用户名: 密码: 验证码:
玉米匍匐基因LAZY1的图位克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生长素在植物生长发育的各个方面均发挥重要作用,包括重力性生长和花器官发育。尽管目前已分别鉴定了多个重力性相关或花器官发育相关的基因,但植物体内尚未有明确报道同时参与这两个过程的基因。玉米经典的遗传学突变体之一lazy plantl (lal)发现几十年来,人们早已观察到其地上部重力性缺失的突变表型特征,然而LA1基因调控玉米地上部重力性生长的分子机理却一直未有研究。
     本研究中,我们利用分子遗传分析、发育生物学手段及转录组分析对玉米LAl基因进行了功能剖析,发现其为水稻和拟南芥LAZY1基因的同源基因,在玉米中特异调控地上部重力性反应和花器官发育。主要研究结果如下:
     1)自MuDR突变体库中筛选获得匍匐生长突变体prostrate steml (ps1),通过图位克隆策略获得候选目的基因。等位测验发现psl突变体是玉米la1的等位突变,表现为地上部重力性缺失而造成茎杆匍匐生长。与水稻或拟南芥同源基因不同,玉米LA1基因除在茎节中表达外还在生殖器官中表达,且参与调控花器官发育。
     2)LA1转录对外源生长素和光信号敏感。施加生长素后可诱导LA1的转录水平先下调后上调。黑暗环境诱导LA1基因表达而光照抑制该基因表达。
     3)LA1蛋白定位于细胞核和细胞膜上;通过酵母双杂交和双分子荧光互补(BiFC)实验鉴定了LA1蛋白可与一个蛋白激酶C (PKC)在膜上互作,可能作用于生长素运输的调控过程;还可与一个AUX/IAA蛋白(IAA17)在细胞核内互作,可能作用于生长素的信号转导途径。
     4)转录组测序分析显示部分生长素运输载体或相关基因,如ZmPIN1c,在la1突变体中表达量明显降低;而另有部分运输载体及相关基因,如BR2(ZmABCB1),则明显上调表达。此结果与LA1对生长素极性运输的双向调控作用是一致的:负向调控向基极性运输而正向调控侧向极性运输。另外,la1突变体中大量的生长素响应基因和光信号相关基因发生不同程度的上调变化,预示LA1在两个过程中的抑制调节作用。
     综上,本研究证明LA1参与玉米生长素极性运输、生长素信号转导及光信号响应等一系列基础的生命过程,介导了重力性生长和花器官形态建成之间的互作。相关结果不仅增进了我们对生长素作用于玉米重力性生长、花结构发育和光形态建成间紧密关系的了解,同时也将为未来玉米抗倒伏及理想株型的选育提供理论依据。
The plant hormone auxin plays important role in multitude of physiological and developmental processes including shoot gravitropism and inflorescence development. Despite many genes have been characterized to be involved in either process, few regulators, if any, have been identified to mediate both gravitropism and inflorescence development in a given species. The classical maize mutant lazy plantl (laI) have been known for decades to have defected gravitropic response, yet the mechanism underlining maize gravitropism remain largely elusive.
     In this research, we combined genetic analyses, developmental techniques, biochemical tools with transcriptome analyses to identify LAI, an ortholog of LAZY1in rice and in Arabidopsis, regulating both shoot gravitropism and inflorescence development in maize. The major novel discoveries of our study are:
     1) We created a maize prostratel (psl) mutant from our MuDR mutant library, which is allelic to the classic lal mutant, displaying a prostrate phenotype with reduced shoot gravitropism. We map-based cloned the LAI gene. Unlike its orthologs in rice or Arabidopsis, maize LAI regulates maize inflorescence development, and consistently, LAI is highly expressed in the reproductive organs.
     2) Transcription of LAI is responsive to both auxin and light. Exogenous auxin treatment led to a repression-then-induction pattern for LAI expression, while dark dramatically induced the transcript accumulation of LAI and light inhibited it.
     3) LA1protein localizes to the plasma membrane as well as in the nucleus. LA1physically interacts with a putative auxin transport regulator (Protein Kinase C, PKC) in the plasma membrane and a putative auxin signaling protein (AUX/IAA protein IAA17) in the nucleus, linking LA1with auxin transport and auxin signaling.
