism and atherogenesis. Journal of Lipid Research,1996,37(4):693-707
    [134]Sato K, Akiba Y, Chida Y, et al. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poultry Science,1999,78(9):1286-1291
    [135]李慧锋.鸡脂肪代谢相关基因的表达与网络分析:[博士学位论文].北京:中国农业大学,2005
    [136]谭正怀,莫正纪.脂蛋白脂酶的组织特异性表达及其调节.国外医学内分泌学分册,2000,20(6):320-324
    [137]Sato K, Akiba Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens. Poultry Science,2002,81(6):846-852
    [138]刘蒙.饲粮代谢能水平与IMF双向选择对北京油鸡脂肪沉积及相关基因表达的影响:[硕士学位论文].重庆:西南大学,2009
    [139]Garton A J, Campbell D G, Carling D, et al. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. European journal of biochemistry/FEBS,1989,179(1):249-254
    [140]邵明丽,许梓荣.猪脂肪代谢及其调控研究进展.饲料博览,2002,(10):12-15
    [141]刘平.苜草素对肉仔鸡脂肪代谢的影响及其作用机制研究:[硕士学位论文].北京:中国农 业科学院,2005
    [142]Hausman G J, Jewell D E. The effect of insulin on primary cultures of rat preadipocytes grown in fetal or postnatal pig serum. Journal of Animal Science,1988,66(12):3267-3278
    [143]王镜岩等.生物化学(下).北京:高等教育出版社,2002
    [144]张桂春.半胱胺及大豆黄酮对肉鸡脂肪代谢的影响:[硕士学位论文].黑龙江:东北农业大学,2002
    [145]Angelin B, Rudling M. Growth hormone and hepatic lipoprotein metabolism. Current Opinion in Lipidology,1994,5(3):160-165
    [146]Oscarsson J, Ottosson M, Eden S. Effects of growth hormone on lipoprotein lipase and hepatic lipase. Journal of Endocrinological Investigation,1999,22(5 Suppl):2-9
    [147]Oscarsson J, Ottosson M, Vikman-Adolfsson K, et al. GH but not IGF-I or insulin increases. lipoprotein lipase activity in muscle tissues of hypophysectomised rats. The Journal of endocrinology, 1999,160(2):247-255
    [148]Magri K A, Adamo M, Leroith D, et al. The inhibition of insulin action and glucose metabolism by porcine growth hormone in porcine adipocytes is not the result of any decrease in insulin binding or insulin receptor kinase activity. The Biochemical journal,1990,266(1):107-113
    [149]Etherton T D, Bauman D E. Biology of somatotropin in growth and lactation of domestic animals. Physiological Reviews,1998,78(3):745-761
    [150]Dunshea F R, Harris D M, Bauman D E, et al. Effect of porcine somatotropin on in vivo glucose kinetics and lipogenesis in growing pigs. Journal of Animal Science,1992,70(1):141-151
    [151]Wang Y, Fried S K, Petersen R N, et al. Somatotropin regulates adipose tissue metabolism in neonatal swine. The Journal of nutrition,1999,129(1):139-145
    [152]刘晓丽.胰高血糖素对新生大鼠心肌细胞生长及脂代谢的影响:[硕士学位论文].河北:河北医科大学,2009
    [153]张珍珍.不同直链、支链组成的淀粉对断奶仔猪脂肪代谢影响的研究:[硕士学位论文].江西:南昌大学,2010
    [154]Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature,1994,372(6505):425-432
    [155]Campfield L A, Smith F J, Guisez Y, et al. Recombinant mouse OB protein:evidence for a peripheral signal linking adiposity and central neural networks. Science,1995,269(5223):546-549
    [156]Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. Embo Reports, 2001,2(4):282-286
    [157]Siegrist-Kaiser C A, Pauli V, Juge-Aubry C E, et al. Direct effects of leptin on brown and white adipose tissue. The Journal of clinical investigation,1997,100(11):2858-2864
    [158]Ramsay T G. Porcine leptin inhibits lipogenesis in porcine adipocytes. Journal of Animal Science, 2003,81(12):3008-3017
    [159]Sheridan M A, Kao Y. Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates. American Zoologist,1998,38(2):350-368
    [160]Pucci E, Chiovato L, Pinchera A. Thyroid and lipid metabolism. International journal of obesity and related metabolic:journal of the International Association for the Study of Obesity,2000, 24(Suppl2):S109-S112
