用户名: 密码: 验证码:
华北地区冬小麦—夏玉米作物生产体系产量差特征解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口膨胀、饮食结构变化和能源需求增加,中国粮食安全问题日益严峻,为满足日益增长的粮食需求,在有限的耕地资源背景下,唯有提高单位面积的产量才能维持粮食安全。华北地区是中国小麦和玉米重要的生产基地,明确该地区实际产量和潜在产量水平之间的产量差及其变化规律,有助于进一步提升农户实际产量。本文以华北地区冬小麦-夏玉米作物生产体系为研究对象,利用农业生产系统模拟模型(APSIM),考虑品种更替特征,模拟了1981-2010年冬小麦和夏玉米的潜在产量,分析气候变化和品种更替对其影响程度;结合1981-2010年县级作物统计产量和种植面积资料,定量分析了实际产量和潜在产量之间的产量差及其时间变化趋势;同时明确了各区域周年调控措施对潜在产量的提升作用,为提升华北地区周年产量提供科学依据和参考。主要结论如下:
     (1)华北地区冬小麦和夏玉米的潜在产量均从西南向东北方向递增,具有明显的纬向和经向分布趋势,在1981-2010年间,因品种和气候的共同作用,分别每年增加45kghm-2和85kghm-2。冬小麦生长季内总辐射量是其潜在产量时间变化特征的决定因素,辐射降低导致冬小麦减产。夏玉米潜在产量时间变化特征则受其生育期内最低温度、日较差和总辐射的影响,其中总辐射占主导地位。冬小麦潜在产量的空间差异由最高温度和总辐射共同决定,其中生育期内总辐射占主导地位。影响夏玉米潜在产量空间差异的主要因素为热量,其中最低温度的影响程度最大。
     (2)不考虑品种更替条件下,最近30年气候变化缩短了冬小麦全生育阶段和营养生长阶段长度,延长了生殖生长阶段长度;而对夏玉米生育阶段长度没有统一影响。在气候不变的情景下,品种更替有延长冬小麦和夏玉米生育期的作用,尤其是延长生殖生长阶段的长度,品种更替对夏玉米生育阶段长度的延长效果要大于冬小麦。对比气候变化和品种更替对生育阶段长度的影响程度,气候变化是冬小麦生育阶段长度变化的主导因素,而品种更替是夏玉米生育阶段长度变化的主导因素。品种不变的条件下,气候变化降低冬小麦和夏玉米的潜在产量,而品种更替可以有效的补偿气候变化对潜在产量的负效应。
     (3)1981-2010年冬小麦和夏玉米的实际产量显著增加,平均每年增加115kghm-2和100kghm-2。目前华北地区33.6%的种植面积的冬小麦产量处于停滞,主要分布在河北省和山东省;夏玉米种植面积29.3%发生了产量停滞,主要分布于山东省中西部、河北省中部和河南省中北部。
     (4)华北地区冬小麦实际产量与潜在产量之间的产量差在全区的种植面积加权平均为3627kghm-2,占潜在产量的45%,用潜在产量的80%作为实际农田的最高可获得产量,则华北地区实际产量的可提升空间为2000kg hm-2。同理夏玉米实际产量和潜在产量之间产量差为3747kghm-2,占潜在产量的43%,农户产量的可提升空间为2004kghm-2。过去30年,研究区域冬小麦产量差每年降低69kg hm-2,达到极显著水平,而夏玉米仅有微弱的下降趋势。河南中部是冬小麦产量差的低值区,而山东西部是夏玉米产量差的低值区,潜在产量将是这些地区产量提升的重要限制因子。
Because a strong increase in population and biomass energy as well as dietary changing, China food security problems have become more and more serious. To meet the growing demand for food and maintain food security, under the background of limited arable land resources, it was the only way to improve the yield per unit area. North China Plain (NCP) is one of the largest wheat and maize production regions in China, which play an important role in food security. Quantifying the size and variation of yield gaps between the actual on-farm yields and potential yields will be helpful for the further enhance the on-farm actual production. In this paper, we focused on the winter wheat and summer maize rotation systems. First, we simulated the potential yields of winter wheat and summer maize by agricultural production system simulation model (APSIM), considering the changes in variety during1981-2010. Meanwhile, a detailed analysis of the effects of climate change and cultivar replacement on potential yields was conducted. Sencond, we calculated the yield gaps of winter wheat and summer maize between on-farm yields and potential yields and its linear trends during1981-2010, based on actual yields at county level. Third, we were trying to find some efficient annual sowing management to improve the potentail yields and provide some suggestions for annual production. The main conclusions are as follows:
     (1) Potential yields of winter wheat and summer maize in the NCP increased from southwest to northeast, with a significant trend towarding latitude and longitude, and showed an increasing trend in1981-2010because of the combine effects of climate change and cultivar improvement, on average was45kg hm2per year and85kg hm2per year, respectively. The total solar radiation during growth period of winter wheat was the decisive factor of its temporal trends of potential yields and the reduced radiation resulted in winter wheat production decrease. However, the temporal trends of summer maize potential yields were affected by the minimum and daily range temperature and solar radiation in the past30years, where the solar radiation was the most powerful factors. The spatial distribution of winter wheat potential yields was mainly determined by the maximum temperature and total radiation together, where growth period total radiation dominated it. The main factors affecting the spatial distribution of potential yields of summer maize were temperature, where the minimum temperature played the maximum effects.
