用户名: 密码: 验证码:
有机施肥模式对植烟土壤微生态的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植烟土壤质量恶化、肥力下降、土壤微生物多样性减少、土传病害加重及有害物质富集是制约烟叶质量风格形成和可持续健康发展的重要瓶颈。而改良土壤、培肥地力,构建以“土壤-微生物-根系”为核心的高效健康的烟田微生态系统是解决这一问题的根本途径之一。本试验以有机栽培模式为出发点,系统研究了不同C/N比有机肥输入对烟田土壤有机碳氮组分、微生物区系、土壤营养和烟株农艺性状及产质的影响规律。主要研究结果如下:
     1.土壤中的有机碳、氮组分及其比值的动态变化是调节土壤肥力高低及土壤微生态平衡的重要因素,有机施肥模式显著提高了烟株生长各期土壤中TOC、DOC及烟株生长中后期土壤DON和TON含量,对提高前期和中后期土壤EOOC含量也具有显著的作用,有机各施肥模式总体上降低了生育各期土壤中EOOC/TOC比值,显著提高了土壤中DOC/DON和TOC/TON的比值,增加了有机碳的稳定性,有利于土壤有机碳、氮的积累,改善了土壤碳氮平衡及土壤理化性状,且土壤中有机碳、氮组分及其比值的动态变化与优质烟叶土壤养分供应规律基本一致,有助于建立优质有机烟叶培肥模式,其中有机施肥模式YJ4、YJ3作用尤其显著。
     2.土壤微生物及酶活性是反映土壤微生态质量及肥力高低的最灵敏的指标。有机各施腮模式可以显著增加烟草生长各期耕层土壤的细菌、真菌、放线菌数量及其结构多样性,尤其对生防菌、丛枝菌根及解磷菌等有益菌群有明显促进效应。有机各施肥模式显著提高旺长期和圆顶期土壤中脲酶、磷酸酶和蔗糖酶活性,改善土壤中碳、氮、磷的代谢及供应水平。在烟株生长各期有机各施肥模式较常规施肥模式更有助于提高土壤中过氧化氢酶活性,即表现为CK(不施肥)>YJ(有机施肥模式)>CG(常规施肥模式),且有机各施肥模式间土壤过氧化氢酶活性基本随有机肥中C/N比的提高呈先降低后增加再降低趋势。这说明改善土壤有机营养、适当调整有机肥C/N比,可以在改善土壤肥力及生物活性的同时,提高烟田土壤中有害自由基的清除能力,有利于烟田微生态的改善及烟田的持续健康发展,以YJ4处理最佳。
     3.有机施肥模式显著降低了耕层土壤的pH值,基本表现为CK>CG>YJ,且有机各施肥模式间土壤pH值基本随有机肥中C/N比的增加而降低。有机各施肥模式土壤中有效氮、铵态氮及硝态氮含量高峰期较常规施肥模式推迟,各处理土壤中有效磷和钾的含量随生育期的推进基本呈双峰曲线变化,第一个高峰均出现在旺长期,有机施肥模式第二个高峰有效磷含量较常规施肥模式提前而有效钾则延迟。在团棵期和旺长期有机各施肥模式土壤有效氮、磷、钾含量均显著低于CG施肥模式,而圆顶期、采收初期则显著高于常规施肥模式,有机各施肥模式氮素营养供应更加稳定,且生长中后期土壤有效钾供应能力较强,更有利于烟株中上部叶片的生长、开片与品质形成,尤以YJ4、YJ3处理最佳。
     4.在团棵期、旺长期和采收Ⅰ期,有机各施肥模式的根系构型及每株根系总根尖数、总分枝数、根系体积、根系总长度和根系总表面积均显著高于CK,其中YJ4、YJ3处理均显著高于常规施肥模式。改善肥料的C/N比可以明显改善烟株的农艺性状,其中对茎围、叶宽的影响较大,YJ3、YJ4处理显著提高了烟株基部茎围和叶片宽度。
     5.有机各施肥模式烟株上部叶、中部叶中还原糖、总糖及钾含量显著高于常规施肥模式,而烟碱、氯的含量则显著低于常规施肥模式、CK处理。有机各施肥模式烟株上部叶、中部叶中还原糖、总糖及钾含量基本随肥料C/N的比增加呈先增加后降低趋势,均以YJ4、YJ3处理最高;有机各施肥模式烟株中部叶、上部叶中烟碱、氯的含量基本均随肥料C/N的比增加呈先降低后增加趋势,以YJ4处理最低,其次是YJ3处理。有机各施肥模式显著增加了烟叶中Fe、Mg、Zn、P含量,降低了烟叶中Cu的含量,以YJ4、YJ3处理最佳。有机施肥模式中YJ4处理总产量、总产值与常规施肥模式差异不显著,其余各处理均显著低于常规施肥模式,但有机各施肥模式较常规施肥模式显著提高了上等烟比例,显著降低了中等烟和下等烟比例,尤以YJ4、YJ3处理最佳。
     6.本研究揭示,采用有机施肥模式,优化肥料中C\N比组成,可以显著改善土壤的微生态环境,有利于培肥地力和烟株根系的生长,改善烟株农艺性状及烟叶品质,调节等级烟叶分配,提高土地产值。
Deterioration of soil quality of tobacco, declining of fertility, reducing microbial diversity, aggravation of soil-borne diseases and concentration of harmful substances limit the formation of leaf quality style and sustainable and healthy development of tobacco leaf. However, improvement of soil, strengthen of soil fertility and construction of the "soil-microorganisms-root" as the core of efficient health tobacco microcosms were one of the fundamental way to solve this problem. In this experiment, the organic cultivation model as the starting point, systematically studied the impact of the law of different C/N ratio of organic fertilizer input on components of organic carbon and nitrogen, microbial flora, soil nutrition, and agronomic traits and yield and quality of tobacco in tobacco field. The main findings were as follows:
     1. Dynamic change of components and proportion of organic carbon, nitrogen in soil,organic carbon in soil was an important factor in regulating the level of soil fertility and soil micro-ecological balance, fertilizing mode of organic fertilization pattern significantly increased TOC, DOC of soil in growth periods and DON and TON in the late of tobacco growth, and it also had a significant impact to improve EOOC content at the early and late in soil. Each treatment of organic fertilization pattern reduced the EOOC/TOC ratio of the soil overall indifferent