    [161]Zogopoulos G, Figueiredo R, Jenab A, et al. Expression of exon 3-retaining and -deleted human growth hormone receptor messenger ribonucleic acid isoforms during development. The Journal of clinical endocrinology and metabolism,1996,81(2):775-782
    [162]DeVol D L, McKeith F K, Bechtel P J, et al. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. Journal of Animal Science,1988,66(1):385-395
    [163]Ramsey C B, Tribble L F, Wu C, et al. Effects of grains, marbling and sex on pork tenderness and composition. Journal of Animal Science,1990,68(1):148-154
    [164]Hodgson R R, Davis G W, Smith G C, et al. Relationships between pork loin palatability traits and physical characteristics of cooked chops. Journal of Animal Science,1991,69(12):4858-4865
    [165]Fernandez X, Monin G, Talmant A, et al. Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Science,1999,53(1):59-65
    [166]田刚,余冰.鸡肉肉质风味研究现状及其影响因素(三).四川畜牧兽医,2001,28(2):55
    [167]崔焕先.肉鸡肌内脂肪形成的分子调控网络及相关基因研究:[博士学位论文].北京;中国农业科学院,2011
    [168]杨红菊,乔发东,马长伟,等.脂肪氧化和美拉德反应与肉品风味质量的关系.肉类研究,2004,(1):25-28,10
    [169]Ricard F H, Leclercq B, Touraille C. Selecting broilers for low or high abdominal fat:Distribution of carcass fat and quality of meat. British Poultry Science,1983,24(4):511-516
    [170]Zerehdaran S, Vereijken A L, van Arendonk J A, et al. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poultry Science,2004,83(4):521-525
    [171]Owens C M, Hirschler E M, McKee S R, et al. The characterization and incidence of pale, soft, exudative turkey meat in a commercial plant. Poultry Science,2000,79(4):553-558
    [172]Liu Y, Lyon B G, Windham W R, et al. Prediction of physical, color, and sensory characteristics of broiler breasts by visible/near infrared reflectance spectroscopy. Poultry Science,2004,83(8): 1467-1474
    [173]陈宽维,李慧芳,张学余,等.肉鸡肌纤维与肉质关系研究.中国畜牧杂志,2002,38(6):6-7
    [174]Russell S M, Fletcher D L, Cox N A. Spoilage bacteria of fresh broiler chicken carcasses. Poultry Science,1995,74(12):2041-2047
    [175]Allen C D, Fletcher D L, Northcutt J K, et al. The relationship of broiler breast color to meat quality and shelf-life. Poultry Science,1998,77(2):361-366
    [176]吴信生,陈国宏,陈宽维,等.中国部分地方鸡种肌肉组织学特点及其肉品质的比较研究.江 苏农学院学报,1998,19(4):52-58
    [177]Fletcher D L, Qiao M, Smith D P. The relationship of raw broiler breast meat color and pH to cooked meat color and pH. Poultry Science,2000,79(5):784-788
    [178]Qiao M, Fletcher D L, Smith D P, et al. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poultry Science,2001,80(5):676-680
    [179]Rathgeber B M, Boles J A, Shand P J. Rapid postmortem pH decline and delayed chilling reduce quality of turkey breast meat. Poultry Science,1999,78(3):477-484
    [180]McCord J M. Superoxide, superoxide dismutase and oxygen toxicity. Reviews in biochemical toxicology,1979,1(1):109-124
    [181]李华,曾勇庆,魏述东,等.猪宰后肌肉SOD与MDA的变化及其对肉质特性的影响.畜牧兽医学报,2010,41(3):257-261
    [182]Halestrap A P, Denton R M. Insulin and the regulation of adipose tissue acetyl-coenzyme A carboxylase. The Biochemical journal,1973,132(3):509-517
    [183]Hsu R Y, Lardy H A. Malic enzyme. Methods in Enzymology,1969,13(1):230-235
    [184]金宗濂.功能食品评价原理及方法.北京:北京大学出版社,1995
    [185]Cai Y, Song Z, Zhang X, et al. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus). Comparative biochemistry and physiology. Toxicology & pharmacology:CBP,2009,150(2):164-169
