用户名: 密码: 验证码:
利用两个高油主效QTL改良优良杂交种—郑单958的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米油富含不饱和脂肪酸,人体易吸收的亚油酸最高可达61.8%,是一种具有多种抗氧化剂的高品质食用油。2010我国玉米种植面积达到3250万公顷成为最大的粮食作物,其中杂交种郑单958为推广面积最大的杂交种,提高郑单958的油份含量进一步提高杂交种的附加值具有重要意义。本实验利用分子标记辅助选择手段,以高油玉米自交系By804为供体亲本,以郑单958的两个亲本为轮回亲本,将两个高油主效QTL位点qH06和qH01分别转入到昌7-2和郑58中,以期通过改良两个亲本的油份含量进一步提高郑单958油份含量,同时利用改良的近等基因系研究两个主效QTL的效应,为生产实践提供依据。主要研究结果如下:
     (1)导入qH06位点的改良昌7-2和郑58与对照亲本籽粒油份及产量相关性状的二年三点田间试验比较表明,改良系籽粒油份含量分别达到5.0%和4.4%,较对照分别提高19.6%及29.4%,而其他的产量相关性状均没有显著变化。表明导入的qH06位点除了显著提高改良系籽粒油份含量外,没有导致产量性状的变化。
     (2)导入qHO1位点的昌7-2和郑58改良系油份含量与对照亲本显著提高。二年三点田间试验的结果表明,籽粒油份含量分别达到4.77%和4.13%,较对照昌7-2和郑58提高11%和16%。但是,籽粒百粒重分别显著下降1.3g(5%)和1.76g(6%),除了改良郑58的穗行数增加以外,两个改良系的其他产量性状没有显著变化。
     (3)qH06位点改良昌7-2和郑58组配改良郑单958与对照一年五点田间试验比较表明:改良郑单958籽粒油份含量达到4.65%,比对照郑单958提高20%,达到显著水平。改良杂交种籽粒百粒重为36.01g,与对照35.95g没有显著差别。进一步考查籽粒及胚性状发现,除了胚重有0.003g(5.4%)显著增加外,改良杂交种较对照其他籽粒及胚性状均没有显著变化。
     (4)qHO1位点改良昌7-2和郑58组配改良郑单958与对照一年五点田间试验比较表明,改良郑单958籽粒油份含量达到4.43%,较对照显著提高0.5%,相对提高13%,同时百粒重却有1.14g(3.2%)的显著下降,改良郑单958除穗行数较对照有显著变化外,其他产量相关性状均没有改变。进一步对籽粒和胚性状进行比较分析发现,改良郑单958较对照相比,籽粒长宽厚分别下降0.2mm、0.15mm及0.23mm,而胚长和胚宽分别增加0.33mm、0.23mm,且均达到极显著水平,表明籽粒油份提高的同时籽粒及胚性状有相应的变化。
Maize oil is a highly valued vegitable oil as it has high levels of unsaturated fatty acids. In2010, maize became the top first crop in China when the plant area reached up to32.5million hectares. Among all the planted maize hybrids, Zhengdan958had the largest plant area, and thus increasing the kernel oil content in Zhengdan958will play a critical role in the increase of the added value in maize hybrids. In this study, two major QTL for oil content, qHO1and qHO6, were targeted for introgression of the favorable alleles from the high-oil inbred lines, By804, into two parents of elite maize hybrids Zhengdan958, Zheng58and Chang7-2, to increase the oil content in Zhengdan958using marker-assisted recurrent selection. In addition, the effects of two major QTL for oil content were further observed using the improved lines, providing the useful information for the commercial production of the improved Zhengdan958. The major results are as the following:
     1) For qHO6, the kernel oil content in the improved lines from Chang7-2and Zheng58reached up to5.0%and4.4%, and increased by19.6%and29.4%compared with the control, respectively. In addition, no significant changes were observed for yield related traits in the improved lines. These results indicate qHO6only affects the oil content while not yield related traits.
     2) For qHO1, the kernel oil content in the improved lines from Chang7-2and Zheng58reached up to4.77%and4.13%, and increased by11%and16%compared with the control, respectively. However,100-kernel weight in the improved lines from Chang7-2and Zheng58decreased by1.3g (5%) and1.76g (6%), respectively. Furthermore, significant changes were observed for ear row number in the improved lines from Zheng58.
     3) The field experiments in five locations in one year of the improved Zhengdan958for qHO6showed the oil content reached up to4.65%, and increased by20%compared with the control. No significant differences were observed for100-kernel weight between the improved Zhengdan958(36.01g) and control (35.95g). Further investigations showed no other traits in maize kernel and embryo changed significantly besides the embryo weight, which increase significant by0.003g (5.4%).