     (2) Without considering the cultivar changing, climate change shortened the length of vegetatable growth period and total growth period of winter wheat, whereas prolonged the reproductive growth period; while there was no uniform trend on the growth period of summer maize. Under climate unchange scenario, cultivar replacement could prolong the growth period of winter wheat and summer maize, especially for the reproductive growth period. Meanwhile, comparing the effects of cultivar replacement on the length of growth period of winter wheat and summer maize, summer maize was more obvious. Comparing the effects of climate change and cultivar replacement on the length of growth period, climate change dominated the change of the growth period of winter wheat, but cultivar change was the main reason for summer maize. In addiation, when cultivar was controlled, climate change reduced the potential yields of winter wheat and summer maize, but cultivar replacement could compensate this reduction and enhance potential yields.
     (3) The actual yields of winter wheat and summer maize significiantly increased during1981-2010, with an average of115kg hm"2and100kg hm"2, respectively. However, yields stagnation happened in33.6%of winter wheat area in the NCP, mainly locating in Hebei and Shandong provinces; and meanwhile, in29.3%of summer maize area, yields occurred stagnation, which mainly located in the central and western Shandong, central Hebei and north-central Henan province.
     (4) The area weighted average yield gaps between actual yields and potential yields of winter wheat in the NCP were3627kg hm-2, accounting for45%of potential yields. With80%of potential yields as the production ceiling which could be achieved on farmer land, the average on-farm yields in the NCP could still increase by2000kg hm-2. Meanwhile, the yield gaps of summer maize were3747kg hm-2, accounting for43%of potential yields, and the potential scope of raising maize yields was2004kg hm'2. In the past three decades, yield gaps of winter wheat has significantly decreased with a rate of69kg hm-2per year, while only a weak declined was happened in summer maize. Central Henan was the regions of low yield gaps of winter wheat, while western Shandong was summer maize's. In these regions, potential yields will be an important limiting factor for on-farm yields increase in the next decade.
引文
Abeledo LG, Savin R, and Slafer GA. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy,2008,28:541-550.
    Akaike H. A new look at the statistical model identification. Automatic Control, IEEE Transactions, 1974,19:716-723.
    Alexander LV, Zhang X, Peterson TC, et al. Global observed changes in daily climate extremes of temperature and precipition. Journal of Geophysical Research.2006,111:D05109.
    Allen RG, Jensen ME, Wright JL, et al. Operational Estimates of Reference Evapotranspiration. Agronomy Journal,1989,81:650-662.