growing periods, significantly increased the ratio of DOC/DON and TOC/TON in soil, increased the stability of organic carbon, contributed to the accumulation of soil organic carbon and nitrogen, and improved carbon balance and characteristics in soil. And the dynamic changes of components and ratios of organic carbon in the soil were consistent with the law of soil nutrient supplying high-quality tobacco, and it could help to establish fertility patterns of high quality tobacco, treatment effects on YJ4and YJ3were particularly significant.
     2. Microbial and enzyme activity were the most sensitive indicators to reflect the quality and fertility of soil micro level. Each pattern of fertilization on organic fertilization pattern significantly increased the number and diversity of bacteria, fungi and actinomycetes in soil in each of period, significantly increased the activity of urease, pHospHatase and invertase in soil at thevigorous stage and topping stage, improved metabolism and supply level about carbon, nitrogen and pHospHorus. During different growth periods of tobacco, each treatment of organic fertilization pattern improved catalase activity compared with the CG pattern, that showed CK>YJ>CG. Catalase activity in soil was increased first and then decreased with the improvement of C/N in organic fertilizer. This showed that the improvement of soil organic nutrients, organic fertilizer properly adjusted C/N can improve soil fertility and biological activity and improve the soil's ability to remove harmful free radicals, and it was conducive to the sustained and healthy development of micro-ecological improvement in tobacco fields,and YJ4was the best.
     3. YJ fertilization pattern significantly reduced the pH of topsoil, the basic performance was CK>CG>YJ, and pH of the soil decreased with the increasing of C/N in the treatment. The peak of the available nitrogen, ammonium nitrogen and nitrate content in soil was later than CG pattern, pHospHorus and potassium content in soil of each treatment basically showed a bimodal curve with the growth of the advance, and the first peak occurred during the vigorous stage, the second peak about pHospHorus content of YJ was earlier than CG but later than the effective K. Available nitrogen, pHospHorus and potassium content in soil in YJ pattern were significantly lower than that in CG pattern at the rosette stage and vigorous stage, and higher at topping stage and early of harvest stage. Nitrogen supply was more stable in YJ pattern, and the supply capacity of soil available K was strong in the late, it was more conducive to the growth and quality formation of the middle and upper leaves of tobacco plants,YJ4and YJ3were the best.
     4. Root architecture and the total number of tips per plant roots, the total number of branches, root volume, total root length and total root surface area in YJ pattern were significantly higher than CK at the rosette stage, vigorous stage and harvest stage, which YJ4and YJ3pattern were significantly higher than CG pattern. Improving C/N of fertilizer significantly improved agronomic traits of tobacco plants, and it had a greater impact on stem girth, leaf width, YJ4and YJ3pattern significantly increased basal stem girth and leaf width of tobacco.
