用户名: 密码: 验证码:
喀斯特地区饲用灌木抗旱抗寒性的生理生态学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西南喀斯特山区是世界东亚喀斯特地貌的核心分布区,其基本特征是生境的严酷性和生态的脆弱性,严酷性集中表现为岩石裸露率高、土壤浅薄零星、水分和养分供应不足且保存能力差;其脆弱性表现为环境容量小、土地承载力低、抗干扰能力弱,受干扰后自然恢复速度慢、难度大。虽然喀斯特山区地处亚热带湿润气候带,但是由于我国喀斯特山区主要分布在云贵高原地区,中低海拔地区时常发生季节性干旱,高海拔地区冬季经常发生低温寒害。作为中国喀斯特山区核心分布区的贵州省,自实施草地生态畜牧业以来大力推广以灌丛草地饲养黑山羊的模式,然而由于季节性干旱和寒害等原因,需要筛选适合当地区域的耐旱或耐寒灌木品种进行推广应用。本研究选择4种干旱地区常用灌木(马棘Indigofera pseudotinctoria Mats.、二色胡枝子Leapedeza bicolor Turcz.、紫穗槐Amorpha fruiticosa Linn.口多花木兰Indigofera amblyantha、7种寒冷地区常用灌木(白刺花Sophora viciifolia Hance、多花木兰Indigofera amblyantha、刺槐Robinia pseudoacacia L.、木豆Cajanus cajan(L.)Millspaugh、车桑子Dodonaea viscosa (Linn.) Jacq. Enum、黄花决明Senna sulfurea(Collad.)H.S.Irwin&Barneby和猪屎豆Crotalaria pallida Ait为试验材料;采用野外观察、实验室分析和数理统计等方法进行胁迫研究,得出如下结论:
     (1)水分胁迫显著抑制了马棘、二色胡枝子、紫穗槐和多花木兰等4种灌木株高和叶面积生长,其抑制程度随胁迫强度的增加和胁迫时间的延长而增加。随水分胁迫强度增加,4种灌木叶片相对含水量和叶片持水力呈下降趋势。
     (2)马棘、二色胡枝子、紫穗槐和多花木兰等4种灌木的Chlorophyll a (Chla)含量随胁迫时间的延长呈先增加后下降的变化趋势,Chlorophyll a/b (Chla/b)值在胁迫初期变化较平稳,胁迫中期开始大幅度下降,末期又呈现小幅度上升的变化趋势。从胁迫末期与初期变化幅度来看,紫穗槐的Chla、Chlb与Chla/b值下降幅度均最小,胡枝子次之,马棘变化幅度最大。随水分胁迫时间延长,4种灌木叶片的脯氨酸、可溶性糖、可溶性蛋白含量呈增加趋势,但随胁迫强度的增加,可溶性蛋白含量下降,脯氨酸与可溶性糖含量在不同胁迫时期也呈不同程度增加减缓的趋势。
     (3)马棘、二色胡枝子、紫穗槐和多花木兰等4种灌木叶片Malondial dehyde (MDA)含量及相对电导率随水分胁迫强度增加而增加。胁迫初期4种灌木叶片MDA含量及相对电导率上升幅度较小,重度胁迫后期,马棘与多花木兰的原生质膜受到严重伤害,造成细胞内离子的大量外渗,导致其相对电导率分别达到对照的6.90、6.68倍;而紫穗槐与胡枝子在重度胁迫后期仅为对照的1.97倍、2.00倍,说明紫穗槐、胡枝子渗透调节能力较其它两种灌木强。4种灌木中Superoxide dismutase (SOD)、Peroxidase (POD)、Catalase (CAT)等酶活性都维持在较高水平,在不同处理时期表现出不同的酶活性,并且它们之间保持着一定的互补性。随水分胁迫强度增加,SOD、POD、CAT活性除紫穗槐持续增加外,其它3树种均呈先升高后降低的变化趋势,并且伴随胁迫时间的延长,抗旱性较弱的树种最早呈现出下降趋势。
     (4)马棘、二色胡枝子、紫穗槐和多花木兰等4种灌木在所测定的几项抗旱指标上均存在差异,说明各物种在抗旱性上表现出多样性。不同指标鉴定出不同灌木抵御干旱的能力强弱不一致,这说明它们在遭遇干旱胁迫时,采取不同的适应机制。利用模糊隶属函数法对应试灌木的抗旱性进行综合评价结果为:紫穗槐>二色胡枝子>马棘>多花木兰。
     (5)对抗寒性试验中的7种应试灌木(白刺花、多花木兰、刺槐、木豆、车桑子、黄花决明、猪屎豆),其抗寒性等级分别为强抗寒性(白刺花、多花木兰、刺槐)、中等抗寒性(车桑子、黄花决明)和差抗寒性(木豆、猪屎豆)。
     (6)在低温胁迫末期,白刺花的叶绿素含量大于其它灌木,最弱的为黄花决明和车桑子;在不同低温胁迫下,猪屎豆叶片中MDA含量较高,而多花木兰和白刺花叶片中MDA含量相对较低。
     (7)7种抗寒性试验的应试灌木的抗氧化酶活性在低温胁迫下存在差异,并且抗氧化酶清除自由基的能力是有限的,抗寒性弱的猪屎豆其抗氧化酶活性要低于其它灌木,抗寒性强的白刺花、多花木兰其抗氧化酶活性要高;利用模糊隶属函数法对7种应试灌木的抗寒性进行综合评定,其抗寒性由强到弱的顺序为:白刺花>刺槐>多花木兰>车桑子>黄花决明>木豆>猪屎豆。
Southwest karst mountainous area in China is the core distribution area in Eastern Asia of the world karst, its basic features are harsh habitat and ecological fragility, the severity of the habitat is highly concentrated expression of the high rate of bare rock, the soil is shallow and sporadic, inadequate supply of water and nutrients, and the ability to hold is poor; the presentation of fragility to environmental capacity is small, the capacity of land carrying is low, the anti-interference ability is weak, and the recovery after natural disturbance is slow and difficult. Although karst mountain area is located in Humid subtropical climate zone, because of the karst mountains are mainly distributed in the Yunnan-Guizhou Plateau, low-lying areas occurs seasonal drought frequently and high altitude chilling injury occurs frequently in winter. Guizhou Province as the core distribution area in Chinese karst area, since the implementation of the grassland ecosystem, promoting the feeding patterns of black goat with shrub grassland breeding, however, due to seasonal drought and chilling and other reasons, it entails to be selected suitable anti-drought or anti-cold shrub varieties in local areas to generalized application. In this study, four kinds of common shrubs in arid areas (Indigofera pseudotinctoria Mats、Leapedeza bicolor Turcz、Amorpha fruiticosa Linn and Indigofera amblyantha), seven kinds of shrub commonly used in cold regions (Sophora davidii, Indigofera amblyantha, Robinia pseudoacacia L., Semen Cajani Cajani, Radix Dodonaeae Viscosae, Cassia) were chosen to be test materials; Using field observations, laboratory analysis and mathematical statistics and other methods to do stress research, as the following conclusions:
     The growth of height and Leaf area of Indigofera pseudotinctoria Mats、Leapedeza bicolor Turcz.、 Amorpha fruiticosa Linn and Indigofera amblyantha were inhibited significantly under water stress, along with the increasing time and degree of water stress, the degree of inhibitory increased. With the increasing degree of water stress, the relative water content of leaves of the four seedlings decreased.