     4) RNA-SEQ analyses of lal mutant node showed auxin transport related genes, such as ZmPIN1c, were greatly downregulated while maize BR2(ZmABCBl) was significantly upregulated, consistant with the bilateral function of LA1of suppressing the basipetal polar auxin transport (PAT) while promoting the lateral PAT in maize. Further, most auxin responsive elements and light signaling genes were differentially up-regulated in the lal nodes, implying that LA1may act as a negative regulator for both light signaling and auxin signaling.
     Taken together, our findings suggest that LA1may mediate the crosstalk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling and probably light response in maize. As such, the results not only advance our understanding of the function of LA1in response to gravity, but also give new insights into the complicated crosstalk between auxin, light and inflorescent development.
引文
Abas L, Benjamins R, Malenica N, et al. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8(3):249-256.
    Abel S, Oeller P W and Theologis A (1994). Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci U S A 91(1):326-330.
    Bailly A, Sovero V, Vincenzetti V, et al. (2008). Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283(31):21817-21826.
    Bajguz A and Piotrowska A (2009). Conjugates of auxin and cytokinin. Phytochemistry 70(8): 957-969.
    Band L R, Wells D M, Larrieu A, et al. (2012). Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109(12):4668-4673.
    Barazesh S and McSteen P (2008a). Barren inflorescencel functions in organogenesis during vegetative and inflorescence development in maize. Genetics 179(1):389-401.
    Barazesh S and McSteen P (2008b). Hormonal control of grass inflorescence development. Trends Plant Sci 13(12):656-662.
    Barazesh S, Nowbakht C and McSteen P (2009). sparse inflorescencel, barren inflorescencel and barren stalkl promote cell elongation in maize inflorescence development. Genetics 182(1):403-406.
    Bender R L, Fekete M L, Klinkenberg P M, et al. (2013). PIN6 is required for nectary auxin response and short stamen development. Plant J 74(6):893-904.
    Benjamins R, Quint A, Weijers D, et al. (2001). The PINODD protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128(20):4057-4067.
    Benjamins R and Scheres B (2008). Auxin:the looping star in plant development. Annual Review of Plant Biology 59:443-465.
    Bennett M J, Marchant A, Green H G, et al. (1996). Arabidopsis AUX1 gene:a permease-like regulator of root gravitropism. Science 273(5277):948-950.
    Blakeslee J J, Bandyopadhyay A, Lee O R, et al. (2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19(1):131-147.
    Blakeslee J J, Peer W A and Murphy A S (2005). Auxin transport. Curr Opin Plant Biol 8(5): 494-500.
    Blancaflor E B, Fasano J M and Gilroy S (1998). Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116(1):213-222.
    Boonsirichai K, Sedbrook J C, Chen R, et al. (2003). ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15(11):2612-2625.
    Bouchard R, Bailly A, Blakeslee J J, et al. (2006). Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281(41):30603-30612.
    Canamero R C, Bakrim N, Bouly J P, et al. (2006). Cryptochrome photoreceptors cryl and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224(5):995-1003.
    Carraro N, Forestan C, Canova S, et al. (2006). ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142(1): 254-264.
    Cazzonelli C I, Vanstraelen M, Simon S, et al. (2013). Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 8(7):e70069.
    Cheng Y, Dai X and Zhao Y (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13): 1790-1799.
    Cheng Y and Zhao Y (2007). A role for auxin in flower development. J Integr Plant Biol 49(1): 99-104.
    Christensen S K, Dagenais N, Chory J, et al. (2000). Regulation of auxin response by the protein kinase PDNOID. Cell 100(4):469-478.
    Ciesielski T (1871). Untersuchungen uber die Abwartskrummung der Wurzel, R. Nischkowsky.
    Comai L and Kosuge T (1982). Cloning characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol 149(1):40-46.
    Darwin C and Darwin F E (1888). The Power of movement in plants. Appleton.
    Delker C, Raschke A and Quint M (2008). Auxin dynamics:the dazzling complexity of a small molecule's message. Planta 227(5):929-941.
    Derbyshire P and Byrne M E (2013). MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium. Plant Physiol 161(3):1291-1302.
    Dharmasiri N, Dharmasiri S and Estelle M (2005). The F-box protein TIK1 is an auxin receptor. Nature 435(7041):441-445.
    Dharmasiri S, Swarup R, Mockaitis K, et al. (2006). AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312(5777):1218-1220.
    Dhonukshe P, Grigoriev I, Fischer R, et al. (2008a). Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 105(11): 4489-4494.
    Dhonukshe P, Tanaka H, Goh T, et al. (2008b). Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456(7224):962-966.
    Ding X, Cao Y, Huang L, et al. (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 20(1):228-240.