    Asseng S, Fillery IRP, Anderson GC, et al. Use of the APSIM wheat model to predict yield, drainage, and NO3-leaching for a deep sand. Australian journal of agricultural research,1998a,49(3): 363-377.
    Asseng S, Keating BA, Fillery IRP, et al. Performance of the APSIM-wheat model in Western Australia. Field Crops Research,1998b,57:163-179.
    Asseng S, van Keulen H, Stol W, et al. Performance and application of the APSIM-Nwheat model in the Netherlands. European Journal of Agronomy,2000,12:37-54.
    Asseng S, Turner NC, Ray JD, Keating BA. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. European Journal of Agronomy,2002,17: 123-141.
    Austin RB, Ford MA. Effects of nitrogen fertilizer on the performance of old and new varieties of winter wheat. Vortr Pflanzenzuchtg,1989,16:307-315.
    Baker DN, Lambert JR, McKinion JM. GOSSYM:A Simulator of Cotton Crop Growth and Yield. Clemson:Clemson University,1983. pp 1-134.
    Baker RK, Gomez A, Herdt RW. Farm-level constraints to high rice yields in Asia:1974-1977. IRRI, Los Banos, Philippines,1979.
    Bhatia VS, Singh Piara, Wani SP, Kesava Rao AVR. Yield gap analysis of soybean, groundnut, pigeonpea and chickpea in India using simulation modeling Global Theme on Agroecosystems Report no 31. Patancheru 502 324, Andhra Pradesh, India:International Crops Research Institute for the Semi-Arid Tropics (ICRISAT),2006.156.
    Brancourt-Hulmel M, Doussinault G, Lecomte C, Berard P, Le Buanec B, Trotter M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Science,2003,43:37-45.
    Bruinsma J. World agriculture:towards 2015/2030; An FAO perspective. Rome (Italy):Earthscan; 2003.
    Carruthers I, Chambers R. Rapid rural appraisal:Rational and repertoire [R]. UK:University Sussex, 1981.
    Cassman KG. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture. PNAS,1999,96:5952-5959.
    Cassman KQ Dobermann A, Walters DT, Yang H. Meeting cereal demand while protecting natural resources and improving environmental qualty. Annual Review of Environment and Resources. 2003,28:315-358.
    Che HZ, Shi GY, Zhang XY, et al. Analysis of 40 years of solar radiation data from China,1961-2000. Geophysical Research Letters,2005,32:L06803.
    Chen C, Wang E, Yu Q, Zhang Y. Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain. Climatic Change, 2010a,100:559-78.
    Chen C, Wang E, Yu Q. Modeling wheat and maize productivity as affected by climate variation and irrigation supply in North China Plain. Agronomy Journal,2010b,102:1037-1049.
    Chen C, Wang E, Yu Q. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 2010c,97:1175-1184.
    Chen C, Baethgen W, Wang E, Yu Q. Characterizing spatial and temporal variability of crop yield caused by climate and irrigation in the North China Plain. Theoretical and Applied Climatology, 2011a,106:365-381.
    Chen C, Baethgen W, Robertson A. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain,1961-2003. Climatic Change, 2013a,116:767-788.
    Chen C, Greene AM, Robertson AW, Baethgen WE, Eamus D. Scenario development for estimating potential climate change impacts on crop production in the North China Plain. International Journal of Climatology,2013b. DOI:10.1002/joc.3648
    Chen XP, Cui ZL, Vitousek PM, et al. Integrated soil-crop system management for food security. PNAS,2011b,108:6399-6404.
    Dai A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. Journal of Geophysical Research.2011,116:D12115.
    De Bie CAJM. Comparative performance an analysis of Agro-Ecosystems:[PhD thesis]. In: Wageningen Agricultural University, the Netherlands,2000.
    De Datta SK. Principles and Practices of Rice Production. New York:John Wiley & Sons; 1981.