     (2) With the increasing time of water stress, the trend of Chlorophyll a content and Chlorophyll b content of Indigofera pseudotinctoria Mats、Leapedeza bicolor Turcz.、Amorpha fruiticosa Linn and Indigofera amblyantha emerged first, and then decreased. The ratio of Chlorophyll a to b changed slowly at the early stage of stress treatment, then decreased substantially, and had a small increase at the later stage of stress treatment. To the later stage of stress treatment, Chlorophyll a, Chlorophyll b and the ratio of Chlorophyll a to b of Amorpha fruiticosa Linn had a minimum decline compared with the early stage of stress treatment, follwed by Leapedeza bicolor Turcz, and Indigofera pseudotinctoria Mats is the maximum. With the increasing time of water stress, the Proline content, Soluble sugar content and Soluble protein content of four shrubs showed an upward trend. The Soluble protein content decreased while the increasing degree of water stress. The trend of Proline content and Soluble sugar content increased slowly in different stage of stress treatment.
     (3) With the increasing degree of water stress, the Malondialdehyde content and the relative electrical conductivity rate showed an upward trend. With the increasing time of water stress, the trend of these increased slowly at the early stage of stress treatment,but had a significant increasing trends in the end. Severe stress Indigofera amblyantha, and Indigofera pseudotinctoria Mats conductivity were severely injured, resulting in a large number of extravasation of intracellular ion, which caused that conductivity, respectively,6.90,6.68times; While Amorpha fruiticosa Linn and Leapedeza bicolor Turcz only control in severe stress late1.97times and2.00times, indicating that Amorpha fruiticosa Linn and Leapedeza bicolor Turcz osmotic adjustment ability than the other two shrubs. The activities of SOD, POD, CAT activity in the four shrubs at a higher level showed a different enzyme activities in the different treatment process, and they maintain a certain degree of complementarity. With the increasing degree of water stress, the trend of SOD, POD and CAT activity of three shrubs emerged first and then decreased, while Amorpha fruiticosa Linn maintained an upward trend all long. However as increasing time of water stress, those of less tolerant shrubs firstly appeared a declining trend.
     (4) Indigofera pseudotinctoria Mats、Leapedeza bicolor Turcz.、Amorpha fruiticosa Linn and Indigofera amblyantha, there are differences in the diversity of species in drought resistance on the performance of several drought indicators listed. Strengths and weaknesses of different indicators to identify the different shrubs from drought inconsistent, indicating that they take different adaptive mechanisms to drought stress. Through the method of subordinate (anti-subordinate) function, comprehensive assessment on the drought resistant index of four shrubs indicated that the order of drought resistance capability of four shrubs was Amorpha fruiticosa Linn> Leapedeza bicolor Turcz> Indigofera pseudotinctoria Mats> Indigofera amblyantha.
     (5) Cold resistance tests on seven candidates shrubs (Sophora davidii, Indigofera amblyantha, Robinia pseudoacacia L., Semen Cajani Cajani, Radix Dodonaeae Viscosae, Cassia glauca Lam and Crotalaria), its hardiness level were strong cold resistance (Sophora davidii, Indigofera amblyantha, Robinia pseudoacacia L.), medium cold resistance (Semen Cajani Cajani and Radix Dodonaeae Viscosae) and poor cold resistance (Cassia glauca Lam and Crotalaria).
     (6) To the later stage of low temperature stress, Chlorophyll content of Sophora viciifolia and Robinia pseudoacacia are great than other shrubs, the weakest is Dodonaea viscose and Cassia alata Linn.; Under low temperature stress, the MDA content of Crotalaria is higer, while the MDA content of Sophora viciifolia and Robinia pseudoacacia were lower.
     (7) Under low temperature stress of7kinds of shrubs'activity of antioxidant was different and the antioxidant enzymes activity was limited. The less tolerant shrub's(crotalaria) activity of antioxidant was lower, The tolerant shrub's (Sophora viciifolia、Robinia pseudoacacia) activity of antioxidant was higher. Using the methods of subordination and counter-subordination function, we can get a comprehensive assessment of cold resistance, the cold resistance order is Sophora viciifolia>Robinia pseudoacacia> Indigofers amblyatha> Dodonaea viscose> Cassia alata Linn> pigeonpea> crotalaria.
引文
[1]Abdel Hamid Khedr, et al. Proline induces the expression of salt-stress responsive proteins and may improve the adaptaion of Pancratium maritimum L. to salt-stress[J]. Journal of Experimental Botany,2003,54:2553-2562.
    [2]Acevedo E, Fereres E, Hsiao T.C. Diurnal growth trends, water potentials, and osmotic adjustment of maize and sorghum leaves in the field[J]. Plant Physiology,1979,64:476-480.
    [3]Al Hkaimi A, Momreveux P, Galiba G. Soluble sugars, Porline, and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC form [J]. Journal of Genetics & Breeding.1995,49(3):237-243.
    [4]Alcocer-Ruthling M, Robberecht R, Thill D.C. The response of Bouteloua scorpioides to water stress at two phonological stages[J]. Botanical Gazette,1989,150(4):456-461.
    [5]Barnett N.M, Naylar A.W. Amino acid and protein metabolism in Bermuda grass during water stress[J]. Plant Physiology,1966,4:1222-1230.
    [6]Boon J.P, Lewis W.E, Tjoen-A-Choy M.R, et al. Levels of polybrominated diphenylether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food web[J]. Environmental Science and Technology,2002,36(19):4025-4032.
    [7]Bormann F.H, Likens G.E, Siccama T.G, et al. The export of nutrients and recovery of stable conditions following deforestation in Hubbard Brook[J]. Ecological Mono-graphs,1974,44: 255-277.
    [8]Bray E.A. Molecule responses to water deficit[J]. Plant Physiology,1993,103: 1035-1040.
    [9]Bruce Demple. Signal transduction by nitric oxide in cellular stress responses[J]. Molecular and cellular Biochemistry,2002,53(12):1237-1247.
    [10]Cheung Y.N.S, Tyree M.T, Dainty J. Some possible sources of error in determining bulk elastic moduli and other parameters from pressure-volume curves of shoots and leaves[J]. Canadian Journal of Botany,1976,54(8):758-765.
    [11]Cheung Y. N. S, Tyree M. T, Dainty J. Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations[J]. Canadian Journal of Botany, 1975,53(13):1342-1346.