     5. Reducing sugar, total sugar and potassium content in the upper and middle leaf tobacco in YJ pattern were significantly higher than that in CG pattern, however, the content of nicotine and chlorine significantly lower than CG and CK. Reducing sugar, total sugar and potassium content in the upper and middle leaf tobacco in YJ pattern were increased first and then decreased with the increasing of C/N in the treatment, YJ4and YJ3pattern were the highest; the content of nicotine and chlorine in the upper and middle leaf tobacco in YJ pattern first decreased and then increased with the increasing of C/N, YJ4was the lowest, and then YJ3. YJ pattern significantly increased the content of Fe, Mg, Zn and P of tobacco, decreased the content of Cu, YJ4and YJ3were the best. There were no significant differences in the total output and total output value between YJ4and CG, and the rest of treatments in YJ pattern were significantly lower than CG, but significantly increased the proportion of fine tobacco and significantly reduced the proportion of cigarette smoke and moderate inferior than CG, YJ4and YJ3were the best.
     6. The study revealed that the fertilizing mode of organic fertilization pattern improved C/N of fertilizer, significantly improved pHysical and chemical properties and microbial environment of soil, it was conducive to the growth of soil fertility and tobacco roots, improved agronomic traits and quality of tobacco leaf, adjusted the distribution of tobacco class, and improved the output value of the land.
引文
[1]秦钟立.贵州植烟土壤养分特征研究[硕士学位论文][D].重庆:西南大学,2007.
    [2]黄东兵.论贵州烟草农业风险与防范机制[J].现代农业科技,2010,(2):367-369.
    [3]商胜华,杨双剑.贵州烟草农药使用现状调查及对策[J].中国农村小康科技,2007,(9):13-19.
    [4]秦钟立,秦松,武伟,等.贵州植烟土壤微量元素特征研究[J].西南大学学报(自然科学版),2007,29(1):58-64.
    [5]丁海兵.连作对烟草生长和不同粒径土壤酶活性的影响[硕士学位论文][D].重庆:西南大学,2006
    [6]古占朝,习向银,刘红杰,等.连作对烤烟根际土壤微生物数量和酶活性的动态影响[J].河南农业大学学报,2011,45(5):508-513.
    [7]何川,刘国顺,蒋士君.连作对植烟土壤微生物群落多样性的影响[J].江西农业大学学报2012,34(4):658-0663.
    [8]杨宇虹,陈冬梅,晋艳,等.连作烟草对土壤微生物区系影响的T-RFLP分析[J].中国烟草学报,2012,18(1):40-45.
    [9]Bollay J M. Liu S Y. Biological transformation processes of pesticides. In:Cheng HH eds. Pesticide in the environment [J]. WUSA:Soil Science ofAmeficanMadison.1999,169-211.
    [10]DasA C, Mukherje D. Soil application of insecticides influences microorganisms and plant nutrients[J]. Applied Soil Ecology,2000,14(1):55-621.
    [11]Katarina H S, Erland B. The influence of nitrogen fertilization on bacterial activity in the rhizospHere ofbarley[J]. Soil Bio. Biochem.2004,36:195-198.
    [12]黄元炯,张毅,张翔等.腐殖酸和饼肥对土壤微生物和烤烟产质量的影响[J].中国烟草学报,2008,12(14):25-28.
    [13]郭群召,吴学巧,黄平俊.饼肥对土壤性状、烤烟生长及烟叶品质的影响[J].中国土壤与肥料,2007(6):68-70.
    [14]郭红祥,刘卫群,姜占省.施用饼肥对烤烟根系土壤微生物的影响[J],河南农业大学学报,2002,4:344-347.
    [15]赵吉.土壤健康的生物学监测与评价[J].土壤,2006,38(2):136-142.
    [16]朱树良,夏春雷,王朝佐,等.优化耕作制度促进云南主产区烟叶生产可持续发展[J].中国烟草科学,2005(3):5-8.
    [17]赵凯,娄翼来,王玲莉,等.烤烟连作对烟叶产量和质量的影响[J].现代农业科技,2008(8):18-19.
    [18]晋艳,杨宇虹,段玉琪,等.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报,2004(17):267-272.
    [19]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148.
    [20]Blum U,Sharer SR,Lchmen ME. Evidence for inhibitory allelopathic interactions involving pHenolic acids in field soils:Concepts vs. an experimental model[J]. Critical Reviews in Plant Sciences,1999,15(5):673-693.
    [21]Psi Yu JQ,Mstsui Y.Effect of root exudates of eucumber(Cucumis sativus)and allelochcmicals on ion uptake by cucumber seedlings[J]. Journal of Chemical Ecology,1997,23(3):817-827.
    [22]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,2007,40(10):2274-2280.