    Duncan WG, Loomis RS, Williams WA, et al. A model for simulating photosynthesis in plant communities. Hilgardia,1967,38:181-205.
    Duvick DN, Cassman KG. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Science,1999,39:1622-1630.
    Duvick DN. Genetic progress in yield of United States maize (Zea mays L.). Maydica,2005,50:193.
    Egli DB. Comparison of corn and soybean yields in the United States:historical trends and future prospects. Agronomy Journal,2008,100:S79-S88.
    Everson RE, Herdt RW and Hossain M. Rice research in Asia:Progress and priorities. CAB International, Walllingford, UK,1996.
    FAO. Report on the Agro-ecological Zones Project. World Soil Resources Report:Africa, Southwest Asia, South and Central America, Southeast Asia. Rome:FAO,1978-1981
    Foley JA, DeFries R, Asner GP, et al. Global consequences of land use. Science,2005,309:570-584
    Foulkes MJ, Slafer GA, Davies WJ, et al. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 2011,62:469-486.
    Fresco LO. Issues in farming systems research. Netherlands Journal of Agricultural Science,1984,32: 253-261.
    Gauch HG, Hwang JTG, Fick GW. Model evaluation by comparison of model-based predictions and measured values. Agronomy Journal,2003,95(6):1442-1446.
    Gu L. Comment on "climate and management contributions to recent trends in U.S. agricultural yields". Science,2003,300:1505.
    Jones JW, Hoogenboom G, Porter CH, et al. The DSSAT cropping system model. European Journal of Agronomy,2003,18:235-365.
    Kucharik CJ and Ramankutty N.Trends and variability in U.S. corn yields over the twentieth century. Earth Interactions,2005,9:1-29.
    Kucharik CJ. Contribution of planting date trends to increased maize yields in the central United States. Agronomy Journal,2008,100(2):328-336.
    Li K, Yang X, Liu Z, Zhang T, Lv S, Liu Y. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy,2014. DOI:10.1016/j.eja.2014.04.007
    Lilley JM, Kirkegaard JA. Seasonal variation in the value of subsoil water to wheat:Simulation studies in southern New South Wales [J]. Australian Journal of Agricultural Research,2007, 58(12):1115-1128.
    Liu Y, Wang E, Yang X, et al. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Change Biology,2010,16:2287-2299.
    Liu Z, Yang X, Hubbard KG, et al. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology,2012,18:3441-3454.
    Lobell DB, Hicke JA, Asner GP, et al. Satellite estimates of productivity and light use efficiency in United States agriculture,1982-98. Global Change Biology,2002,8:722-735.
    Lobell DB, Asner GP. Climate and management contributions to recent trends in U.S. agricultural yields. Science,2003,299:1032.
    Lobell DB, Ortiz-Monasterio JI, Asner GP, et al. Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agronomy Journal,2005,97:241-249.
    Lobell DB, Ortiz-Monasterio JI. Regional importance of crop yield constraints:Linking simulation models and geostatistics to interpret spatial patterns. Ecological Modelling,2006,196: 173-182.
    Lobell DB, Ortiz-Monasterio JI, Falcon WP. Yield uncertainty at the field scale evaluated with multi-year satellite data. Agricultural Systems,2007a,92:76-90.
    Lobell DB, Ortiz-Monasterio JI. Impacts of Day Versus Night Temperatures on Spring Wheat Yields. Agronomy Journal,2007b,99:469-477.
    Lobell DB, Cassman KG, Field CB. Crop yield caps:Their importance, magnitudes, and causes. Annual Review of Environment and Resources,2009,34:179-204.
    Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science,2011a,333:616-620.
    Lobell DB, Torney A, Field C. Climate extremes in California agriculture. Climatic Change,2011b, 109:355-363.
    Lobell DB, Gourdji S. The influence of climate change on global crop productivity. Plant Physiology, 2012. DOI:10.1104/pp.112.208298
    Lobell DB. The use of satellite data for yield gap analysis. Field Crops Research.2013,143:56-64.