    [12]Cline R.G, Campell G.S. Seasonal and diuma water relations of selected forest species[J]. Ecology,1976,57(2):367-373.
    [13]Darbyshire B. Changes in indoleacetic acid oxidase activity associated with plant water potential[J]. Physiologia Plantarum,1971,25(1):80-84.
    [14]Darbyshire B. The effect of water stress on indole acetic acid oxidase in pea plants[J], Plant Physiology,1971,47(1):65-67.
    [15]Dat J, Vandenabeele S, Vranova E. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences,2000,57(5):779-795.
    [16]Elstner E.F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology,1982,33(1):73-96.
    [17]Farshadarf E, Koszegi B, Tisehner T, Sutka J. Substitution analysis of drought tolerance in Water(Triticum aestivum L.)[J]. Plant Breeding,1995,114(6):542-544.
    [18]Hagemann R, Marble V. Variety responses to cutting schedules in Imperial Valley[C]. Proceedings of the 13th California Alfalfa Symposium,1983.
    [19]Jones M.M, Turner N.C, Osmond C.B. Mechanisms of drought resistance[J]. The physiology and biochemistry of drought resistance in plants. Academic Press,1981:15-37.
    [20]Jones H.G & Sutherland R.A. Stomatal control of xylem embolism[J]. Plant Cell and Environment,1991,14:607-612.
    [21]Jones H.G. Plants and microclimate, a quantitative approach to environmental plant physiology[M]. Cambridge University Press,1992,428.
    [22]Knapp A.K. Variation among biomes in temporal dynamics of above ground primary production[J]. Nature,2001,29(1):481-484.
    [23]Kummerow, J., Adaptation of roots in water-stressed native vegetation[J]. Adaptation of Plants to Water and High Temperature Stress (NC Turner and PJ Kramer, Editors),1980:57-73.
    [24]Larcher, W. Physiological Plant Ecology[M]. Springer-Verlag, Berlin and New York, 1980:303-308.
    [25]Levit T.J. Response of Plant to Environmental Stresses[M]. Academic Press,1980.
    [26]Lu C.K, Vonshak A. Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis[J]. New Phytology,1999,141(2):231-239.
    [27]Lyons J.M, Raison J.K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury [J]. Plant physiologic,1970,45(4):386-389.
    [28]Manivannan P, Jaleel C.A, Sankar B, et al. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress[J]. Colloids and Surfaces B:Biointerfaces,2007,59(2):141-149.
    [29]Marshall J. Rutledge R. Blumwald E, Dumboroff E. Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol[J]. Tree Physiology,2000,20(10):701-707.
    [30]Maruyama K, Toyama Y. Effects of water stress on Photosynthesis and transpiration in three tall deciduous trees[J]. Journal of the Japanese Forestry Society,1987,69(5):165-170.
    [31]Mazzoleni S, Diemknna D.I. Differential Physiological and responses of two hybrid Populus clones to water stress[J]. Tree Physiology,1988,4(1):61-70.
    [32]McKersie B.D, Chen Y, Beus M.D, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Physiology,1993,103(4): 1155-1163.
    [33]Michelena V.A, Boyer J.S. Complete turgor maintenance at low water potentials in the elongation region of maize leaves[J]. Plant Physiology,1982,69(5):1145-1149.
    [34]Richter H. A diagram for the description of water relations in plant cells and organs[J]. Journal of Experimental Botany,1978,29(5):1197-1203.
    [35]Roden J. Volkenbugrh Evna, Hinckley M, Vna-Volkenbugrh E. Cellular basis for limitation of Poplar leaf growth by water deficit[J]. Tree Physiology,1990,6(2):211-219.
    [36]Schlet P. J, Morshall PE. Growth and water relation of balek locust and pin seeding exposed to control water stress[J]. Canadian Journal of Forest Research,1983,13(2):334-335.
    [37]Scholander P.F, Hammel H.T, Bradstreet E.D, et al. Sap pressure in vascular plants[J]. Science,1965,148:339-346.
    [38]Scholander P.F, Hemmel H.T, Hemmingsen E.A, et al. Hydrostatic pressure and osmotic potential of leaves of mangrove and some other plants[J], Proceedings of the National Academy of Sciences of the United States of America,1964,52(1):119-125.
    [39]Schulte P, Hinckley T. A comparison of pressure volume curve data analysis technique[J]. Journal of Experimental Botany,1985,36(10):1590-1602.
    [40]Schulze E.D. Soil water deficits and atmospheric humidity as environmental signals[J]. Water Deficits:Plant Responses from Cell to Community,1993,129-145.
    [41]Sivakumar P. Proline alleviates salt-stress-induced enhancement in ribulose-1, 5-bisphosphate Oxygenase Activity[J]. Biochemical and Biophysical Research Communications, 2000,279(2):512-515.
    [42]Smith, J.A & Griffiths H. Water deficits plant responses from cell to community[M]. Bios Scientific Publishers Ltd,1993.
    [43]Thomas D.J, Thomas J.B, Prier S.D, et al. Iron superoxide dismutase protects against chilling damage in the cyanobacterium synechococcus species PCC 7942[J]. Plant Physiology, 1999,120(1):275-282.
    [44]Turner N.C. Adaptation to water deficits:A changing perspective[J]. Functional Plant Biology,1986,13(1):175-190.
    [45]Tyree M.T, Jarvis P.G. Water in tissues and cells[M]. Physiological plant ecology Ⅱ. Springer Berlin Heidelberg,1982:35-77.
    [46]Tyree M.T, Dainty J, Benis M. The water relations of hemlock (Tsuga Canadensis). Ⅰ. Some equilibrium water relations as measured by the pressure-bomb technique[J]. Canadian Journal of Botany,1973,51(8):1471-1480.
    [47]Tyree M.T, Hammel H.T. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique[J]. Journal of Experimental Botany,1972,23(1): 267-282.
    [48]Tyree M.T. Negative turgor pressure in plant cells, fact or fallacy [J]. Canadian Journal of Botany,1976,54(23):2738-2746.
    [49]Uemura M, Joseph R.A, Steponkus P.L. Cold acclimation of Arabidopsis thaliana. Effect On plasma membrane lipid composition and freeze-induced lesions[J]. Plant Physiology.1995, 109(1):15-30
    [50]Wright S.J, Machado J.L, Mulkey S.S & Smith A.P. Drought acclimation among tropical forest shrubs (Psychotria Rubiaceae)[M]. Oecologia,1989:457-463.
    [51]Zhao Y, Fernandez G.C.J, Bowman D.C, Nowak R.S. Selection criteria for drought resistance breeding in turfgrass[J]. Journal of the American Society for Horticultural Science,1994, 119(6):1317-1324.
    [52]安玉艳,梁宗锁,韩蕊莲.土壤干旱对黄土高原3个常见树种幼苗水分代谢及生长的影响[J].西北植物学报,2007,27(1);91-97.
    [53]白冰,文亦蒂.南方草地可持续发展与思考[J].四川草原,2005(2):49-51.