     4) The field experiments in five locations in one year of the improved Zhengdan958for qHO1showed the oil content reached up to4.43%, and increased significantly by13%compared with the control. Additionally, significant changes were observed for100-kernel weight (increased by1.14g) and ear row number, but not for no other yield related traits. Further investigations for the kernel and embryo related traits showed the kernel length, width and thickness in the improved Zhengdan958for qHO1significantly decreased by0.2,0.15and0.23mm, and embryo length and width increased by0.33and0.23mm, respectively. These results indicate the improved Zhengdan958for qHO1have significant changes both in kernel oil content, kernel and embryo related traits.
引文
1.陈绍江.高油玉米发展回顾与展望,玉米科学,2001,9(4):80-83.
    2.陈绍江.我国高油玉米育种的发展策略,科技导报,2004,52-55.
    3.范宏伟.高油玉米群体的杂种优势模式与高油授粉者选育.中国农业大学博士论文,2001.
    4.刘纪麟主编,玉米育种学(第二版),中国农业出版社,2004.
    5.刘仁东,石德权,徐家舜.玉米籽粒含油量的配合力、方差分析和遗传力及其应用的研究。中国农业科学,1992,25:52-55.
    6.沈新莲,张天真.作物分子标记辅助选择育种研究的进展与展望,高技术通讯,2003,2:105-110
    7.宋同明.脉冲核磁共振仪(Pulsed NMR)对作物种子含油量的快速测定.作物学报,1989,15(2):160-166.
    8.宋同明,苏胜宝,陈绍江,等.高油玉米前途光明.玉米科学,1997,5(3):73-77.
    9.宋同明.迎接高油玉米新世纪.种子科技,2001,5:279-281.
    10. A. C. Sanchez, D. S. Brar, N. Huang,et al. Sequence Tagged Site Marker-Assisted Selection for Three Bacterial Blight Resistance Genes in Rice. Crop Sci.,2000,40:792-797
    11. Agne's Bouchez, Fre'de'ric Hospital, Mathilde Causse,et al. Marker-Assisted Introgression of Favorable Alleles at Quantitative Trait Loci Between Maize Elite Lines. Genetics,2002,162: 1945-1959
    12. Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA,1996,93:15503-15507.
    13. Alrefai R, Berke T G, Rocheford T R. Quantitative trait locus analysis of fatty acid concentration in maize. Genome,1995,38:894-901.
    14. Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci,2003,8:554-560.
    15. Andersen J R, Schrag T, Melchinger A E, et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet,2005, 111:206-217.
    16. Anderson, J A, Chao S, Liu S. Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci,2008,47(S3):S112-S119.
    17. Ann Marie Thro, Wayne Parrott, Joshua A, et al.Genomics and plant breeding:the experience of he initiatve for future agriculture and food systems. Crop Science,2004,44:1893-1919
    18. Arumuganathan K and Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter,1999,9:208-218.
    19. Baud S, Mendoza M S, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J,2007,50:825-838.
    20. Baud S, Wuilleme S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J,2009,60:933-947.
    21. B.C.Y. Collard, M.Z.Z. Jahufer, J.B. Brouwer, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts. Euphytica,2005,142:169-196
    22. Belo A, Zheng P Z, Luck S, et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mo1 Genet Genomics,2008,279:1617-4615.
    23.. Berke T, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci,1995,35:1542-1549.
    24. Bertrand C.Y Collard, David J Mackill. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century. Philosophical transactions of the royalb society,2007, 363:557-572
    25. Bressani R, Benavides V, Acevedo E, Ortiz M A. Changes in Selected Nutrient Contents and in Protein-Quality of Common and Quality-Protein Maize during Rural Tortilla Preparation. Cereal Chem,1990,67:515-518.
    26. Dale L. Val, Steven H. Schwartz, Michael R. Kerns,et al. Development of a High Oil Trait for Maize.high oil maize, Chapter 21:203-323
    27. Candela H, Hake S. The art and design of genetic screens:maize. Nature Reviews Genetics,2007, 9:192-203.
    28. Dean W. Podlich,* Christopher R. Winkler, and Mark Cooper. Mapping As You Go:An Effective Approach for Marker-Assisted Selection of Complex Traits. Crop Sci.,2004,44:1560-1571
    29. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J,2004,40:575-585.
    30. Ching A, Fafalski A. Rapid genetic mapping of ESTs using SNP pyrosequencing and InDel analysis. Cell Mol Biol Lett,2002,7:803-810.