    [23]张福锁,申建波,冯固,等.根际生态学一过程与调控[M].北京:中国农业大学出版社,2009:114-122.
    [24]Garbeva P.VanVeen J A,Van ElsasJ D.Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review.PHytopathol, 2004,42:243-270.
    [25]张晶,张惠文,李新宇,等.土壤微生物生态过程与微生物功能基因多样[J].应用生态学报,2006,17(6):1129-1132.
    [26]陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报.2007,18(12):27552759.
    [27]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-565.
    [28]丁海兵,郭亚利,黄建国等.连作烤烟不同粒级土壤酶活性研究[J].耕作与栽培,2005,(5):13-15.
    [29]郭利,王学龙,陈永德,等.烟草连作对烟田土壤微生物的影响[J].湖北农业科学,2009,48(10):2441-2446.
    [30]陈冬梅,柯文辉,陈兰兰等.连作对白肋烟根际土壤细菌群落多样性的影响[J].应用生态学报.2010,21(7):1751-1758.
    [31]薛小平,张琴,陈懿,等.施肥和微生物对连作烟苗生长的影响[J].江西农业学报,2008,20(9):1-4.
    [32]贾志红,易建华,苏以荣,等.烟区轮作与连作土壤细菌群落多样性比较[J].生态环境学报,2010,19(7):1578-1585.
    [33]何川,刘国顺,蒋士君,等.连作对植烟土壤微生物群落多样性的影响[J].江西农业大学学报,2012,34(4):658-663.
    [34]刘方,卜通达,何腾兵.连作烤烟土壤养分变化分析[J].贵州农学院学报,1997,16(2):1-41.
    [35]刘方,何腾兵,刘元生,等.长期连作黄壤烟地养分变化及其施肥效应分析[J].烟草科技,2002,6:30-33.
    [36]王连君,谷思玉.烤烟连作对土壤养分的影响[J].烟草科技.2004,(9):40-42.
    [37]Abbott LK,MurpHy D V. SoilBiological Fertility. Netherlands:Kluwer AcademicPublishers,2003.
    [38]李秀英,赵秉强,李絮花.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系.中国农业科学,2005,38(8):1591-1599.
    [39]Shen SM,Hart PBS. Thenitrogen cycle intheBroadbalk wheat experiment:15N-kabelled fertilizer residues in soil and in the soil microbial biomass. SoilBiology and Biochemistry,1989,21: 529-533.
    [40]李东坡,武志杰,陈利军,等.长期培肥黑土微生物量磷动态变化及影响因素.应用生态学报,2004,15(1 0):1897-1902.
    [41]McGill W B,Cannon K R:Robertson J A.Cook F D Dynamics of soil microbial biomass and water soluble organic carbon in Breton after 50 years of cropping to two rotations.1986:1126-1137
    [42]张逸飞,钟文辉,李忠佩,蔡祖聪.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响.生态与农村环境学报,2006,22(4):39-44.
    [43]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    [44]Ju X T,Xing G X,Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS,2009,106(9):3041-3046.
    [45]Nanda SK,Das PK,BehemB. Effects of continuous manuring on microbial population,ammonificationand CO2 evolution in a rice soil. Oryza,1998,25(4):413-416.
    [46]Nodayeyamiye A, Cote D. Effect oflong-term pig slurryand solid cattle manureapplicationon soil chemical andbiological properties.Canadian Journalof Soil Science,1989,69(1):39-47.
    [47]曹志洪.施肥与土壤健康质量:论施肥对环境的影响.土壤,2003,35(6):450-455.
    [48]Johnston A E.The value oflongtermfield experimentsin agricultural, ecological and environmental research [J]. Advances in Agronomy,1997,59,291-333.
    [49]许秀云,姚贤良,刘克樱,等.长期施用有机物料对红壤性水稻土的物理性质的影响[J].土壤,1996,28(2):57-61.
    [50]李小刚,翟志军,王玲英.施用秸秆对土壤有机碳组成和结构稳定性的影响[J].土壤学报,2002,39(3):421428.
    [51]蔡燕飞,廖宗文.FAME法分析施肥对番茄青枯病抑制和土壤健康恢复的效果[J].中国农业科学,2003,36(8):922-927.
    [52]Doran J W, Sarrantonio M, Liebig M A. Soil health and sustainability [J].Advance Agronomy,1996,56:2-54.
    [53]和文祥,蒋欣,朱茂旭,等.酶修复土壤农药污染的研究进展.生态学杂志,2011,20(3):47-51.
    [54]潘攀,杨俊诚,邓仕槐,等.土壤一植物体系中农药和重金属污染研究现状及展望.农业环境科学学报,2011,30(12):2389-2398.