    Loomis RS, Williams WA. Maximum crop productivity:An estimate[J]. Crop Science,1963,3(1): 67-72.
    Lu C, Fan L. Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Research,2013,143:98-105.
    McCown RL, Hammer GL, Hargreaves JNG, et al. APSIM:a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems,1996,50:255-271.
    Meertenst HCC, Ndenge LJ, Ensserink HJ. Results of the cotton yield gap analysis on-farm trial, Meatu districts [R]. Field Note No.27,1992.
    Meng Q, Hou P, Wu L, Chen X, Cui Z, Zhang F. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research,2013,143:91-97.
    Muchouw RC, Hammre GL, Vanderlip RL. Assessing climatic risk to sorghum production in water-limited subtropical environments:Ⅱ. Effect of planting date, soil water at planning, and cultivar phenology. Field Crops Research,1994,36:235-246.
    Mueller ND, Gerber JS, Johnston M, et al. Closing yield gaps through nutrient and water management. Nature,2012. DOI:10.1038/nature11420
    Nelson RA, Dimes JP, Paningbatan EP, et al. Erosion productivity modeling of maize farming in the Philippine uplands I. parameterising the agricultural production systems simulator. Agricultural Systems,1998,58(2):129-146.
    Neumann K, Verburg PH, Stehfest E, et al. The yield gap of global grain production:A spatial analysis. Agricultural Systems,2010,103:316-326.
    Odum EP. Sun RY trans. Fundamentals of Ecology. Beijing:People's Education Press,1981:42-61.
    Ortiz-Monasterio JI, Lobell DB. Remote sensing assessment of regional yield losses due to sub-optimal planting dates and fallow period weed management. Field Crops Research,2007, 101:80-87.
    Parry MAJ, Reynolds M, Salvucci ME, et al. Raising yield potential of wheat. Ⅱ. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany,2011,62:453-467.
    Peng S, Laza RC, Visperas RM, et al. Grain Yield of Rice Cultivars and Lines Developed in the Philippines since 1966. Crop Science,40:307-314.
    Peng S, Huang J, Sheehy JE, et al. Rice yields decline with higher night temperature from global warming. PNAS,2004,101:9971-9975.
    Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China. Nature,2010,467:43-51.
    Penning de Vries FWT, Jansen DM, Ten Berge HFM, et al. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc, Wageningen, The Netherlands.1989.
    Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nature Climate Change,2011 2:2-4.
    Rabbinge R, Ward SA, Van LHH. Simulation and systems management in Crop Protection. Simulation Monographs, vol.32. Pudoc, Wagennigen, The Netherlands.1989.
    Ray DK, Ramankutty N, Mueller ND, et al. Recent patterns of crop yield growth and stagnation. Nature Communications,2012,3:1293.
    Ray JD, Gesch RW, Sinclair TR, Hartwell Allen L. The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant and Soil,2002,239:113-121.
    Reynolds MP, Bonnett D, Chapman SC, et al. Raising yield potential of wheat. Ⅰ. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany,2011,62: 439-452.
    Roe GH, and Baker MB. Why Is Climate Sensitivity So Unpredictable? Science,2007,318:629-632.
    Sayre KD, Singh RP, Huerta-Espino J, Rajaram S. Genetic progress in reducing yield losses to leaf rust in CIMMYT-derived Mexican spring wheat cultivars. Crop Science,1998,38:654-659.
    Sheehy JE, Mitchell PL, Ferrer AB. Decline in rice grain yields with temperature:Models and correlations can give different estimates. Field Crops Research,2006,98:151-156.
    Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature, 2012,491:435-438.
    Siebert S, Ewert F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agricultural and Forest Meteorology,2012,152:44-57.
    Smith M. Report on the txpert consultation on revision of FAO methodologies for crop water requirements. Roma:FAO Plant Production and Protection,1991.