    31. Colette Jako, Arvind Kumar, Yangdou Wei,et al. Seed-Specific Over-Expression of an Arabidopsis cDNA Encoding a Diacylglycerol Acyltransferase Enhances Seed Oil Content and Seed Weight. Plant Physiology,2001,126:861-874
    32. Delphine Fleury, Stephen Jefferies, Haydn Kuchel,et al. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany,61(12):3211-3222
    33. Dina A. StClair. Quantitative Disease Resistance and Quantitative Resistance Loci in Breeding. The Annual Review of Phytopathology,2010.48:247-68
    34. Clark D, Dudley J W, Rocheford T R, et al. Genetic analysis of corn kernel chemical composition in the random mated 10 generation of the cross of generation 70 of IHO × ILO. Crop Sci,2006, 46:807-819.
    35. Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics,1996,142:285-294.
    36. Dorweiler L, Stec A, Kermicle J, et al. Teosinte glume architecture 1, a genetic locus controlling a key step in maize evolution. Science,1993,262:233-235.
    37. Duldey J W, Lambert R J. Ninety generations of selection for oil and protein in maize. Maydica, 1992,37:81-87.
    38. Duldey J W, Lambert R J.100 generations of selection for oil and protein in corn. Plant Breed Rev, 2004,24:79-110.
    39. D. Z. Habash, Z. Kehel2 and M. Nachit. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. Journal of Experimental Botany,2009,60(10): 2805-2815
    40. Elisabeth Dirlewanger, Enrique Graziano, Tarek Joobeur,et al. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. PNAS,2004,101(26):9891-9896
    41. E. Francia, G. Tacconi, C. Crosatti,et al. Marker assisted selection in crop plants. Plant Cell,2005, 82:317-342
    42. Etienne Paux, Pierre Sourdille, Ian Mackay. Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnology Advances,2011,1-18
    43. Eva Herzog·atthias Frisch. Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet,2011,123:251-260
    44. Falque M, Decousset L, Dervins D, et al. Linkage mapping of 1454 new maize candidate gene loci. Genetics,2005,170:1957-1966.
    45. Fre'de'ric Hospital. Challenges for effective marker-assisted selection in plants. Genetica,2009, 136:303-310
    46. Flint-Garcia S A, Thuillet A C, Yu J M, et al. Maize association population, a high-resolution platform for quantitative trait locus dissection. Plant J,2005,44:1054-1064.
    47. Frary A, Nesbitt T. C, Frary A, et al. fw2.2:A quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    48. Fre'de'ric Hospital. Selection in backcross programmes. Philosophical transactions of the royalb society,2005,360:1503-1511
    49. Gad G. Yousef and John A. Juvik. Comparison of Phenotypic and Marker-Assisted Selection for Quantitative Traits in Sweet Corn. Crop Science,2001,41:645-655
    50. Georgios Banilas, Michael Karampelias, Ifigenia Makariti,et al. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. Journal of Experimental Botany, doi:10.1093:1-12
    51. Germain V, Rylott E L, Larson T R, et al. Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome decelopment fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J,2001,28:1-12.
    52. Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome [Oryza sativa L.ssp. japonica), Science,2002,296:92-100.
    53. Goldman I L, Rocheford T R, Duldey J W. Molecular markers associated with maize kernel oil concentration in an Illinois High Protein x Illinois Low Protein cross. Crop Sci,1994,34:908-915.
    54. G. Ram Kumar, K. Sakthivel, R.M. Sundaram. Allele mining in crops:Prospects and potentials. Biotechnology Advances,2010,28:451-61
    55. H. BUERSTMAYR,J. BAN, and J. A. ANDERSON. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat:a review. Plant Breeding,2009,128:1-26
    56. Howell W M, Jobs M, Gyllensten U, et al. Dynamic allele specific hybridization. A new method for scoring single nucleotide polymorphisms. Nat Biotechnol,1999,17:87-88.
    57. Jander G, Norris S R, Rounsley S D, et al. Arabidopsis map-based cloning in the post-genome era, Plant Physiol,2002,129:440-450.
    58. Lambert R J, Alexander D E, Mejaya I J. Single kernel selection for increased grain oil in maize synthetics and high-oil hybrid development. Plant Breed Rev,2004,24:153-175.
    59. Laurie C C, Chasalow S D, LeDeaux J R, et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics,2004,168:2141-2155.
    60. Lawrencea C J, Walbotb V. Translational genomics for bioenergy production from fuelstock grasses: maize as the model species. Plant Cell,2007,19:2091-2094.
