用户名: 密码: 验证码:
菊芋叶片化学成分分析及抑菌活性成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊芋(Helianthus tuberosus L.)属于菊科(Compositae)向日葵属多年生草本植物,广泛的分布在我国大部分地区,是一种适应性极强,具有生态和经济双重价值的作物。菊芋广泛用于造纸业以及食品、药物、饲料、糖和酒精的工业生产。目前菊芋产品的开发多是利用块茎和茎秆,而在我国多数菊芋叶片未能得到开发和利用,同时也加重了环境污染和资源浪费。由于菊芋地上部分具有抗逆性强,极少病虫害的特点,引起了人们对其化学成分及生物活性的关注。本文对菊芋叶片中抑菌活性成分进行了系统性研究,并开发其防治植物病害的新应用。这对于有效利用和开发菊芋这一自然资源具有重要的意义。本文主要研究结果如下:
     1.菊芋叶片化学成分中,总糖和总蛋白含量比总酚和总黄酮要高的多。南芋叶片中各成分含量除总黄酮差异不明显外,总糖、总蛋白和总酚均显著高于野生型和青芋。花期是菊芋叶片各化学成分积累的重要时期,总酚、总黄酮、总糖和总蛋白含量均显著高于现蕾期和块茎膨大期。菊芋叶片中水解氨基酸的总含量,可达叶片干重的12.445%,其中脯氨酸、天门冬氨酸、谷氨酸和亮氨酸为菊芋叶片中氨基酸的主要组成成分。游离氨基酸中脯氨酸含量最高。
     2.本文分析并鉴定了菊芋叶片中的酚类物质,有10种属于绿原酸类(CGAs)化合物,包括3种绿原酸异构体、4种二咖啡酰奎尼酸异构体、咖啡酸、P-香豆酰奎尼酸、阿魏酰奎尼酸,还有4种其他化合物,分别是异鼠李素-O-葡萄糖苷、咖啡酰葡萄糖、山奈酚葡萄糖醛酸苷、山奈酚-3-O-葡萄糖苷。本文研究发现在所有菊芋品种中咖啡酸的含量最低,绿原酸与4,5-二咖啡酰奎宁酸的含量最高。南芋叶片各酚酸类物质的含量显著高于野生型和青芋,因此南芋品种可作为酚酸类物质开发和利用的重要资源。以南芋为例,花期的各种酚酸含量普遍高于现蕾期和块茎膨大期,且差异极显著。
     3.本文采取的乙醇减压回流法作为抑菌活性物质的提取方法,具有提取效率高、抑菌效果好以及对环境友好等的优点,适合大规模生产的需要。减压回流法所得提取物浸膏的总酚和总黄酮含量显著高于回流法和室温浸提法,绿原酸含量也显著高于其他两种方法。乙酸乙酯层浸膏总酚和总黄酮含量最高,分别可达306.38mg/g和97.33mg/g,这说明菊芋叶片中的黄酮类和酚类物质属于极性中等偏大的活性成分。正丁醇层浸膏的绿原酸含量最高可达76.09mg/g,占6种酚酸总含量的55.70%。乙酸乙酯层浸膏中除绿原酸外的其他酚酸含量均为最高。
     4.菊芋叶片乙醇粗提物(减压回流法)具有广泛的抑菌谱,可以用于多种植物病害的防治。尤其对半知菌亚门的番茄灰霉病菌、苹果炭疽病菌、小麦纹枯菌和鞭毛菌亚门的辣椒疫霉病菌的抑制效果较好,在供试浓度10g.L-1下,抑制率分别可达98.22%、89.77%、74.62%和87.85%。石油醚、氯仿、乙酸乙酯以及正丁醇浸膏对四种植物病原真菌均有一定的抑制效果。氯仿层对辣椒疫霉病菌的抑制效果最好,EC50值仅为0.875g.L-1;乙酸乙酯层对小麦纹枯病菌的抑制效果最好,EC50值仅为0.300g.L-1;正丁醇层对小麦纹枯病菌的抑制效果最好,EC50值仅为0.232g.L-1,对辣椒疫霉病菌的抑制效果次之,ECs0值为0.839g.L-1。菊芋叶片浸膏用于番茄灰霉病的防治,在有效浓度相同的情况下,与商品化的杀菌剂多菌灵的防效相当,且差异不显著,安全无公害。因此开发菊芋叶片作为果蔬保鲜剂,对于菊芋资源的综合利用具有重要意义。
     5.结合生物活性追踪试验,包括生长速率法和生物自显影法,筛选菊芋叶片中抑菌活性较好的正丁醇层中活性物质,通过柱层析(AB-8柱、聚酰胺柱、ODS柱、Toyopearl HW-40凝胶柱)和制备液相色谱分离得到10种化合物,通过HPLC-ESI-MS、1H-NMR结合化学性质和标准品对照,鉴定了6种化合物为已知酚酸类物质,分别是绿原酸、咖啡酸和4种二咖啡酰奎宁酸的同分异构体。
     6.咖啡酸、3,4-二咖啡酰奎宁酸和1,5-二咖啡酰奎宁酸能有效的抑制小麦赤霉病菌的生长,MIC值分别可达108、60和4.2μgmL-1。总酚含量与各粗提物对辣椒疫霉病菌和小麦纹枯病菌的EC50呈现明显的负相关性,咖啡酸的含量同各粗提物对小麦纹枯病菌的EC50值呈显著负相关性,咖啡酸和1,5-二咖啡酰奎宁酸含量同各粗提物对辣椒疫霉病菌的EC50值呈现显著的负相关性,推测菊芋叶片中这些酚酸类抑菌物质可能单独、也可能协同抑制植物病原真菌。氯仿层萃取物和正丁醇层萃取物处理的辣椒疫霉病菌菌丝形态和细胞超微结构发生一些变化:菌丝凹陷,局部断裂或者出现裂纹,生长点异常;菌丝体细胞壁显著增厚,出现质壁分离,氯仿层萃取物处理还能使菌丝细胞器大量降解。
     通过本文的研究将菊芋叶片提取物应用于防治植物病害,不仅从废物利用的角度,大大提高了菊芋产业的经济附加值,而且开拓了植物源农药的新用途及新思路,具有十分重要的研究价值。
Helianthus tuberosus L.(Jerusalem artichoke), Asteraceae family, is a perennial herb distributed in most of china. Helianthus tuberosus has been used in food, pharmaceutical, feed, sugar, paper, and bioethanol industry, and in desert and tideland control.Nowadays, the products originating from tubers and stems in Helianthus tuberosus were fully utilized, whereas it aggravates environmental pollutions and wastes of resources that quite a lot of Helianthus tuberosus leaves have not been utilized. Given its wide adaptation (it is resistant to drought, cold, wind stress, diseases and pests), Helianthus tuberosus has both economic and ecological values. Therefore, more studies were focused on the chemicals and their bioactivities of aerial part Helianthus tuberosus. Chemical constituents of Helianthus tuberosus leaves and their antifungal activities were systematically investigated for making full use of Helianthus tuberosus and control plant diseases.The main results described are as following:
     1. The main components in Helianthus tuberosus leaves are sugar and protein. The contents of total sugars, proteins and phenolics in cultivar Nan Yu were significantly higher than the wild accession and cultivar QingYu, while the contents of total flavonoids between the three cultivars were not significantly different.The contents of total phenolics, flavonoids, sugars and proteins were highest at flowering stage. Thus, the flowering stage is an important period for chemicals accumulation.Content of hydrolysis amino acids was up to12.445%for dried weight leaves, while the main amino acids in Helianthus tuberosus leaves were proline, aspartic acid, glutamic acid and leucine. Proline was the main free amino acid in Helianthus tuberosus leaves.
     2. Ten chlorogenic acids (CGAs) were identified (chlorogenic acid, two isomers of chlorogenic acid, caffeic acid, p-coumaroyl-quinic acid, feruloyl-quinic acid,3,4-dicaffeoyquinic acid,3,5-dicaffeoylquinic acid,1,5-dicaffeoylquinic acid and4,5-dicaffeoylquinic acid) by comparing their retention times, UV-Vis absorption spectra and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, Isorhamnetin glucoside, kaempferol glucuronide and kaempferol-3-o-glucoside. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest content of phenolic acids, in particular3-o-caffeoylquinic acid and4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu),while caffeic acid was detected in low concentration in all genotypes of all the phenolic acids. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics. Considering various growth stages, the contents of all phenolic acids in cultivar NanYu was significantly higher at flowering stage than at budding and tuber swelling stages.
     3. The antifungal components in Helianthus tuberosus leaves were screened by different solvents, different extracting methods combined with bioassay.The result showed that ethanol-reluxing under vacuum suited for manufacture on a large scale, with the characteristics of high extraction efficiency, more antifungal effect and good environmental compatibility. The contents of total phenolics and total flavonoids in refluxed extract under vacuum were significantly higher than the refluxed and macerated extracts. The total phenolics and flavonoids mainly presented in ethyl acetate fraction, with the contents of306.38mg/g and97.33mg/g in dired extracts. The content of chlorogenic acid in crude refluxed extract under vacuum was significantly higher than other methods, so was the n-butanol fractions. The content of chlorogenic acid was up to76.09mg/g in dired extracts, which was significantly higher than other fractions, accounting for55.70%of the total amount of the six main phenolic acids. Ethyl acetate fraction had the great amount of all the phenolic acids except chlorogenic acid, which further demonstrate that phenlics might be concentrated in polar fractions.