    Ding Z, Galvan-Ampudia C S, Demarsy E, et al. (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13(4):447-452.
    Ding Z, Wang B, Moreno I, et al. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941.
    Doebley J, Stec A and Hubbard L (1997). The evolution of apical dominance in maize. Nature 386(6624):485-488.
    Effendi Y, Rietz S, Fischer U, et al. (2011). The heterozygous abpl/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J 65(2):282-294.
    Eric Schranz M, Mohammadin S and Edger P P (2012). Ancient whole genome duplications, novelty and diversification:the WGD Radiation Lag-Time Model. Curr Opin Plant Biol 15(2):147-153.
    Finet C and Jaillais Y (2012). AUXOLOGY:When auxin meets plant evo-devo. Dev Biol 369(1): 19-31.
    Friml J (2003). Auxin transport-shaping the plant. Curr Opin Plant Biol 6(1):7-12.
    Friml J, Vieten A, Sauer M, et al. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426(6963):147-153.
    Friml J, Wisniewska J, Benkova E, et al. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806-809.
    Friml J, Yang X, Michniewicz M, et al. (2004). A PDINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306(5697):862-865.
    Fukaki H, Wysocka-Diller J, Kato T, et al. (1998). Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14(4):425-430.
    Gaiser J C and Lomax T L (1993). The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated. Plant Physiol 102(2):339-344.
    Gallavotti A, Barazesh S, Malcomber S, et al. (2008a). sparse inflorescencel encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A 105(39):15196-15201.
    Gallavotti A, Malcomber S, Gaines C, et al. (2011). BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears. Plant Cell 23(5):1756-1771.
    Gallavotti A, Yang Y, Schmidt R J, et al. (2008b). The Relationship between auxin transport and maize branching. Plant Physiol 147(4):1913-1923.
    Gallavotti A, Zhao Q, Kyozuka J, et al. (2004). The role of barren stalkl in the architecture of maize. Nature 432(7017):630-635.
    Geisler M, Blakeslee J J, Bouchard R, et al. (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44(2):179-194.
    Geisler M and Murphy A S (2006). The ABC of auxin transport:the role of p-glycoproteins in plant development. FEBS Lett 580(4):1094-1102.
    Geldner N, Anders N, Wolters H, et al. (2003). The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. Cell 112:219-230.
    Geldner N, Friml J, Stierhof Y-D, et al. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413(6854):425-428.
    Geldner N, Richter S, Vieten A, et al. (2004). Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131(2): 389-400.
    Halliday K J, Martinez-Garcia J F and Josse E-M (2009). Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1(6).
    Harrison B R and Masson P H (2008). ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53(2):380-392.
    lino M (1982). Inhibitory action of red light on the growth of the maize mesocotyl:evaluation of the auxin hypothesis. Planta 156(5):388-395.
    Ikeda Y, Men S, Fischer U, et al. (2009). Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 11(6):731-738.
    Jenkins M T and Gerhardt F (1931). A gene influencing the composition of the culm in maize, Agricultural Experiment Station, Iowa State College of Agriculture and Mechanic Arts.
    Jensen P J, Hangarter R P and Estelle M (1998). Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116(2):455-462.
    Jones J W and Adair C R (1938). A "LAZY" mution in rice. J Hered 29(8):315-318.
    Kepinski S and Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446-451.
    Kim D and Salzberg S L (2011). TopHat-Fusion:an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72.
    Kiss J Z (2000). Mechanisms of the early phases of plant gravitropism. Grit Rev Plant Sci 19(6): 551-573.
    Kleine-Vehn J, Dhonukshe P, Sauer M, et al. (2008). ARF GEF-Dependent Transcytosis and Polar Delivery of PIN Auxin Carriers in Arabidopsis. Curr Biol 18(7):526-531.
    Kleine-Vehn J, Dhonukshe P, Swarup R, et al. (2006). Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18(11):3171-3181.
    Kleine-Vehn J, Ding Z, Jones A R, et al. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107(51):22344-22349.
    Kleine-Vehn J, Huang F, Naramoto S, et al. (2009). PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell 21(12):3839-3849.
    Kubes M, Yang H, Richter G L, et al. (2012). The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J 69(4): 640-654.
    Langmead B, Trapnell C, Pop M, et al. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25.
    Li J, Yang H, Peer W A, et al. (2005). Arabidopsis H+-PPase AVPl regulates auxin-mediated organ development. Science 310(5745):121-125.