    61. J. C. M. Dekkers. Commercial application of marker-and gene-assisted selection in livestock: Strategies and lessonsJournal of animal science,2004,82:E313-328
    62. Jean-Marcel Ribaut, Michel Ragot. Marker-assisted selection to improve drought adaptation in maize:the backcross approach, perspectives, limitations,and alternatives. Journal of Experimental Botany,2007,58(2):351-360
    63. Jean-Luc Jannink Aaron J. Lorenz, Hiroyoshi Iwata. Genomic selection in plant breeding:from theory to practice. BRIEFINGS IN FUNCTIONAL GENOMICS,2010,9(2):166-177
    64. K. A. Steele. A, H. Price. H. E, Shashidhar J. R. Witcombe. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet,2006,112: 208-221
    65. K. K. Jena J. U, Jeung. J. H. Lee,H. C. Choi. D. S. Brar. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet,2006,112:288-297
    66. Lee K, Huang A H C. Genes encoding oleosins in maize kernel of inbreds Mo 17 and B73.Plant Mol Biol,1994,26(6):1981-1987.
    67. Li L, Li H, Li Q, et al. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain. Plos One,2011,6 (9).
    68. L. Moreau, S. Lemarie, A. Charcosset,et al. Economic Efficiency of One Cycle of Marker Assisted Selection.Crop Science,2000,40:329-337
    69. L. Moreau, A. Charcosset,A. Gallais. Experimental evaluation of several cycles of marker assisted selection in maize. Euphytica,2004,137:111-118
    70. Lubberstedt T, Zein I, Andersen J R, et al. Development and application of functional markers in maize. Euphytica,2005,146:101-108.
    71. Mangolin C A, de Souza Jr C L, Garcia A A F, et al. Mapping QTLs for kernel oil content in a tropical maize population. Euphytica,2004,137:251-259.
    72. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J,2009,60:476-487.
    73. Maiko Miyata,Toshio Yamamoto,Toshiyuki Komori,et al. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet, DOI 10.1007/s00122-006-0454-4
    74. M. Ashraf. Inducing drought tolerance in plants:Recent advances. Biotechnology Advances, 2010,28:169-183
    75. McMullen M D, Kresovich S, Villeda H S, et al. Genetic properties of the maize nested association mapping population. Science,2009,325:737-740.
    76. Michaels S D, Amasino R M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR, Plant J,1998,14(3):381-385.
    77. Mogg R, Batley J, Hanley S, et al. Characterization of the flanking regions of Zea mays microsatellites reveals a large number of useful sequence polymorphisms. Theor Appl Genet,2002, 105:532-543.
    78. Moose S P, Dudley J W, Rocheford T R. Maize selection passes the century mark, a unique resource for 21st century genomics. Trends Plant Sci,2004,9:358-364.
    79. Nasu S, Suzuki J, Ohta R, et al. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice(Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res,2002, 9(5):163-171.
    80. Nordborg M, Hu T T, Ishino Y, et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol,2005,3:1289-1299.
    81. Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell,1995,7:957-970.
    82. P H Zhou, Y F Tan, Y Q He. Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet,2003, 106:326-331
    83. Pouvreau B, Baud S, Vernoud V, et al. Duplicate maize Wrinkledl transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol,2011,156:674-686.
    84. Randall J. Weselake, David C. Taylor,M. Habibur Rahman,et al. Increasing the flow of carbon into seed oil. Biotechnology Advances,2009,27:866-878
    85. R. B abul, Sudha K. Nairl, B. M. Prasanna, et al. Integrating marker-assisted selection in crop breeding-Prospects and challenges. CURRENT SCIENCE,2004,87:607-619
    86. Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,98:11479-11484.
    87. Rex Bernardo, A lain Charcosset. Usefulness of Gene Information in Marker-Assisted Recurrent Selection:A Simulation Appraisal. Crop Sci,2006,46:614-621
    88. Rex Bernardo,Jianming Yu. Prospects for Genomewide Selection for Quantitative Traits in Maize. CROP SCIENCE,47:1082-1090
    89. Roberto Tuberosa and Silvio Salvi. Genomics-based approaches to improve drought tolerance of crops. TRENDS in Plant Science,2006,10.1016
    90. R. Van Berloo a P. Stam. Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet,1999,98:113-118
    91. Salvi S, Tuberosa R. To clone or not to clone plant QTLs, present and future challenges. Trends Plant Sci,2005,10:297-304.
    92. Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome:complexity, diversity, and dynamics. Science,2009,326(5956):1112-1115.