    [55]汪海珍,徐海民,谢正苗.甲磺隆结合态残留物对土壤微生物的影响[J].农药学学报,2003,5(2):69-78.
    [56]张跃华,罗志文,赵永勋.阿维菌素对土壤微生物活性的影响[J].佳木斯大学学报,2002,20(1):49-51。
    [57]唐美珍,郭正元.68%代森锰锌对土壤微生物种群及呼吸作用的影响[J].土壤通报,2010,41(6):1365-1369.
    [58]Shew H D.Response of PHytopHthora parasitica var.nicotianae to metalaxy exposure[J].Plant Disease,1985,69:559-562.
    [59]袁宗胜,张广民,刘廷荣等.烟草黑胫病对甲霜灵的敏感性测定[J].中国烟草科学,2001,(4):9-12.
    [60]Nurdan KP, Merihs AT. Treatingdenim fabrics with immobilized commercialcellulases[J]. Process Biochemistry,2005,40:767-771.
    [61]王洁,孙鼎石,孙学习.固定化微生物技术及其应用研究的进展[J].广州环境科学,2004,19(1):1-4.
    [62]陆佳靓,刘丽,王新,等.固定化微生物技术对土壤中农药降解的研究进展[J].安徽农业科 学,2013,41(20):8540-8542.
    [63]陈少华,李亚楠,赖开平,等.降解菌株DG-S-01对菜薹和土壤中3种拟除虫菊酯类农药降解动力学的影响[J].农药学学报,2011,13(4):381-386.
    [64]李彰,熊瑛,吕强,等.微生物土壤改良剂对烟草生长及耕层环境的影响[J].河南农业科学,2010,(9):56-71.
    [65]蔡晨秋,唐丽,龙春林.土壤微生物多样性及其研究方法综述[J].安徽农业科学,2011,39(28):17274-17276.
    [66]赵辉,赵铭钦,程玉渊,等.土壤微生物影响因子研究综述[J].江西农业学报,2009,21(12):52-56.
    [67]石秋环,焦枫,耿伟,等.烤烟连作土壤环境中的障碍因子研究综述[J].中国烟草学报,2009,15(6):81-84.
    [68]张晶,张惠文,李新宇,等.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报,2006,17(6):1129-1132.
    [69]张成娥,刘国彬,陈小利.坡地不同利用方式下土壤微生物和酶活性以及生物数量特征[J].土壤通报,30(3):101-103.
    [70]罗明,单娜娜,文起凯,等.几种固沙植物根际土壤微生物特性研究[J].应用与环境生物学报,2002,8(6):618-622.
    [71]贾志红,杨珍平,张永清,等.麦田土壤微生物三大种群数量的研究[J].麦类作物学报,2004,24(3):53-56.
    [72]张萍,郭辉军,刀志灵,等.高黎贡山不同山地类型土壤中微生物的生化活性[J].山地学报,2000,18(5):457-461.
    [73]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    [74]苏涛,司美茹,马宗琪.不同土地利用方式对根际土壤微生物数量的影响[J].农业环境科学学报,2006,25(增刊):136-139.
    [75]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    [76]张仕吉,项文化.土地利用方式对土壤活性有机碳影响的研究进展[J].中南林业科技大学学报,2012,32(5):134-143.
    [77]徐明岗,于荣,孙小凤,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    [78]Benhamou R,Chet 1.Parasutusn of sclerotic of Sclerotium rdolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction [J].PHytopathology,1996,86:405-416.
    [79]Kirckner M J,Wollum A G II,King L D.Soil microbial population and activities in reduced chemical input agro ecosystem [J].Soil Sci Am Soc,1993,57:1289-1295.
    [80]Marinari S,Masciandaro QCeccanti B,et al. Influence of organic and mineral fertilizers on soil biological and pHysical properties [J]. Bioresour Technol,2000,72:9-17.
    [81]Witter E,Martnsson A M,Garica F V.Size of the soil microbial biomass in a long term experiment as affected by different N-fertilizers and organic manures[J]. Soil Biology and Biochemestry,1993, 25:659-669.
    [82]夏玉珍,张晓海,吴伯志.我国植烟土壤改良技术的研究进展[J].农业网络信息,2005,12:115-117.
    [83]沙涛,程立忠,王国华.秸秆还田对植烟土壤中微生物结构和数量的影响[J].中国烟草科学,2000,3:40-42.
    [84]郭红祥,刘卫群,姜占省,等.施用饼肥对烤烟根系土壤微生物的影响[J].河南农业大学学报,2002,36(4):344-347.