    Li P, Wang Y, Qian Q, et al. (2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17(5):402-410.
    Li Y, Hagen G and Guilfoyle T J (1991). An Auxin-Responsive Promoter Is Differentially Induced by Auxin Gradients during Tropisms. Plant Cell 3(11):1167-1175.
    Ljung K, Bhalerao R P and Sandberg G (2001). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28(4):465-474.
    Ludwig-Milller J (2011). Auxin conjugates:their role for plant development and in the evolution of land plants. J Exp Bot 62(6):1757-1773.
    Ludwig-Muller J, Julke S, Bierfreund N M, et al. (2009). Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol 181(2):323-338.
    Luesse D R, Schenck C A, Berner B K, et al. (2011). GPS4 is allelic to ARL2:implications for gravitropic signal transduction. Gravitational and Space Research 23(2).
    Luschnig C, Gaxiola R A, Grisafi P, et al. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12(14):2175-2187.
    Marchant A, Bhalerao R, Casimiro I, et al. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14(3):589-597.
    Marques-Bueno M M, Moreno-Romero J, Abas L, et al. (2011). A dominant negative mutant of protein kinase CK2 exhibits altered auxin responses in Arabidopsis. Plant J 67(1):169-180.
    Mashiguchi K, Tanaka K, Sakai T, et al. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108(45):18512-18517.
    Masson P H, Tasaka M, Morita M T, et al. (2002). Arabidopsis thaliana:a model for the study of root and shoot gravitropism. The Arabidopsis Book/American Society of Plant Biologists 1.
    McSteen P and Hake S (2001). barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128(15):2881-2891.
    McSteen P, Malcomber S, Skirpan A, et al. (2007). barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144(2):1000-1011.
    Mei Y, Jia W-J, Chu Y-J, et al. (2012). Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 22(3):581-597.
    Michniewicz M, Zago M K, Abas L, et al. (2007). Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130(6):1044-1056.
    Monshausen G B, Miller N D, Murphy A S, et al. (2011). Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65(2):309-318.
    Morita M T (2010). Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705-720.
    Mravec J, Kubes M, Bielach A, et al. (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135(20):3345-3354.
    Mravec J, Petrasek J, Li N, et al. (2011). Cell Plate Restricted Association of DRP1A and PIN Proteins Is Required for Cell Polarity Establishment in Arabidopsis. Curr Biol 21(12):1055-1060.
    Muday G K (2001). Auxins and tropisms. J Plant Growth Regul 20(3):226-243.
    Muday G K and DeLong A (2001). Polar auxin transport:controlling where and how much. Trends Plant Sci 6(11):535-542.
    Mudgil Y, Uhrig J F, Zhou J, et al. (2009). Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway. Plant Cell 21(11):3591-3609.
    Multani D S, Briggs S P, Chamberlin M A, et al. (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302(5642):81-84.
    Nagashima A, Suzuki G, Uehara Y, et al. (2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J 53(3):516-529.
    Noh B, Bandyopadhyay A, Peer W A, et al. (2003). Enhanced gravi-and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423(6943):999-1002.
    Ohta M, Matsui K, Hiratsu K, et al. (2001). Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13(8):1959-1968.
    Overbeek J v (1936). "LAZY", an a-geotropic form of maize "Gravitational Indifference" Rather Than Structural Weakness Accounts for Prostrate Growth-Habit of This Form. J Hered 27(3):93-96.
    Parry G, Marchant A, May S, et al. (2001). Quick on the uptake:characterization of a family of plant auxin influx carriers. Journal of Plant Growth Regulation 20(3):217-225.
    Peer W A, Blakeslee J J, Yang H, et al. (2011). Seven things we think we know about auxin Transport. Mol Plant 4(3):487-504.
    Pennazio S (2002). The discovery of the chemical nature of the plant hormone auxin. Riv Biol 95(2):289-308.
    Perera I Y, Heilmann I and Boss W F (1999). Transient and sustained increases in inositol 1,4, 5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci U S A 96(10):5838-5843.
    Perera I Y, Heilmann I, Chang S C, et al. (2001). A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol 125(3):1499-1507.
    Petrasek J, Mravec J, Bouchard R, et al. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312(5775):914-918.
    Petrasek J and Friml J (2009). Auxin transport routes in plant development. Development 136(16): 2675-2688.
    Phillips K A, Skirpan A L, Liu X, et al. (2011). vanishing tassel2 Encodes a Grass-Specific Tryptophan Aminotransferase Required for Vegetative and Reproductive Development in Maize. Plant Cell 23(2):550-566.