    [186]Druyan S, Cahaner A, Ashwell C M. The expression patterns of hypoxia-inducing factor subunit alpha-1, heme oxygenase, hypoxia upregulated protein 1, and cardiac troponin T during development of the chicken heart. Poultry Science,2007,86(11):2384-2389
    [187]Mossab A, Lessire M, Guillaumin S, et al. Effect of dietary fats on hepatic lipid metabolism in the growing turkey. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,2002,132(2):473-483
    [188]Mersmann H J, MacNeil M D. Relationship of plasma lipid concentrations to fat deposition in pigs. Journal of Animal Science,1985,61(1):122-128
    [189]Capcarova M, Weiss J, Hrncar C, et al. Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. Journal of Animal Physiology and Animal Nutrition,2010,94(5):e215-e224
    [190]Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents:a review. Journal of Dairy Science,1993,76(12):3897-3931
    [191]Huang Q, Xu Z, Han X, et al. Changes in hormones, growth factor and lipid metabolism in finishing pigs fed betaine. Livestock science,2006,105(1):78-85
    [192]Miao Z, Wang L, Xu Z, et al. Developmental patterns in hormone and lipid metabolism of growing Jinhua and Landrace gilts. Canadian Journal of Animal Science,2008,88(4):601-607
    [193]Ma H T, Tang X, Tian C Y, et al. Effects of dehydroepiandrosterone on growth performance, lipid metabolic hormones and parameters in broilers. Veterinarni medicina,2008,53(10):543-549
    [194]Chung C S, Meserole V K, Etherton T D. Temporal nature of insulin binding and insulin-stimulated glucose metabolism in isolated swine adipocytes. Journal of Animal Science,1983, 56(1):58-63
    [195]Etherton T D. The biology of somatotropin in adipose tissue growth and nutrient partitioning. The Journal of nutrition,2000,130(11):2623-2625
    [196]Louveau I, Gondret F. Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. Domestic Animal Endocrinology,2004,27(3): 241-255
    [197]Girard J, Perdereau D, Foufelle F, et al. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB journal:official publication of the Federation of American Societies for Experimental Biology,1994,8(1):36-42
    [198]Lefevre P, Diot C, Legrand P, et al. Hormonal regulation of stearoyl coenzyme-A desaturase 1 activity and gene expression in primary cultures of chicken hepatocytes. Archives of Biochemistry and Biophysics,1999,368(2):329-337
    [199]Ramsay T G, Yan X, Morrison C. The obesity gene in swine:sequence and expression of porcine leptin. Journal of Animal Science,1998,76(2):484-490
    [200]Ramsay T G. Porcine leptin alters isolated adipocyte glucose and fatty acid metabolism. Domestic Animal Endocrinology,2004,26(1):11-21
    [201]Sun J M, Richards M P, Rosebrough R W, et al. The relationship of body composition, feed intake, and metabolic hormones for broiler breeder females. Poultry Science,2006,85(7):1173-1184
    [202]O'Hea E K, Leveille G A. Lipogenesis in isolated adipose tissue of the domestic chick (Gallus domesticus). Comparative biochemistry and physiology,1968,26(1):111-120
    [203]Numa S, Nakanishi S, Hashimoto T, et al. Role of acetyl coenzyme A carboxylase in the control of fatty acid synthesis. Vitamins and hormones,1970,28(1):213-243
    [204]Toussant M J, Wilson M D, Clarke S D. Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. The Journal of nutrition,1981,111(1):146-153