    [54]白金,赵瑾,金洪.六个圆柏品种(系)抗旱性分析[J].林业科技开发,2007,21(3):25-28.
    [55]蔡秀敏,郑明学,古少鹏.草地生态畜牧业发展的思考[J].发展思路,2012,274:45-47.
    [56]曹建华,袁道先,章程.受地质条件制约的中国西南岩溶生态系统[J].地球与环境,2004,32(1):1-8.
    [57]曹仪值,吕忠恕.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用[J].植物生理学报,1985,(1):9-16.
    [58]曹智.我国蛋白、豆粕市场供求状况及未来展望[J].中国禽业发展大会,中国畜牧业协会禽业分会特邀报告,2007.
    [59]柴薇薇,蒋志荣,孔东升.3种灌木幼苗对干旱胁迫的生理响应[J].安徽农业科学,2007,35(5):1273-1274.
    [60]陈贵林,李建文,肖凯,等.低温胁迫对西葫芦嫁接苗光合特性的影响[J].上海农业学报,2000,16(1):42-45.
    [61]陈焕春,郭爱珍,谭亚娣.我国亟待加强奶牛重大疫病预警体系建设[J].中国奶牛,2006,(2):7-11.
    [62]陈建明,俞晓平,程家安,等.植物耐虫性研究进展.昆虫学报,2005,48(2):262-272.
    [63]陈军,戴俊英.水分胁迫下玉米叶片光合作用、膜脂过氧化作用及超微结构变化的关系[J].玉米科学,1994,2(4):36-40.
    [64]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1):49-56.
    [65]陈立松,刘星辉.作物抗旱鉴定指标的种类及其综合评价[J].福建农业大学学报,1997,26(1):48-55.
    [66]陈娜,郭尚敬,孟庆伟.膜脂组成与植物抗冷性的关系及其分子生物学研究进展[J].生物技术通报,2005,2:6-9.
    [67]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [68]陈颖,沈惠娟.3个南方造林树种幼苗抗旱性的比较[J].江苏林业科技,1997,24(4):11-14.
    [69]陈钰,郭爱华,姚延涛.杏枝芽内MDA含量和电导率值变化与抗寒性关系的研究[J].天津农业科学,2007,13(4):4-6.
    [70]陈钰.杏枝芽内MDA含量和电导率值变化与抗寒性关系的研究[J].天津农业科学,2007,13(4):4-6.
    [71]代玉华,刘训言.低温胁迫对类囊体膜脂代谢的影响[J].植物学通讯,2004,21(4):506-510.
    [72]戴怡龄,安黎哲,陈拓,等.寒区不同海拔橘黄罂粟叶片结构特征的比较研究[J].西北植物学报,2004,24(3):495-503.
    [73]党宏忠,赵雨森,陈祥伟.甘肃省高原山地树种的抗旱性研究[J].中国水土保持科学,2003,(3):21-25.
    [74]丁雷,工学臣.干旱胁迫下ABA对气孔运动的作用机制[J].干旱地区农业研究,1993,11(2):50-55.
    [75]董永华,史吉干,李广敏,等.ABA和6-BA对水分胁迫下小麦幼苗C02同化作用的影响[J].作物学报,1997,23(4):501-504.
    [76]董永华,史吉乎,韩建民.干旱对玉米幼苗PEP羧化酶活性的影响[J].玉米科学,1995,3(2):54-57.
    [77]杜宝红.扁蓿豆根颈形态解剖特征和物质积累规律与抗寒性的研究[D],内蒙古:内蒙古农业大学,2007.
    [78]杜金友,陈晓阳,胡东南.干旱胁迫条件下几种胡枝子渗透物质变化的研究[J].华北农学报,2004,19(12):40-44.
    [79]杜金友,陈晓阳,张桂荣.转果聚糖蔗糖转移酶基因(Sac B)美丽胡枝子的获得[J].生物工程学报,2006,22(6):940-944.
    [80]杜青林.中国草业可持续发展战略(地方篇)[M].北京:中国农业出版社,2006.
    [81]杜秀敏,殷文漩,张慧,等.超氧化物歧化酶(SOD)研究进展[J].中国生物工程杂志,2003,23(1):48-50.
    [82]方小平,李昌艳,胡光平,等.贵州4种木兰科植物幼苗的抗寒性研究[J].林业科学研究,2010,23(6):862-865.
    [83]冯福生,葛东侠.水分胁迫对不同冬小麦品种PEP-Case活性的影响[J].华北农学报,1990,5(增刊):76-82.
    [84]冯玉龙,王文章,敖红.长白落叶松和樟子松等五种树种抗旱性的比较[J].东北林业大学学报,1998,(6):16-20.
    [85]高吉寅.国外抗旱性筛选方法的研究[J].国外农业科技,1983,(7):12-15.
    [86]高琼,陈晓阳,杜金友.不同种和种源胡枝子的耐早性差异研究[J].北华大学学报:自然科学版,2005,6(3):257-260.
    [87]龚明.作物抗旱性鉴定方法与指标及其综合评价[J].云南农业大学学报,1989,4(1):75-82.
    [88]贵州省统计局.贵州统计年鉴(2008)[M].北京:中国统计出版社,2008.
    [89]郭爱华,左宝峰,姚延祷,等.自然降温对雪松叶片中叶绿素及电导率的影响[J].山西农业大学学报(自然科学版),2005,25(4):393-395.
    [90]郭连生,田有亮.四种针阔叶幼树水势与土壤含水量的关系及其耐早性研究[J].生态学杂志,1992,2(1):42-52.
    [91]郭连生.对几种阔叶树种耐旱性生理指标的研究[J].林业科学,1989,25(5):389-394.
    [92]郭宁玲,李爱科,李周权.我国饲料粮需求预测分析[EB/OL].国家粮食局科学研究院论文集经济篇,2008,51-56.
    [93]郭孝,王桂林.灌木资源饲用价值分析与利用研究[J].中国饲料,2002,15:31-33.
    [94]韩雪,孙镜明,刘晓东.低温胁迫后灯台树的枝、叶、根的细胞膜透性分析[J].吉林林业科技,2006,35(1):6-9.
    [95]郝建军,康宗利.植物生理学实验技术[M].北京:化学工业出版社,2007.
    [96]何开跃,李晓储,黄利斌,等.3种含笑耐寒生理机制研究[J].南京林业大学学报(自然科学版).2004,28(4):62-64.
    [97]何蓉,和丽萍.云南6种豆科蛋白饲料灌木的营养成分测定[J].云南林业科技,2001,1:1-18.
    [98]和红云.植物抗寒性生理生化研究进展[J].天津农业科学,2007,13(2):10-13.
    [99]贺善安,孙醉君,毕绘蟾.常绿阔叶树种抗冻种质筛选[C].南京中山植物园研究论文集.南京:江苏科学技术出版社,1985:75-81.