    Stone P. The effects of heat stress on cereal yield and quality. In AS Basra, ed, Crop responses and adaptations to temperature stress. Food Products Press, Binghamton, NY,2001. pp302.
    Subedi KD, Ma BL. Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crops Research,2009,110:21-26.
    Sumarno F, Dauphin A, Rachim N, et al. Soybean yield gap analysis in Java. CGPRT Center, Bogor, Indonesia,1995.
    Surabol N, Virakul P, Potan N, et al. Preliminary survey on soybean yield gap analysis in Thailand [R]. CGPRT Centre, Bogor, Indonesia,1997.
    Sun H, Zhang X, Chen S, et al. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Industrial Crops and Products,2007, 25:239-247.
    Tao F, Yokozawa M, Liu J, et al. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research,2008,38:83-94.
    Tao F, Zhang S, Zhang Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. European Journal of Agronomy, 2012,43:201-212.
    Tian Z, Jing Q, Dai T, et al. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Research,2011,124:417-425.
    Tollenaar M and Aguilera A. Radiation use efficiency of an old and a new maize hybrid. Agronomy Journal,1992,84:536-541.
    van Ittersum MK, Cassman KG Yield gap analysis - Rationale, methods and applications -introduction to the Special Issue. Field Crops Research,2013,143:1-3.
    van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z. Yield gap analysis with local to global relevance - a review. Field Crops Research,2013,143:4-17.
    van Keulen H, Penning de Vries FWT, Drees EM. A summary model for crop growth, In:Penning de Vries FWT, van Laar HH, eds. Simulation of Plant Growth and Crop Production. Wageningen: PUDOC,1982. pp 87-98.
    van Wart J, Kersebaum KC, Peng S, Milner M, Cassman KG Estimating crop yield potential at regional to national scales. Field Crops Research,2013,143:34-43.
    van Wart J, van Bussel LGJ, Wolf J, et al. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Research,2013,143:44-55.
    Verdoodt A, Van Ranst E, Van Averbeke W. Modelling crop production potentials for yield gap analysis under semiarid conditions in Guquka, South Africa. Soil Use and Management,2003, 19:372-380.
    Wang EL, Robertson MR, Hammer GL, et al. Design and implementation of a generic crop module template in the cropping system model APSIM. European Journal of Agronomy,2003,18: 121-140.
    Wang E, Yu Q, Wu D, Xia J. Climate, agricultural production and hydrological balance in the North China Plain. International Journal of Climatology,2008,28:1959-1970.
    Wang T, Lu C, Yu B. Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region. Journal of Geographical Sciences,2011,21(4):677-688.
    Wang J, Wang E, Yang X, et al. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change,2012,113:825-840.
    Wild M. Enlightening Global Dimming and Brightening. Bulletin of the American Meteorological Society.2012,93:27-37.
    Willmott CJ. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society,1982,63:1309-1313.
    Wu D, Yu Q, Lu C, et al. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy,2006,24:226-235.
    Wu D, Yu Q, Wang E, et al. Impact of spatial-temporal variations of climatic variables onsummer maize yield in North China Plain. International Journal of Plant Production,2008:71-88.
    Xiao D, Tao F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy,2014,52: 112-122.
    Xiao YG, Qian ZG, Wu K, et al. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Science,2012,52:44-56.
    Yang HS, Dobermann A, Lindquist JL, et al. Hybrid-maize-a maize simulation model that combines two crop modeling approaches. Field Crops Research,2004,87:131-154.
    You L, Rosegrant MW, Wood S, et al. Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology,2009,149:1009-1014.
    Zhang T, Zhu J, Wassmann R. Responses of rice yields to recent climate change in China:An empirical assessment based on long-term observations at different spatial scales (1981-2005). Agricultural and Forest Meteorology,2010,150:1128-1137.
    Zhang Y, Feng L, Wang E, et al. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science,2012, 92:937-946.