    [85]张晓海,杨春江,王绍坤,等.烤烟施用菜籽饼后根际微生物数量变化研究[J].云南农业大学学报,2003,18(1):14-19.
    [86]Ebhin Masto R,Chhonkar P K,Dhyan Singh,et al.Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol [J].Soil Biology and Biochemistry,2006,38(7):1577-1582.
    [87]Tan z x,Lal R.Carbon sequestration potential estimates With changes in land use and tillage practice in Ohio,UsA[J]. Agriculture,Ecosystems and Environment,2005,111:140-152.
    [88]徐华勤,肖润林,杨知建,等.不同培肥措施对红壤茶园土壤微生物量碳的影响.生态学杂志,2007,26(7):1009-1013.
    [89]徐华勤,肖润林,邹冬生,等.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,2007,27(8):3354-3361.
    [90]赵佳佳,李季,杜相革.不同生产模式对土壤微生物种群数量的影响[J].华北农学报,2011,26:220-224
    [91]梁丽娜,李季,杨合法,等.不同蔬菜生产模式对日光温室土壤质量的影响[J].农业工程学报,2009,25(8):186-191.
    [92]周晓光,黄丹枫,葛体达,等.有机和常规蔬菜生产系统土壤可溶性有机氮含量及特征[J].上海交通大学学报(农业科学版),2010,28(5):420-425.
    [93]武雪萍,刘增俊,赵跃华,等.施用芝麻饼肥对植烟根际土壤酶活性和微生物碳、氮的影响.植物营养与肥料学报[J],2005,11(4):541-546.
    [94]Liu L,Song C Y,Yan Z G,et al. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy [J].ChemospHere,2009,77:15-21.
    [95]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):187-796.
    [96]Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004,304:1623-1627.
    [97]赵丽娟,韩晓增,王守宇,等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化Ⅳ:有机碳组分的变化[J].应用生态学报,2006,17(5):817-821.
    [98]韩建刚,朱咏莉,吴金水.农业管理措施对土壤有机碳动态变化的影响[J].土壤通报,2004,35(5):648-651.
    [99]Freibauer A, Rounsevell M D A, Smith P, et al. Carbon sequestration in the agricultural soils of Europe[J]. Geoderma,2004,122:1-23.
    [100]Lal R, Follett R T, Kimble J, et al. Managing US cropland to sequester carbon in soil[J]. Journal of Soil and Water Conservation,1999,54:374-381.
    [101]Smith P. Carbon sequestration in crop lands:the potential in Europe and the global context[J]. Europ. J. Agronomy,2004,20:229-236.
    [102]Moorhead D L, Reynolds J F. A gengeral model of litter decomposition in the northern Chihuahuan desert[J].Ecological Modelling,1991,56:197-219.
    [103]齐雁冰,黄标,顾志权,等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义[J].矿物岩石地球化学通报,2008,27(1):50-56.
    [104]Purakayastha T J. An and Swarup,Dhyan Singh.Strategies to manage soil organic matter for carbon sequestration Indian perspective[J]. Indian Journal of Fertilisers,2008,4(3):11-22.
    [105]龚江,侯振安,杨振华,等.不同灌溉方式对土壤盐分、氮素分布和棉花生长的影响[J].石河子大学学报:自然科学版,2008,26(3):274-279.
    [106]肖丽,侯振安,龚江,等.不同滴灌施肥方式对盐渍土棉花生长和氮素吸收的影响[J].石河子大学学报:自然科学版,2008,26(4):427-430.
    [107]Wu T Y,sch0enau JJ,Li F M,etal.Influence of euhivation and fertilization on total orgaflie carbon and carbon fraetiorm in soils from the Loess Plateau of China[J].Soil and Tillage Research, 2004,7759-68.
    [108]徐明岗,于荣,孙小凤,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    [109]倪进治,徐建民,谢正苗,等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,2001,7(4):374-378.
    [110]王淑华,赵兰坡,王洪斌,等.高产玉米田土壤呼吸强度及其与碳、氮营养的关系[J].吉林农业大学学报,2010,32(1):62-67.
    [111]Kalbita K,Solinger S,Park J H,et al.Controls on the dynamics of dissolved organic matter in soils:Areview[J].Soil Sc i,2000,165(4):277-304
    [112]Marschner B. Sorption von polyzyklischen aromatischen Kohlenwasserstoffen(PAK) and polychIorierten BipHenylen in Boden[J] Journal of Plant and Nutrition Soil Science.1999,162:1-4.
    [113]Qualls R QHaines B L.Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem[J]. Soil Sci Soc Am J,1991,55:1112-1123.