    [100]胡冬南,杜金友,骈瑞琪.美丽胡枝子再生体系的研究[J].北京林业大学学报,2006,28(5):90-94.
    [101]胡胜武,黄继英,徐爱遐,等.甘蓝型油菜渗透调节与抗寒性的关系[J].中国油料,1993,(3):1-4.
    [102]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,(3):77-89.
    [103]皇甫江云,赵楠,刘贵林.贵州冬闲田土种草的形式、效益及建议[J].四川畜牧兽医,2005(11):45-46.
    [104]黄文秀.西南畜牧业资源开发与基地建设[M].北京:科学出版社,1991.
    [105]黄小云,向邓云,谈锋.自然降温过程中草珊瑚抗寒适应性研究[J].重庆师范学院学报(自然科学版),2002,9(1):66-69.
    [106]黄颜梅,张健,罗承德.西藏柏木抗旱生理研究[J].四川林业科技,1998,(4):31-35.
    [107]黄月华.五种桉树苗期耐寒性能的初步研究[D].华南热带农业大学硕士学位论文,2003.
    [108]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业 科学,2004,(2):117-122.
    [109]将建生,梁兆彦,张桂荣.开发优质饲用灌木建立长期人工灌草丛草地[J].草业科学,1997,14(3):49-53.
    [110]姜春歌.木犀科四种植物的抗寒性研究[D].吉林农业大学硕士学位论文,2011.
    [111]姜楠南,吴晓星,王翠香,等.11种常绿阔叶树抗寒性的研究[J].山东林业科技,2010(4):25-27.
    [112]蒋进.怪柳属植物抗旱性排序研究[J].干旱区研究,1992,9(4):41-45.
    [113]蒋进.几种早生植物盆栽苗木的水分关系和抗早排序[J].干旱区研究,1992,9(4):31-37.
    [114]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通汛,1996,32(2):144-150.
    [115]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36(4):289-295.
    [116]蒋明义,杨文英,徐江,等.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994,20(6):733-738.
    [117]缴丽莉,路丙社,白志英,等.四种园林树木抗寒性的比较分析[J].园艺学报,2006(3):667-670.
    [118]缴丽莉,倪志云,路丙社,等.低温胁迫对青榨槭幼树抗寒指标的影响[J].河北农业大学学报,2006,29(4):44-47.
    [119]荆家海,肖庆德.水分胁迫和胁迫后复水对玉米叶片生长速率的影响[J].植物生理学报,1987,13(1):51-57.
    [120]井春喜,张怀刚,师生波.土壤水分胁迫对不同耐早性春小麦品种叶片色素含量的影响[J].西北植物学报,2003,23(5):811-814.
    [121]孔艳菊,孙明高,胡学俭.干旱胁迫对黄栌幼苗几个生理指标的影响[J].中南林学院学报,2006,26(4):42-46.
    [122]孔照胜,武云帅,岳爱琴,等.不同大豆品种抗旱性生理指标综合分析[J].华北农学报.2001,16(3):40-45.
    [123]黎裕.作物抗旱鉴定方法与指标[J].干旱地区农业研究,1993,11(1):91-100.
    [124]李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,8(1):37-44.
    [125]李广敏,关军峰.作物抗旱生理与节水技术研究[M].北京:气象出版社,2001:75-77.
    [126]李广敏,唐连顺,商振清,等.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报,1994,17(2):1-5.
    [127]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [128]李吉跃.太行山区主要造林树种耐早特性的研究[J].北京林业大学学报,1991,13(增刊):251-255.
    [129]李吉跃.太行山主要造林树种耐旱性的研究[J].北京林业大学学报,1991,(13):1-2.
    [130]李吉跃.植物耐早性及其机理[J].北京林业大学学报,1991,13(3):92-97.
    [131]李建设,耿广东,程智慧.低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报,2003,31(1):90-92.
    [132]李金玲,樊卫国.土壤干旱胁迫对杨梅生长及部分生理特性的影响[J].山地农业生物学报,2006,25(5):424-428.
    [133]李锦树.干旱对玉米叶片细胞透性和膜脂的影响[J].植物生理学报,1983,(9):223-338.
    [134]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧产生及保护酶的变化[J].植物学报,2000,42(2):35-38.
    [135]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000,42(2):48-152.
    [136]李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系[J].植物生理学通讯,1998,34(3):161-167.
    [137]李禄军,蒋志荣,李正平.3树种抗旱性的综合评价及其抗旱指标的选取[J].水土保持研究,2006,13(6):253-254.
    [138]李明玉,曹辰兴,于喜艳.低温锻炼对冷胁迫下黄瓜幼苗保护性酶的影响[J].西北农业学报,2006,15(1):160-164.
    [139]李勤报,梁厚果.水分胁迫下小麦幼苗呼吸代谢的改变[J].植物生理学报,1986,12:379-387.
    [140]李荣富,王雪丽,梁艳荣,等.葡萄抗寒性研究进展[J].内蒙古农业科技,1997,6:24-26.
    [141]李霞,李云荫,曹敏.水分胁迫对抗旱性不同的小麦品种叶片蛋白质影响的比较[J].华北农学报,1993,8(4):20-25.
    [142]李燕,孙明高,孔艳菊.皂角苗木对干旱胁迫的生理生化反应[J].华南农业大学学报,2006,27(3):66-69.
    [143]李云荫.植物抗旱生理研究概述[J].生态农业研究,1996,4(1):37-41.
    [144]李正理.我国甘肃九种旱生植物同化技的解剖观察[J].植物学报,1981,23(4):1-5.
    [145]厉秀茹,郭玉海,冷强等.植物水分亏缺对基因的表达及其功能[M].植物生理与农业研究,北京:中国农业科技出版社,1995.
    [146]梁慧敏,夏阳,杜峰,等.低温胁迫对草地早熟禾抗性生理生化指标的影响[J].草地学报,2001,9(4):283-286.
    [147]廖明安.园艺植物研究法[M].北京:中国农业出版社,2005.
    [148]林波,周定众,邓主权.加快贵州畜牧业发展的思考[J].养殖与饲料,2007,6:80-83.
    [149]林定波,刘祖棋,张石城,等.内外源多胺柑桔抗寒力发育的效应[J].浙江亚热带作物通讯,1994,1:1-6.
    [150]林金科.水分胁迫对茶树光合作用的影响[J].福建农业大学学报,1998,27(4):423-427.
    [151]刘崇怀.水分胁迫对葡萄叶片碳水化合物含量的影响[J].葡萄栽培与酿酒,1993,(4):3-5.
    [152]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-235.
    [153]刘广全,赖亚飞,李文华,等.4种针叶树抗早性研究[J].西北林学院学报,2004,19(1):22-26.
    [154]刘贵林.贵州草地畜牧业发展及分析[J].四川草原,2006(3):47-53.
    [155]刘桂茹,张荣芝,卢建祥等.冬小麦抗旱鉴定指标的研究[J].华北农学报,1996,(4):84-88.