    Zhou Y, He ZH, Sui XX, et al. Genetic improvement of grain yield and associated traits in the Northern China winter wheat region from 1960 to 2000. Crop Science,2007a,47:245-253.
    Zhou Y, Zhu HZ, Cai SB, et al. Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000. Euphytica,2007b,157:465-473.
    鲍继友,张金龙,孙顶太.夏玉米最佳收获期试验研究.玉米科学,1993,03:23-25.
    曹云者,刘宏,王中义,等.基于作物生长模拟模型的河北省玉米生产潜力研究.农业环境科学学报,2008,27:826-832.
    陈超,于强,王恩利,等.华北平原作物水分生产力区域分异规律模拟.资源科学,2009,31:1477-1485.
    陈健,王忠义,李良涛,张克锋,宇振荣.基于比较优势分析法的冬小麦产量差异.应用生态学报,2008,19:1971-1976.
    陈明荣,龙斯玉.中国气候生产潜力区划的探讨.自然资源,1984,(3):72-79.
    陈延玲,高强,王贵满,等.吉林省中部黑土区玉米吨粮田技术集成.吉林农业科学,2013,38(2):15-17.
    丛振涛,王舒展,倪广恒.气候变化对冬小麦潜在产量影响的模型模拟分析.清华大学学报(自然科学版),2008,48(9):46-50.
    崔建民,寇彩霞,李付献,马祖国,吕跃喜,卢帮林.2001-2002年度新乡市优质小麦新品种比较试验.农业与技术,2004,24(1):53-56.
    戴明宏,陶洪斌,廖树华,王利纳,王璞.基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析.农业工程学报,2008,24(4):30-36.
    邓根云,冯雪华.我国光温资源与气候生产潜力.自然资源,1980,(4):11-16.
    付雪丽,张惠,贾继增,等.冬小麦-夏玉米”双晚呀中植模式的产量形成及资源效率研究.作物学报2009,35(9):1708-1714.
    付雪丽.冬小麦—夏玉米产量性能动态特征及其主要栽培措施效应[博士]:中国农业科学院;2009.
    高海涛,王育红,孟战赢,等.小麦-玉米双晚种植对周年产量和资源利用的影响.麦类作物学报,2012,32(6):1102-1106.
    谷冬艳,刘建国,杨忠渠,等.作物生产潜力模型研究进展.干旱地区农业研究,2007,25(5):89-94.
    侯光良,刘允芬.我国气候生产潜力及其分区.自然资源,1985,(3):52-59.
    胡实,莫兴国,林忠辉.气候变化对海河流域主要作物物候和产量影响.地理研究,2014,33(1):3-12.
    居辉,李三爱,严昌荣.我国北方旱区雨养小麦生产潜力研究.中国生态农业学报,2008,16(3):728-731.
    李国祥.建国以来我国粮食生产循环波动分析.中国农村观察,1999,(5):46-53.
    李克南,杨晓光,刘志娟,等.全球气候变化对中国种植制度可能影响分析Ⅲ.中国北方地区气候资源变化特征及其对种植制度界限的可能影响.中国农业科学,2010,43:2088-2097.
    李克南.华北地区冬小麦产量差和水氮利用效率限制因子解析.[硕士]:中国农业大学.2011.
    李克南,杨晓光,刘园,等.华北地区冬小麦产量潜力分布特征及其影响因素.作物学报,2012,32:1483-1493.
    李艳,薛昌颖,杨晓光,等.基于APSM模型的灌溉降低冬小麦产量风险研究.农业工程学报,2009,25:35-44.
    李振声.我国粮食生产的潜力和存在的问题.生命科学,1992,4(1):1-3.
    廉丽姝,李志富,李梅,等.山东省主要粮食作物气候生产潜力时空变化特征.气象科技,2012,(6):1030-1038.
    梁荣欣,沈能展.作物的光合潜力估算——叶面积订正方法的研究.东北农学院学报,1980,(2):70-74.
    林学椿,于淑秋.近40年我国气候趋势.气象,1990,10:16-22.