     4. The ethanol crude extracts from Helianthus tuberosus leaves were active against various phytopathogenic fungi.They were active in bioassays against Botrytis cinerea, Colletotrichum gloeosporioides and Rhizoctonia cerealis belonging to deuteromycete, Phytophthora capsici Leonian belonging to Mastigomycotin, with the inhibition rates of98.22%,89.77%,74.62%and87.85%(10g L-1).Chloroform fraction was more active against Phytophthora capsici Leonian, with the EC50value of0.875g L-1. Ethyl acetate and n-butanol fractions were more active against Rhizoctonia cerealis, with the EC50value of0.300g L-1and0.232g L-1, respectively. The control efficiencies of extract from Helianthus tuberosus leaves on grey mould caused by B. cinerea was equivalent to commercial preparation Carbendazim, but the natural extracts was safer with lower costs. The extracts of antifungal compounds from Helianthus tuberosus leaves were investigated for potential use in enhancing preservation of fruits and vegetables in storage, which is significant to comprehensive utilization of Helianthus tuberosus.
     5. The antifungal compounds in Helianthus tuberosus leaves were investigated by the activity-guided method. The antifungal activies were evaluated by the growth inhibition bioassay and TLC bioautography.The antifungal compounds in n-butanol fraction were isolated and purified by AB-8macroporous resin, polyamide, ODS, TSKgel Toyopearl HW-40column and PHPLC.There were ten compounds obtained from n-butanol fraction.Six of these compounds were identified as known phenolic acids by HPLC-ESI-MS,]H-NMR and compared with standards, which were Chlorogenic acid, Caffeic acid and four isomers of dicaffeoylquinic acid.
     6. Purified caffeic acid,3,4-DiCQA and1,5-DiCQA were active in bioassays against Gibberella zeae.There was a significant negative correlation between the contents of total phenolics and EC50Values against Phytophthora capsici Leonian and Rhizoctonia cerealis. It indicated that the phenolics might be major antifungal compounds. There was a significant negative correlation between the content of caffeic acid and EC50Values against Rhizoctonia cerealis,so was the content of caffeic acid,1,5-DiCQA and EC50Values against Phytophthora capsici Leonian. It was supposed that the phenolic acids might have independent and combined effects against phytopathogenic fungi. Scanning electron micrographs (SEM) of hyphae from P. capsici treated with chloroform and n-butanol fractions had been used to observe a series of marked structural and morphological alterations of hyphae. The changes included irregular hyphae in diameter, local denting, excessive branching, some of broken mycelium, or cracks on the surface of hyphae, which indicated the damage of cell wall. The micrographs of Transmission electron microscopy (TEM) indicated that the cellular ultrastructre of treated hyphae was damaged. The cell walls were thickened and plasmolysis was appeared. Organelles were degraded in chloroform fraction treatment.
     The extracts of antifungal compounds from Helianthus tuberosus leaves were investigated for potential use in improving industrial economic added value of Helianthus tuberosus largely from a view of waste utilization.
引文
1. Ablajan K, Abliz Z, Shang X, He J, Zhang R, Shi J. Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry[J]. Journal of Mass Spectrometry,2006,41,352-360.
    2. Ackermann BL, Regg BT, Colombo L, Stella S, Coutant JE. Rapid analysis of antibiotic-containing mixtures from fermentation broths by using liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,1996,7(12):1227-1237.
    3. Adikaram NKB, Ewing DF, Karunaratne AM, Wijeratne EMK. Antifungal compounds from immature avocado fruit peel[J]. Phytochemistry,1992,31(1):93-96.
    4. Afek U, Sztejnberg A. Accumulation of scoparone, a phytoalexin associated with resistance of Citrus to Phytophthora citrophthora[J]. Phytopathology,1988,78(12):1678-1682.
    5. Agarwal SK, Verma S, Singh SS, Tripathi AK, Khan ZK, Kumar S. Antifeedant and antifungal activity of chromene compounds isolated from Blepharispermum subsessile[J].Journal of Ethnopharmacology,Jul 2000;71(1-2):231-234.
    6. Ahmed M. S., El-Sakhawy F. S., Soliman S.N., Abou-Hussein D.M.R., Phytochemical and biological study of Helianthus tuberosus L. [J]. Egypt Journal of Biomedicine Science.2005,18, 134-147.