    [156]刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧物歧化酶(SOD)的影响[J].植物生理与分子生物学学报,1985,11(1):48-57.
    [157]刘鸿先,王以柔,曾韶西,等.低温对不同耐冷力的黄瓜幼苗呼吸代谢的影响[J].植物生理学报,1984,10(3):191-199.
    [158]刘怀攀,陈龙,张承烈,等.渗透胁迫和外源ABA对芦苇愈伤组织中3种保护酶活性的影响.植物生理学通讯,2000,38(1):27-29.
    [159]刘慧民,王崑,李奇石,等.五叶地锦低温处理条件下与抗寒相关的部分生理生化指标的变化规律[J].东北林业大学学报.2003,31(4):74-75.
    [160]刘建伟,刘雅荣.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,(4):14-18.
    [161]刘俊英.低温胁迫对雪松膜脂过氧化及保护酶的影响[J].山西农业大学学报,2004,(4):399-400.
    [162]刘琪景.辽西阜新地区主要造林树种抗旱性的研究[J].东北林业大学学报,1989,17(1):93-98.
    [163]刘友良.植物水分逆境生理[M].北京:农业出版社,1992.
    [164]刘友全,刘加林,潘天玲.赤桉在湖南的抗寒与生长适应性[J].中南林学院学报,2000,20(3):86-89.
    [165]刘盂雨,陈培元.水分胁迫条件下气孔与非气孔因素对光合的限制[J].植物生理学通讯,1990(4):24-27.
    [166]刘志斋,蔡一林,王久光.不同低温处理对离体玉米叶片POD活性的影响[J].西南农业大学学报(自然科学版),2004,26(4):386-388.
    [167]刘宗虎,孔祥盛.2009年我国饲料业之我见[J].新视点,2010,6(46):28-29.
    [168]刘祖棋.植物抗性生理学,第1版[M].北京:中国农业出版社,1994.
    [169]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.
    [170]龙忠富,赵明坤.贵州草地资源现状及开发利用对策[J].中国草地,1999(2):56-59.
    [171]卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展[J].植物学通讯,1994(11):9-14.
    [172]卢从明,张其德,匡廷云.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601-606.
    [173]卢存福.第七届国际植物抗寒会议概况[J].植物学通报,2004,21(5):617.
    [174]卢少石,郭振飞,彭新湘,等.水稻幼苗叶绿体保护系统对干旱的反应[J].热带亚热带植物学报,1997,7(1):47-52.
    [175]卢晓强,方升佐.黔中喀斯特山地8种树种早期生长和叶片养分动态的研究[J],南京林业大学学报:自然科学版,2008,32(1):39-42.
    [176]罗昆燕.贵州喀斯特地区生态经济复合系统功能特征研究[J].安徽农业科学,2011,39(14):8693.
    [177]罗淑平.作物抗逆性鉴定的原理与技术[M].北京:北京农业大学出版社,1989:132-143.
    [178]罗新义,冯昌军,李红,等.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报[J].中国草地,2004,26(4):79-81.
    [179]骆建霞,史燕山,张旭,等.电导法对8种地被植物抗寒性的测定[J].天津农学院学报,2005,12(3):10-13.
    [180]骆颖颖,梁月荣.茶树抗寒性的间接测定[J].茶叶科学技术,1998,3:1-7.
    [181]吕德彬,杨建平,李莲芝,等.水分胁迫下不同小麦品种抗性反应与产量表现的相关研究[J].河南农业大学学报,1998,28(3):231-235.
    [182]吕风山,侯建华.陆稻抗旱性主要指标的研究[J].华北农学报.1994.9(4):7-12.
    [183]吕世海.中国南方草地资源现状及其发展前景[J].四川草原,2005(6):37-41.
    [184]马伟,王彩云.几种引进冷季型草坪草的生长及抗早生理指标[J].草业科学,2001(4):57-61.
    [185]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [186]马英姿,梁文斌,陈建华.经济植物的抗寒性研究进展[J].经济林研究,2005,23(4):89-94.
    [187]马振东,石艳霞.植物抗寒性的研究进展[J].林业科技情报,2010,42(1):1-3.
    [188]聂华堂,陈竹生.水分胁迫下柑桔的生理变化与抗旱性的关系[J].中国农业科学,1991,(1):83-87.
    [189]欧毅,王进,吴天强,等.水分胁迫对桃形李叶片含水量、质膜透性和抗氧化酶活性的影响[J].西南农业学报,2007,20(5):982-985.
    [190]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995,322-328.
    [191]潘昕,邱权,李吉跃,等.干旱胁迫对两种速生树种叶绿素含量的影响[J].桉树科技,2013,30(3):17-22.
    [192]裴保华.741杨耐早性的研究[J].河北林学院学报,2004,9(4):252-257.
    [193]裴英杰,郑家玲,瘐红,等.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31-35.
    [194]彭晚霞,王克林,宋同清.喀斯特脆弱生态系统复合退化控制与重建模式[J].生态学报,2008,28(2):811-820.
    [195]彭柞登.油松种源/家系抗旱性评价与选择的研究[D].北京:北京林业大学博士学位论文,2000.
    [196]骈瑞琪,陈晓阳,赵杨.胡枝子属植物的遗传育种研究进展[J].西部林业科学,2005,34(4):105-110.
    [197]朴河春,刘丛强,朱书法.贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响[J].第四纪研究,2005,25(5):552-560.
    [198]曲涛,南志标.作物和牧草对干旱胁迫的响应及机理研究进展[J].草业学报,2002,17(2):126-135.
    [199]邵艳军,山仑,李广敏.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究[J].中国生态农业学报,2006,14(1):68-70.
    [200]沈静.野牛草响应低温胁迫的生理机制和蛋白质组学初步研究[D].甘肃农业大学硕士学位论文,2010.
    [201]沈漫,王明麻,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):1-8.
    [202]史玉炜,王燕凌,李文兵.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8.
    [203]束际林.茶树抗寒性叶结构鉴定和筛选[J].中国茶叶,1992,3:20-21.
    [204]宋丽华,高玲.银川市6种灌木绿化树种抗寒性的比较[J].林业科技,2010,35(6):52-55.
    [205]苏大学.贵州草地[M].贵阳:贵州人民出版社,1987.
    [206]苏大学.中国南方草地的开发与生产潜力分析[J].国外畜牧学一草原与牧草,1998(3):15-19.
    [207]苏敬.自然降温下五个常绿阔叶树种的抗寒性研究[D].南京林业大学硕士学位论文,2007.
    [208]苏维词,朱文孝,滕建珍,等.喀斯特峡谷石漠化地区生态重建模式及其效应[J].生态环境,2004,13(1):57-60.
    [209]孙昌祖,刘家琪.低温胁迫对青杨叶片O2-、MDA、膜透性、叶水势及保护酶的影响[J].内蒙古林学院学报,1998,22(3):32-36.