    [114]Zsolnay A. Dissolved humus in soil waters[M]//Piccolo A,ed. Humic Substances in Terrestrial Ecosystems. Amsterdam:Elsevier,1996:171-223.
    [115]Zhang Z, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology & Biochemistry,2003,35:333-338.
    [116]Mansson K F, Falkengren G U.The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralisation and litter C:N ratios in oak (Quercus robur L.) forests[J]. Forest Ecology and Management,2003,179:455-467.
    [117]Weintraub M N, Schlmel J P.Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils[J].Ecosystems,2003,6:129-143
    [118]Boyer J N, Groffman P M.Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles[J].Soil in and Biol Biochem,1996,28:783-790.
    [119]Yano Y, McDowell WH, Kinner N.Quantification of biodegradable dissolved manic carbon in soil solution with flowthroumh bioreactors[J].Soil Sci Soc A m J,1998,62:1556-1564.
    [120]Groot J H V.A comparison of different indices for nitrogen mineralization[J].Biol Fertil Soils,1995,19:1-9.
    [121]Saviozzi A,Levi Minzi R,Cardelli R,et al.A comparison of soil quality in adjacent cultivated,forest and native grassland soils[J]. Plant Soil,2001,233:251-259.
    [122]沈宏,曹志洪,胡正义.土壤活性碳的表征及其生态意义[J],生态学杂志,1999,18(3):32-38.
    [123]程励励,文启孝.有机肥料氮的转化以及有机-化学氮肥的综合管理[M].中国土壤氮素.南京:江苏科学技术出版社,1992:256-266.
    [124]Liu L,Song C Y,Yan Z G,et al. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy [J].ChemospHere,2009,77:15-21.
    [125]沈玉芳,陶武辉,李世清.有机物料输入对干润砂质新成土可溶性有机碳、氮的影响[J].农业环境科学学报[J],2011,30(1):139-145.
    [126]薛菁芳,陈书强,汪景宽,等.玉米秸秆对棕壤中可溶性无机氮和有机氮的影响[J].黑龙江农业科学,2011(4):40-46.
    [127]周晓光,黄丹枫,葛体达,等.有机和常规蔬菜生产系统土壤可溶性有机氮含量及特征[J].上海交通大学学报(农业科学版),2010,28(5):420-425.
    [128]Tan z x,Lal R. Carbon sequestration potential estimates With changes in land use and tillage practice in Ohio,UsA[J].Agriculture,Ecosystems and Environment,2005,111:140-152.
    [129]许泉,芮雯奕,刘家龙,等.我国农田土壤碳氮耦合特征的区域差异[J].生态与农村环境学报.2006,22(3):57-60.
    [130]任书杰,曹明奎,陶波,等.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地理科学进展,2006,25(4):58-67.
    [131]李玉强,赵哈林,陈银萍,等.陆地生态系统碳源与碳汇及其影响机翩研究进展[J].生态学杂志,2005,24(1):37-42.
    [132]杨玲,张前兵,王进,等.管理措施对绿洲农田土壤总有机碳及易氧化有机碳季节变化的影响.石河子大学学报(自然科学版),2013,31(5):549-555.
    [133]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    [134]张仕吉,项文化.土地利用方式对土壤活性有机碳影响的研究进展[J].中南林业科技大学学报,2012,32(5):134-143.
    [135]万忠梅,郭岳,郭跃东.土地利用对湿地土壤活性有机碳的影响研究进展[J].生态环境学报,2011,20(3):567-570.
    [136]Gong W,Yan X,Wang J,et al. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China [J]. Geoderma,2009,149:318-324
    [137]Freibauer A, Rounsevell M D A, Smith P, et al. Carbon sequestration in the agricultural soils of Europe[J]. Geoderma,2004,122:1-23.
    [138]Lal R, Follett R T, Kimble J, et al. Managing US cropland to sequester carbon in soil[J]. Journal of Soil and Water Conservation,1999,54:374-381.
    [139]Smith P. Carbon sequestration in crop lands:the potential in Europe and the global context[J]. Europ. J. Agronomy,2004,20:229-236.
    [140]Moorhead D L, Reynolds J F. A gengeral model of litter decomposition in the northern Chihuahuan desert[J]. Ecological Modelling,1991,56:197-219.
    [141]齐雁冰,黄标,顾志权,等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义[J].矿物岩石地球化学通报,2008,27(1):50-56.
    [142]Russell A E,Laird D A,Parkin T B,et al. Impact of nitrogen fertilization and cropping system on carbon sequestration in Mid-western Mollisols[J].Soil Science Society of America Journal,2005,69:413-422.