    93. Shen B, Allen W B, Zheng P Z, et al. Expression of ZmLECl and ZmWRIl increases seed oil production in maize. Plant Physiol,2010,153:980-987.
    94. Shen T J, Jiang H, Jin J P, et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol,2004,135:1198-1205.
    95. Shizhong Xu,Zhiqiu Hu. Methods of plant breeding in the genome era. Genet. Res.,2010,92: 423-41
    96. Song T M, Chen S J. Long term selection for oil concentration in five maize populations. Maydica, 2004,49:9-14.
    97. Song X F, Song T M, Dai J R, et al. QTL mapping of kernel oil concentration with high-oil maize by SSR markers. Maydica,2004,49:41-48.
    98. Stewart C J, Via L E, A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques,1993,14(5):748-50.
    99. Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics,1992, T32(3):823-839.
    100. Sukhija P S, Palmquist D L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem,1988,36:1202-1206.
    101. Sun Haiyan,Cai Yilin, Wang Jiuguang,et al. QTL Mapping for Nutritional Quality Traits in Maize. Journal of Agricultural Biotechnology,2011,19(4):616-623
    102. Tenaillon M, Sawkins M C, Long A D, et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA,2001,98:9661-9166.
    103. Thelen J J, Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng, 2002,4:12-21.
    104. Thomas Lubberstedt, Yongsheng Chen, Everton A. Brenner,et al. Development and Application of Functional Markers. Department of Agronomy, Iowa State University,1204 Agronomy Hall, Ames, IA,50011-1010
    105. Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet,2011,43(2):159-162.
    106. Timothy P. Durrett, Daniel D. McClosky, Ajay W. Tumaney. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds. PNAS,1001707107:1-6
    107. Ting J T L, Lee K, Ratnayake C, et al. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Planta,1996,199:158-165.
    108. Vyacheslav Andrianov, Nikolai Borisjuk, Natalia Pogrebnyak,et al. Tobacco as a production platform for biofuel:overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnology Journal,2010,8: 277-287
    109. Wang C S, Rutledge J J, Gianola D. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs, Genet Sel Evol,1994,26:91-115.
    110. Wang H, Nussbaum-Wagler T, Li B L, et al. The origin of the naked grains of maize. Nature,2005, 436:714-719.
    111. Wassom J J, Mikkelineni V, Bohn M O, et al. QTL for fatty acid composition of maize kernel oil in Illinois High Oil×B73 backcross-derived lines. Crop Sci,2008b,48:69-78.
    112. Wassom J J, Wong J C, Martinez E, et al. QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois High Oil× B73 backcross-derived lines. Crop Sci,2008a,48:243-252.
    113. Whitt S R, Wilson L M, Tenaillon M I, et al. Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA,2002,99:12959-12962.
    114. Widstrom N W, Jellum M D. Chromosomal location of genes controlling oleic and linoleic acid composition in the germ oil of maize inbreds. Crop Sci,1984,24:1113-1115.
    115. Yagi S, Kramer F R. Molecular beacons:probes that fluoresce up on hybridization. Nat Biotechnol, 1996,14:303-308.
    116. Yan J B, Kandianis C B, Harjes C E,et al. Rare genetic variation at Zea mays crtRBl increases β-carotene in maize grain. Nat Genet,2010a,42:322-327.
    117. Yan J B, Yang X H, Shah T, et al. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breeding,2010b,25:441-451.
    118. Yang X H, Gao S B, Xu S T, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding,2010a, DOI: 10.1007/s11032-010-9500-7
    119. Yang X H, Guo Y Q, Yan J B, et al. Major and minor QTL and epistasis contribute to fatty acid composition and oil content in high-oil maize. Theor Appl Genet,2010b,120:665-678.
    120. Yang X H, Yan J B, Shah T, et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theo Appl Genet 201 Oc,121:417-431.
    121.Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet,1997,95:1025-1032.
    122. Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12:2473-2483.
    123. Yuling Li,Yanzhao Wang,Mengguan Wei,et al. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). Journal of Genetics,2009,88(1):61-67
    124. Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica), Science,2002,296(5):79-92.
    125. Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol,2006,17:1-6.
    126. Y. Z. Wang, J. Z. Li, Y. L. Li. QTL detection for grain oil and starch content and their associations in two connected F2:3 populations in high-oil maize. Euphytica,2010,174:239-252
    127. Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468.
    128. Zheng P Z, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet,2008,40:367-372.
    129. Z.P. Yang, J. Gilbert, D.J. Somers,et al. Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Molecular Breeding,2003,12: 309-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700