    [210]孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响[J].林业科学, 1993,(2):104-108.
    [211]孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及脂膜过氧化的影响.林业科学,1993,29(2):104-108.
    [212]孙明高,石浩来.山东青石山区主要经济树种的地区的抗旱特性[J].山东农业大学学报,1999,(4):336-344.
    [213]孙显涛,陈晓阳,贾黎明.不同刈割频度下二色胡枝子根系及地上生物量的研究[J].草业科学,2005,22(5):25-28.
    [214]孙彦,杨青川.不同草坪草种及品种苗期抗旱性比较[J].草地学报,2001,(1):16-20.
    [215]汤章诚.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通迅,1984,(1):15-21.
    [216]汤章城,王育启.游离脯氨酸与高梁苗的抗旱性[J].植物生理学通讯,1986,(3):29-31.
    [217]汤章城.不同抗旱品种高梁苗中晡氨酸累积的差异[J].植物生理学报,1986,12(2):154-162.
    [218]汤章城.逆境条件下植物脯氨酸累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21.
    [219]汤章城.植物对水分胁迫的反应和适应性.植物对干旱的反应和适应性[J].植物生理学通迅.1983,(4):1-7.
    [220]陶雅.22个国内外苜蓿品种抗寒性评价[D].中国农业科学院硕士学位论文.2008.
    [221]王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系[J].植物生理学报,1989,15(1):46-51.
    [222]王德炉,朱守谦,黄宝龙.贵州喀斯特地区石漠化过程中植被特征的变化[J].南京林业大学学报:自然科学版,2003,27(3):26-30.
    [223]王恩.落实《决定》精神,加快干旱、半干旱地区灌木林发展[J].防护林科技,2004,(1):22-24.
    [224]王芳,裴哲.三种不同抗寒类型植物体内脯氨酸含量的年季变化[J].中国科技信息,2006(5):115.
    [225]王环,胡荣海,昌小平.水分胁迫下小麦地上部和地下部的反应及其抗旱性研究[J].西北植物学报,1995,16(2):107-115.
    [226]王会良,何华平.植物抗寒性研究进展[J].湖北农业科学,2011,50(6):1091-1093.
    [227]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应.西北植物学报,2002,22(2):285-290.
    [228]王丽雪.葡萄叶片组织结构与抗寒性的关系[J].特产研究,1990,3:13-18.
    [229]王淼,代力民,姬兰柱.长白山阔叶红松林主要树种对干旱胁迫的生态反应及 生物量分配的初步研究[J].应用生态学报,2001,12(4):496-500.
    [230]王荣富.植物抗寒指标的种类及其应用[M].植物生理学通讯,1987,(3):49-55.
    [231]王瑞云,任有蛇,岳文斌,等.低温胁迫对苜蓿幼苗存活及生理生化指标的影响[J].激光生物学报,15(4):342-347.
    [232]王世绩.10种杨树苗水分关系的研究[J].林业科学,1992,18(1):6-14.
    [233]王万里.植物对水分胁迫的响应[J].北京:植物生理学通迅,1981,(5):55-64.
    [234]王威,吴立军.胡枝子属植物化学成分及药理活性研究进展[J].中草药,2000,31(2):144-146.
    [235]王霞.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16(2):6-11.
    [236]王新建,何威,杨淑红,等.干旱胁迫下4种楸树嫁接苗叶绿素含量的变化[J].经济林研究,2008,26(1):20-24.
    [237]王忠.植物生理学[M].中国农业出版社,2000.
    [238]魏安智,仁用杏抗寒机理研究与抗寒物质筛选[D].西北农林科技大学博士学位论文,2006.
    [239]魏媛,喻理飞.退化喀斯特植被恢复过程中土壤生态肥力质量评价[J].中国岩溶,2009,28(1):61.
    [240]吴大通,龚洁,王维明.侵蚀劣地胡枝子栽培技术及水土保持效应[J].福建水土保持,2002,14(2):27-29.
    [241]吴俊铭,古小平,徐永灵.贵州省农业气象灾害风险区划研究[J].贵州农业科学,1999,27(2):3-8.
    [242]吴娜.卫矛科三种常绿阔叶植物抗寒性研究[D].河北农业大学硕士学位论文,2006.
    [243]席章营,吴克宁,王同朝,等.玉米抗旱性生理生化鉴定指标及利用价值分析[J].河南农业大学学报,2000,34(1):7-12.
    [244]夏道城.土壤干旱胁迫对白芥光合器官发育及光合速率的影响[J].中国油料作物学报,2000,22(1):49-52.
    [245]向佐湘,许桂芳,蒋文君.干旱胁迫对4种刺篱植物抗性生理生化指标的影响[J].浙江林学院学报,2007,24(1):7-11.
    [246]谢晓金,郝日明,张纪林,等.常绿阔叶树种的耐低温特性及其生态学评价[J].生态学报,2004,24(11):2671-2678.
    [247]谢晓金,郝日明.南京地区引种的6种常绿阔叶树种抗寒性测试[J].福建林业科技,2007,34(4):67-70.
    [248]谢寅峰,沈惠娟,罗爱珍,等.南方7个造林树种幼苗抗旱生理指标的比较[J].南京林业大学学报,1999,(4):13-16.
    [249]邢廷铣.我国南方草地资源开发利用模式的探讨[J].草业科学,2002,19(5):1-5.
    [250]徐传保.部分竹子抗寒性研究[D].山东农业大学硕士学位论文,2009.
    [251]徐文铎,郑元润,刘广田,等.内蒙古沙地云杉生长与生态条件关系的研究[J].应用生态学报,1993,4(4):368-373.
    [252]徐晓薇,林绍生,曾爱平.蝴蝶兰抗寒力鉴定[J].浙江农业科学,2004,5:249-250.
    [253]徐新宇.作物的抗旱能力和体内游离氨基酸含量的关系[J].国外农业科技,1983,(9):19-22.
    [254]徐秀梅,张新华,王汉杰.四翅滨葬抗早生理特性研究[J].南京林业大学学报,2004,(5):54-58.
    [255]徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展[J].林业科学,2007,43(4):88-93.
    [256]徐跃进,李艳春,俞振华.西葫芦抗冷性生理生化指标分析.湖北农业科学,2006,(2):211-213.
    [257]许长成.膜脂与膜透性在于早条件下的变化及其与抗早性的关系[J].植物抗性生理研究[M].济南:山东科学技术出版社,1991.
    [258]薛慧勤,孙兰珍.花生品种抗旱性综合评价及其抗旱机理的数量分析[J].干旱地区农业研究,1999,(1):83-87.
    [259]严寒静,谈锋.栀子对自然降温的适应性研究[J].植物研究,2006,2(26):238-241.
    [260]颜淑云,周志宇,邹丽娜,等.干旱胁迫对紫穗槐幼苗生理生化特性的影响[J].干旱区研究,2011,28(1):139-145.