    Plieth C and Trewavas A J (2002). Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients. Plant Physiol 129(2):786-796.
    Raven J (1975). Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74(2):163-172.
    Richter S, Geldner N, Schrader J, et al. (2007). Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448(7152):488-492.
    Robbins J, Dilworth S M, Laskey R A, et al. (1991). Two interdependent basic domains in nucleoplasmin nuclear targeting sequence:identification of a class of bipartite nuclear targeting sequence. Cell 64(3):615-623.
    Robert H S and Friml J (2009). Auxin and other signals on the move in plants. Nat Chem Biol 5(5): 325-332.
    Robert S, Kleine-Vehn J, Barbez E, et al. (2010). ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis. Cell 143(1):111-121.
    Roberts J A (1984). Tropic responses of hypocotyls from normal tomato plants and the gravitropic mutant Lazy-1. Plant Cell Environ 7(7):515-520.
    Romanelli M G and Morandi C (2002). Importin alpha binds to an unusual bipartite nuclear localization signal in the heterogeneous ribonucleoprotein type I. Eur J Biochem 269(11):2727-2734.
    Rubery P and Sheldrake A (1974). Carrier-mediated auxin transport. Planta 118(2):101-121.
    Sakai T, Kagawa T, Kasahara M, et al. (2001). Arabidopsis nphl and np11:blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98(12):6969-6974.
    Salinas-Mondragon R, Kajla J, Perera I, et al. (2010). Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression. Plant Cell Environ 33(12):2041-2055.
    Salisbury F J, Hall A, Grierson C S, et al. (2007). Phytochrome coordinates Arabidopsis shoot and root development. Plant J 50(3):429-438.
    Santner A A and Watson J C (2006). The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45(5):752-764.
    Sassi M, Lu Y, Zhang Y, et al. (2012). COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1-and PIN2-dependent auxin transport in Arabidopsis. Development 139(18):3402-3412.
    Sassi M, Wang J, Ruberti I, et al. (2013). Shedding light on auxin movement:Light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signal Behav 8(3):e23355.
    Sato M H, Nakamura N, Ohsumi Y, et al. (1997). The AtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana. J Biol Chem 272(39):24530-24535.
    Sieberer T and Leyser O (2006). Plant science. Auxin transport, but in which direction? Science 312(5775):858-860.
    Siemens J, Keller I, Sarx J, et al. (2006). Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe In 19(5):480-494.
    Silady R A, Ehrhardt D W, Jackson K, et al. (2008). The GRV2/RME-8 protein of Arabidopsis functions in the late endocytic pathway and is required for vacuolar membrane flow. Plant J 53(1): 29-41.
    Silady R A, Kato T, Lukowitz W, et al. (2004). The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans. Plant Physiol 136(2):3095-3103.
    Skirpan A, Culler A H, Gallavotti A, et al. (2009). BARREN INFLORESCENCE2 interaction with ZmPINla suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiol 50(3):652-657.
    Skirpan A, Wu X and McSteen P (2008). Genetic and physical interaction suggest that BARREN STALK 1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development. Plant J 55(5):787-797.
    Smith C M, Desai M, Land E S, et al. (2013). A role for lipid-mediated signaling in plant gravitropism. Am J Bot 100(1):153-160.
    Staswick P E, Serban B, Rowe M, et al. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616-627.
    Steinmann T, Geldner N, Grebe M, et al. (1999). Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286(5438):316-318.
    Stepanova A N, Robertson-Hoyt J, Yun J, et al. (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177-191.
    Stepanova A N, Yun J, Robles L M, et al. (2011). The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23(11): 3961-3973.
    Strohm A K, Baldwin K L and Masson P H (2012). Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front Plant Sci 3:274.
    Sugawara S, Hishiyama S, Jikumaru Y, et al. (2009). Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 106(13): 5430-5435.
    Suge H and Turkan I (1991). Can plants normally produce seeds under microgravily in space? Jpn J Crop Sci 60.
    Szemenyei H, Hannon M and Long J A (2008). TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319(5868):1384-1386.
    Tamura K, Peterson D, Peterson N, et al. (2011). MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731-2739.
    Tan X, Calderon-Villalobos LI A, Sharon M, et al. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640-645.
    Tasaka M, Kato T and Fukaki H (1999). The endodermis and shoot gravitropism. Trends Plant Sci 4(3):103-107.