    林忠辉,莫兴国,项月琴.作物生长模型研究综述.作物学报,2003,29:750-758.
    刘布春,王石立,马玉平.国外作物模型区域应用研究进展.气象科技,2002,(4):193-203.
    刘明强,宇振荣,刘云慧.作物养分定量化模型原理及方法比较分析.土壤通报,2006,(3):582-588.
    刘晓英,李玉中,郝卫平.华北主要作物需水量近50年变化趋势及原因.农业工程学报,2005,21(10):155-159.
    刘巽浩,韩湘玲.中国的多熟种植.北京:北京农业大学出版社,1987,pp14-45.
    刘志娟,杨晓光,王文峰.气候变化背景下中国农业气候资源变化Ⅳ.黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征.应用生态学报,2011,22:905-912.
    刘志娟,杨晓光,王静,等APSIM玉米模型在东北地区的适应性.作物学报,2012,38:740-746.
    刘志娟.东北三省春玉米产量差及限制因素解析.[博士]:中国农业大学.2013.
    刘园.气候因子和栽培管理措施对华北冬小麦-夏玉米生产体系的影响.[博士]:中国农业大学.2010.
    龙斯玉.我国小麦气候生产力的地理分布.南京大学学报(自然科学版),1983,(3):579-587.
    吕硕,杨晓光,赵锦,等.气候变化和品种更替对东北地区春玉米产量潜力的影响.农业工程学报,2013,29(18):179-190.
    马玉平,王石立.利用遥感技术实现作物模拟模型区域应用的研究进展.应用生态学报,2004,9:1655-1661.
    马玉平,王石立,张黎.针对华北小麦越冬的WOFOST模型改进.中国农业气象,2005,3:145-149.
    石敬之,吕先胜,李士贞.夏玉米不同收获时期对产量的影响.河南农业大学学报,1987,2:275-279.
    薛昌颖,杨晓光,Bouman BAM,等ORYZA2000模型模拟北京地区旱稻的适应性初探.作物学报,2005,31(12):1567-1571.
    孙宁,冯利平.利用冬小麦作物生长模型对产量气候风险的评估.农业工程学报,2005,21(2):106-110.
    孙爽,杨晓光,李克南,等.中国冬小麦需水量时空特征分析.农业工程学报,2013,29(15):72-82.
    王斌,顾蕴倩,刘雪,等.中国冬小麦种植区光热资源及其配比的时空演变特征分析.中国农业科学,2012,45:228-238.
    王纯枝,宇振荣,辛景峰,Driessen PM,刘云慧.基于遥感和作物生长模型的作物产量差估测.农业工程学报,2005,7:84-89.
    王纯枝,李良涛,陈健,刘明强,宇振荣.作物产量差研究与展望.中国生态农业学报,2009,17:1283-1287.
    王静,杨晓光,吕硕,等.黑龙江省春玉米产量潜力及产量差的时空分布特征.中国农业科学,2012,45:1914-1925
    王琳,郑有飞,于强,等APSIM模型对华北平原小麦-玉米连作系统的适用性.应用生态学报,2007,18(11):2480-2486.
    王树安.小麦-夏玉米平播亩产顿粮的理论与实践.北京:农业出版社,1991.
    王涛,吕昌河,于伯华.基于WOFOST模型的京津冀地区冬小麦生产潜力评价.自然资源学报,2010,3:475-487.
    王迎春.华北平原典型农田生态系统氮磷平衡动态模拟研究[博士]:中国农业科学院,2009.
    杨晓光,刘志娟,陈阜.全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学,2010,42:329-336.
    于沪宁,赵丰收.光热资源和农作物的光热生产潜力——以河北省栾城县为例.气象学报,1982,40(3):327-334.
    张宇.近40年来我国粮食产量变化特征初步分析.中国农业气象,1995,3:1-4.
    中华人民共和国国家统计局.中国统计年鉴2010.北京:中国统计出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700