    [143]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39:89-96.
    [144]Wu T Y,schOenau JJ,Li F M,etal. Influence of euhivation and fertilization on total orgaflie carbon and carbon fraetiorm in soils from the Loess Plateau of China[J]. Soil and Tillage Research,2004,7759-68.
    [145]徐明岗,于荣,孙小凤,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    [146]倪进治,徐建民,谢正苗,等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,2001,7(4):374-378.
    [147]王淑华,赵兰坡,王洪斌,等.高产玉米田土壤呼吸强度及其与碳、氮营养的关系[J].吉林农业大学学报,2010,32(1):62-67.
    [148]Kalbita K,Solinger S,Park J H,et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Sc i,2000,165(4):277-304
    [149]Marschner B. Sorption von polyzyklischen aromatischen Kohlenwasserstoffen(PAK) and polychlorierten BipHenylen in Boden[J]. Journal of Plant and Nutrition Soil Science.1999,162:1-4.
    [150]Qualls R G,Haines B L.Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem[J]. Soil Sci Soc Am J,1991,55:1112-1123.
    [151]Zsolnay A. Dissolved humus in soil waters[M]//Piccolo A,ed. Humic Substances in Terrestrial Ecosystems. Amsterdam:Elsevier,1996:171-223.
    [152]Zhang Z, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology & Biochemistry,2003,35:333-338.
    [153]Mansson K F, Falkengren G U. The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralisation and litter C:N ratios in oak (Quercus robur L.) forests[J]. Forest Ecology and Management,2003,179:455-467.
    [154]Weintraub M N, Schlmel J P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils[J]. Ecosystems,2003,6:129-143.
    [155]Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles[J]. Soil in and Biol Biochem,1996,28:783-790.
    [156]Yano Y, McDowell WH, Kinner N. Quantification of biodegradable dissolved manic carbon in soil solution with flowthroumh bioreactors[J]. Soil Sci Soc A m J,1998,62:1556-1564.
    [157]Groot J H V. A comparison of different indices for nitrogen mineralization[J]. Biol Fertil Soils,1995,19:1-9.
    [158]Saviozzi A,Levi Minzi R,Cardelli R,et al. A comparison of soil quality in adjacent cultivated,forest and native grassland soils[J]. Plant Soil,2001,233:251-259.
    [159]沈宏,曹志洪,胡正义.土壤活性碳的表征及其生态意义[J],生态学杂志,1999,18(3):32-38
    [160]沈玉芳,陶武辉,李世清.有机物料输入对干润砂质新成土可溶性有机碳、氮的影响.农业环境科学学报[J],2011,30(1):139-145.
    [161]Liu L,Song C Y,Yan Z G,et al. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy [J].ChemospHere,2009,77:15-21.
    [162]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):187-796.
    [163]Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004,304:1623-1627.
    [164]胡建斌,刘久羽,蔡联合.花生饼肥施用量对烤烟生长及产质量的影响[J].广西农业科学,2010,41(7):683-685.
    [165]王鹏,周建朝,陈连昌,等.发酵饼肥氮在土壤中转化、烟株氮积累及对烟叶产量和质量的影响[J].中国烟草学报,2005,12(6):27-32.
    [166]武雪萍,钟秀明,秦艳青,等.不同种类饼肥与化肥配施对烟叶香气质量的影响[J].中国农业科学,2006,39(6):1196-1201.
    [167]龙世平,曾维爱,李宏光,等.饼粕型有机肥与烟草专用基肥配施对烟叶品质的影响[J].南方农业学报,2012,43(1):53-56.
    [168]孙健,刘苗,李立军,等.免耕与留茬对土壤微生物量C、N及酶活性的影响[J].生态学报,2009,29(10):5508-5514
    [169]杨江山,张恩和,张仁陟,等.保护性耕作对麦药轮作土壤酶活性和微生物数量的影响[J].生态学报,2010,30(3):0824-0829.
    [170]孙启祥,张建峰,ⅠFranz Makeschin不同土地利用方式土壤化学性状与酶学指标分析[J].水土保持学报,2006,20(4):98-101.
    [171]龙健,李娟,滕应等.贵州高原喀斯特环境退化过程土壤质量的生物学特性研究[J].水土保持学报,2003,17(2):47-50.
    [172]Nannipieri P,Ascher J,Ceccherini MT, etal.Microbial diversity and soil functions [J].European Journal of Soil Science,2003,54:655-670.
    [173]Amann R I,LudwigW,Schleifer K H. PHylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol.Rev.,1995,59:143-169.
    [174]沈萍,陈向东.微生物学实验(第四版)[M].北京:高等教育出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700