    [261]杨成,刘丛强,宋照亮.贵州喀斯特山区植物土壤C、N、S的分布特征[J].北京林业大学学报,2008,30(1):45-51.
    [262]杨东,张红,陈丽萍,等.温度胁迫对10种菊科杂草丙二醛和可溶性糖的影响[J].四川师范大学学报,2007,30(3):391-394.
    [263]杨建昌,乔纳圣·威尔斯,朱庆森,等.水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响[J].作物学报,1995,21(5):533-539.
    [264]杨建吕,王志琴,朱庆森.水稻在不同七壤水分状况下脯氨酸的积累与抗旱性的关系[J].中国水稻科学,1995,9(2):92-96.
    [265]杨建民,李艳华,杨敏生,等.几个仁用杏品种抗寒性比较研究[J].中国农业科学,1999,32(1):46-50.
    [266]杨敏文.快速测定植物叶片叶绿素含量方法的探讨[J].光谱实验室,2002,19(4):478-481.
    [267]杨顺强,任广鑫,杨改河,等.水分胁迫对引进牧草渗透调节物质及叶绿素荧光参数的影响[J].西北植物学报,2007,27(9):1826-1832.
    [268]杨亚军,郑雷英,王新超.冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J].茶叶科学,2004,24(3):177-182.
    [269]杨艳生,刘柏根,沙寄石.水土资源恢复中的先锋豆科灌木一胡枝子(Lespedeza bicolor)的栽植研究[J].长江流域资源与环境,1994,3(4):330-336.
    [270]姚雅琴,汪沛洪,胡东维,等.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系[J].西北植物学报,1993,13(1):16-20.
    [271]姚允聪,曲泽洲.土壤干旱与柿叶片膜脂及脂质过氧化的关系[J].林业科学,1993,29(6):487-491.
    [272]姚允聪,赵玉田.水分亏缺条件下草毒幼苗几个水分生理指标的变化[J].果树科学.1992,9(4):208-212.
    [273]尹田夫,宋淑英,刘丽君,等.抗旱与不抗旱大豆叶线粒体膜脂脂肪酸相磷脂组成的比较[J].大豆科学,1990,9(1):19-24.
    [274]余叔文,汤章城.植物生理与分子生物学,第二版[M].北京:科学出版社,1998.
    [275]余新晓,有祥亮,陈吉虎,等.旱地生态经济树种抗性选择及综合利用技术引进研究[M].中国林业出版社,2007,5.
    [276]喻理飞,朱守谦,叶镜中.人为干扰与喀斯特森林群落退化及评价研究[J].应用生态学报,2002,13(5):529-532.
    [277]袁朝兴,丁静.水分协迫对棉花叶片中IAA含量、IAA氧化酶和过氧化物酶活性的影响[J].植物生理学报,1990,16(2):179-180.
    [278]张宝石,徐世昌,宋凤斌,等.玉米抗早基因型鉴定方法和指标的探讨[J].王米科学,1996,4(3):19-22.
    [279]张俊龙.杏品种部分抗寒指标间的关系及其对测定抗寒力的因子分析[J].甘肃科技.2005,21(4):159-160.
    [280]张林刚,邓西平.小麦抗旱性生理生化研究进展[J].干旱地区农业研究,2000,8(3):87-92.
    [281]张明生,谈锋.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [282]张木清,陈如凯,余松烈.水分胁迫下蔗叶多胺代谢变化及其同抗旱性的关系[J].植物生理学报,1994,22(3):327-332.
    [283]张石城.植物的抗寒生理[M].农业出版社,1990.
    [284]张水金,黄庭旭,章杏,等.植物抗寒性研究进展[J].福建农业学报,2005,20(12):154-159.
    [285]张宪政.作物生理研究法[M].北京:农业出版社,1992:150-206.
    [286]张新时,李博,史培军.南方草地资源开发利用对策研究[J].自然资源学报,1998,13:1-7.
    [287]张永强,毛学森,孙宏勇.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002,10(4):13-15.
    [288]张正斌,山仑.作物抗旱生理性状遗传研究进展[J].科学通报,1998,43(17): 1812-1817.
    [289]张志杰.土壤水分状况对棉侏体内可溶性糖的积累和运输的影响[J].植物生理学通讯,1980,(3):49-50.
    [290]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [291]赵都利,许玉璋,黄有,等.花铃期缺水对棉株体内碳氮含量的影响[J].植物生理学通讯,1991,27(3):194-196.
    [292]赵都利,许玉璋,许萱.花铃期缺水对棉花产量和品质的影响[J].西北农业大学学报,1990,18(增刊):42-47.
    [293]赵慧婷,赵祥,高新中.不同处理对达乌里胡枝子种子萌发效果的影响[J].中国草地学报,2007,29(1):117-120.
    [294]赵金梅.植物脂肪酸不饱和性对植物抗寒性影响的研究[J].草业科学,2009,26(9):129-134.
    [295]赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990.
    [296]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002.
    [297]赵熙贵.浅议贵州草业发展的潜力与对策[J].草业科学,2006,23(5):33-35.
    [298]赵晓倩.我国牧草供需现在分析及未来趋势预测[D].兰州大学硕士学位论文,2010.
    [299]赵渊.石楠属几种植物抗寒性及生物学特性研究[D].南京林业大学硕士学位论文,2006.
    [300]上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [301]周碧燕,梁立峰,黄辉,等.低温和多效哇对香蕉及大蕉超氧物歧化酶和脱落酸的影响[J],园艺学报,1995,22(4):331-335.
    [302]周琳,侯秀丽,杨光字,等.低温胁迫下冬小麦叶片中某些物质的变化[J].周口师范高等专科学校学报,2001,18(2):36-38.
    [303]周青,王纪忠,康晓鹏.有机基质育秧对秧苗素质及其抗旱性的影响[J].江苏农业学报,2007,23(2):98-102.
    [304]周瑞莲,程国栋.高寒牧区牧草根中丙二醛、渗透调节物、多胺季节动态与抗冻力关系研究[J].植物生态学报,2000,24(5):554-559.
    [305]周听(译).玉米叶片ABA合成的遗传特征对快速干旱胁迫及田间条件的反应[J].国外农学—杂粮作物,1993,4:12-14.
    [306]朱光廉,邓兴旺,左卫能.植物体内游离脯氨酸的测定[J].植物生理学通讯,1981(5):42-45.
    [307]朱宁华,李志辉,李芳东.桉树耐寒性与超氧化物歧化酶关系研究[J].中南林学院学报,2000,20(3):63-66.
    [308]朱志华,昌小平,胡荣海.渗透调节在小麦抗旱鉴定和育种中的应用[J].作物品种资源,1995,(3):36-39.
    [309]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450.
    [310]邹春静,韩士杰,徐文铎.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450.
    [311]邹奇.植物生理学实验指导[M].北京:中国农业出版社,1995,97-106.
    [312]邹琦.作物在水分逆境下的光合作用[J].作物杂志,1994,(5):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700