    Teale W D, Paponov I A and Palme K (2006). Auxin in action:signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847-859.
    Teh O-k and Moore I (2007). An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448(7152):493-496.
    Terasaka K, Blakeslee J J, Titapiwatanakun B, et al. (2005). PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17(11):2922-2939.
    Titapiwatanakun B, Blakeslee J J, Bandyopadhyay A, et al. (2009). ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57(1):27-44.
    Toyota M, Furuichi T, Tatsumi H, et al. (2008a). Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signal Behav 3:521-524.
    Toyota M, Furuichi T, Tatsumi H, et al. (2008b). Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146(2): 505-514.
    Trapnell C, Pachter L and Salzberg S L (2009). TopHat:discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105-1111.
    Trapnell C, Williams B A, Pertea G, et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511-515.
    Tripathi V, Syed N, Laxmi A, et al. (2009). Role of CIPK6 in root growth and auxin transport. Plant Signal Behav 4(7):663-665.
    Ulmasov T, Murfett J, Hagen G, et al. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11): 1963-1971.
    Van Overbeek J (1938). "Laziness" in maize due to abnormal distribution of growth hormone. J Hered 29(9):339-341.
    Vemoux T, Brunoud G, Farcot E, et al. (2011). The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7(1).
    Villalobos L I A C, Lee S, De Oliveira C, et al. (2012). A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8(5):477-485.
    Walter M, Chaban C, Schutze K, et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40(3):428-438.
    Wang Y, Lin W-H, Chen X, et al. (2009). The role of Arabidopsis 5PTase 13 in root gravitropism through modulation of vesicle trafficking. Cell Res 19(10):1191-1204.
    Whipple C J, Hall D H, DeBlasio S, et al. (2010). A conserved mechanism of bract suppression in the grass family. Plant Cell 22(3):565-578.
    Whitford R, Fernandez A, Tejos R, et al. (2012). GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev Cell 22(3):678-685.
    Willige B C, Ahlers S, Zourelidou M, et al. (2013). D6PK AGCⅧ Kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25(5):1674-1688.
    Willige B C, Ogiso-Tanaka E, Zourelidou M, et al. (2012). WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development 139(21):4020-4028.
    Wisniewska J, Xu J, Seifertova D, et al. (2006). Polar PIN localization directs auxin flow in plants. Science 312(5775):883-883.
    Wolverton C, Ishikawa H and Evans M L (2002). The kinetics of root gravitropism:dual motors and sensors. J Plant Growth Regul 21(2):102-112.
    Won C, Shen X, Mashiguchi K, et al. (2011). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A 108(45):18518-18523.
    Woodward A W and Bartel B (2005). Auxin:regulation, action, and interaction. Ann Bot 95(5): 707-735.
    Wu X and McSteen P (2007). The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). Am J Bot 94(11):1745-1755.
    Wu X, Tang D, Li M, et al. (2013). Loose Plant Architecturel, an INDETERMINATE DOMAIN Protein Involved in Shoot Gravitropism, Regulates Plant Architecture in Rice. Plant Physiol 161(1): 317-329.
    Xu T, Wen M, Nagawa S, et al. (2010). Cell surface-and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143(1):99.
    Yang H and Murphy A S (2009). Functional expression and characterization of Arabidopsis ABCB, AUX1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59(1):179-191.
    Yoshihara T and Iino M (2007). Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and-independent gravity signaling pathways. Plant Cell Physiol 48(5): 678-688.
    Yoshihara T, Spalding E P and lino M (2013). AtLAZYl is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74(2):267-279.
    Zazimalova E, Murphy A S, Yang H, et al. (2010). Auxin transporters-why so many? Cold Spring Harb Perspect Biol 2(3):a001552.
    Zhang D and Yuan Z (2014). Molecular Control of Grass Inflorescence Development. Annu Rev Plant Biol 65(1).
    Zhang J, Nodzynski T, Pencik A, et al. (2010). PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci U S A 107(2):918-922.
    Zhang J, Vanneste S, Brewer P B, et al. (2011). Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity. Dev Cell 20(6):855-866.
    Zhao Y (2010). Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61: 49-64.
    Zhao Y (2012). Auxin biosynthesis:a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5(2):334-338.
    Zhao Y, Christensen S K, Fankhauser C, et al. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291(5502):306-309.
    Zhao Y, Hull A K, Gupta N R, et al. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16(23):3100-3112.
    Zourelidou M, Muller I, Willige B C, et al. (2009). The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136(4):627-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700