    [205]Wise E J, Ball E G. Malic enzyme and lipogenesis. Proceedings of the National Academy of Sciences of the United States of America,1964,52(1):1255-1263
    [206]Young J W, Shrago E, Lardy H A. Metabolic control of enzymes involved in lipogenesis and gluconeogenesis. Biochemistry,1964,3(1):1687-1692
    [207]Huang J, Yang D, Gao S, et al. Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livestock science,2008,118(1):53-60
    [208]Voshol P J, Jong M C, Dahlmans V E, et al. In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes,2001,50(11):2585-2590
    [209]Sanz M, Lopez-Bote C J, Menoyo D, et al. Abdominal fat deposition and fatty acid synthesis are lower and (3-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. The Journal of nutrition,2000,130(12):3034-3037
    [210]Liu Z H, Yang F Y, Kong L J, et al. Effects of dietary energy density on growth, carcass quality and mRNA expression of fatty acid synthase and hormone-sensitive lipase in finishing pigs. Asian-Australasian Journal of Animal Sciences,2007,20(10):1587-1593
    [211]郭秀兰.猪肠道硬壁菌门和拟杆菌门数量的检测及其相对丰度与脂肪沉积的相关性研究:[博士学位论文].四川:四川农业大学,2009
    [212]Feng Y, Gong J, Yu H, et al. Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Veterinary Microbiology,2010, 140(1-2):116-121
    [213]Grootaert C, Van de Wiele T, Van Roosbroeck I, et al. Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines. Environmental Microbiology,2011,13(7):1778-1789
    [214]Aronsson L, Huang Y, Parini P, et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PloS one [electronic resource],2010,5(9):e13087
    [215]Alex S, Lange K, Amolo T, et al. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor y. Molecular and Cellular Biology,2013,33(7):1303-1316
    [216]Goncalves P, Araujo J R, Pinho M J, et al. Modulation of butyrate transport in Caco-2 cells. Naunyn-Schmiedeberg's archives of pharmacology,2009,379(4):325-336
    [217]Zhu J, Cui G, Chen M, et al. Expression of R132H mutational IDH1 in human U87 glioblastoma cells affects the SREBPla pathway and induces cellular proliferation. Journal of molecular neuroscience:MN,2013,50(1):165-171
    [218]Crane J D, Devries M C, Safdar A, et al. The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. The journals of gerontology. Series A, Biological sciences and medical sciences,2010,65(2):119-128
    [219]Allison D B, Fontaine K R, Manson J E, et al. Annual deaths attributable to obesity in the United States. JAMA:the journal of the American Medical Association,1999,282(16):1530-1538
    [220]Huang Y, Zheng Y. The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. The British journal of nutrition,2010,103(4):473-478
    [221]Yoshida K, Shimizugawa T, Ono M, et al. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. Journal of Lipid Research, 2002,43(11):1770-1772
    [222]Are A, Aronsson L, Wang S, et al. Enterococcus faecalis from newborn babies regulate endogenous PPARy activity and IL-10 levels in colonic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America,2008,105(6):1943-1948
    [223]Hadjiagapiou C, Schmidt L, Dudeja P K, et al. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. American journal of physiology. Gastrointestinal and liver physiology,2000,279(4):G775-G780
    [224]Ryan M C, Desmond P V, Slavin J L, et al. Expression of genes involved in lipogenesis is not increased in patients with HCV genotype 3 in human liver. Journal of Viral Hepatitis,2011,18(1): 53-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700