    7. Alcalde-Eon C, Saavedra G, Pascual-Teresa S, Rivas-Gonzalo JC. Identification of anthocyanins of pinta-boca (Solanum stenotomum) tubers[J]. Food Chemistry,2004,86,441-448.
    8. Amelia P.R.,Alice M.,Carlos B.,et al.Liquid chromatography-diode array detection-electrospray ionisation mass spectrometry/nuclear magnetic resonance analyses of the anti-hypergly cemic flavonoid extract of Genista tenera structure elucidation of a flavonoid-C-glycoside[J].Journal of Chromatography A.2005,1089:59-64.
    9. Andrade Pinto JM, Souza EA, Oliveira DF. Use of plant extracts in the control of common bean anthracnose[J]. Crop Protection.2010,29(8),838-842.
    10. Atindehou KK, Queiroz EF, Terreaux C, Traore D, Hostettmann K. Three new prenylated isoflavonoids from the root bark of Erythrina vogelii[J]. Planta medica.2002,68(02):181-182.
    11. Awuah RT. Fungitoxic effects of extracts from some West African plants [J]. Annals of Applied Biology,1989,115 (3):451-453.
    12. Baba H., Yaoita Y., Kikuchi M. Sesquiterpenoids from the Leaves of Helianthus tuberosus L.[J]. Journal of Tohoku Pharmaceutical University.2005,52,21-25.
    13. Bajpai VK, Rahman A, Kang SC. Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Miki ex Hu[J]. Industrial Crops and Products.2007,26(1):28-35.
    14. Baidez A G, Gomez P, Del Rio J A, et al. Antifungal capacity of major phenolic compounds of Olea europaea L. against Phytophthora megasperma Drechsler and Cylindrocarpon destructans (Zinssm.) Scholten[J]. Physiological and Molecular Plant Pathology,2006,69(4):224-229.
    15. Bandara BM, Hewage CM, Karunaratne V, Wannigama GP, Adikaram NKB. An antifungal chromene from Eupatorium riparium[J]. Phytochemistry.1992,31(6),1983-1985.
    16. Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes.1993,1154(3):237-282.
    17. Begum P, Hashidoko Y, Islam M T, Ogawa Y, Tahara S. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides[J]. Zeitschrift fur Naturforschung C-Journal of Biosciences,2002, 57(9-10):874-882.
    18. Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling:NBS-LRR proteins and their partners. Current Opinion in Plant Biology.2004,7:391-399.
    19. Benner JP.Pesticidal compounds from higher plants[J]. Pesticide Science,1993,39:95-102.
    20. Blum U, Shafer S R. Microbial populations and phenolic acids in soil[J]. Soil Biology and Biochemistry,1988,20(6):793-800.
    21. Boonyakiat D. Endogenous factors influencing decay susceptibility and quality of 'd'Anjou' pear (Pyrus communis L.) fruit during maturation and storage[J]. Theses of Oregon State University. 1983,9:4.
    22. Bouchra C, Achouri M, Hassani LMI, Hmamouchi M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers:Fr.[J]. Journal of Ethnopharmacology.2003,89(1):165-169
    23. Bravo L, Goya L, Lecumberri E. LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Research International.2007,40,393-405.
    24. Brewster DT, Spiers AG, Hopcroft DH. Biocontrol of Phytophthora cactorum in vitro with Enterobacter aerogenes[J]. New Zealand Journal of Crop and Horticultural Science.1997,25,9-18.
    25. Brinker AM, Seigler DS. solation and identification of picetannol as a phytoallexin from Sugarcane[J]. Phytochemistry.1991,30(10):3229-3234.
    26. Burkhead KD, Schisler DA, Slininger PJ. Bioautography shows antibiotic production by soil bacterial isolates antagonistic to fungal dry rot of potatoes[J]. Soil Biology and Biochemistry,1995, 27(12):1611-1616.
    27. Carnat A, Heitz A, Fraisse D, Carnat AP, Lamaison JL. Major dicaffeoylquinic acids from Artemisia vulgaris [J]. Fitoterapia,2000,71(5):587-589.
    28. Cavin A L, Hay A E, Marston A, Stoeckli-Evans H, Scopelliti R, Diallo D, Hostettmann K. Bioactive Diterpenes from the Fruits of Detarium microcarpum[J]. Journal of natural products, 2006,69(5):768-773.
    29. Cerdeiras MP,Fernndez J. A new antibacterial compound from Ibicella lutea[J] Journal of Ethnopharmacology,2000,73(3):521-525.
    30. C6spedes C L, Avila J G, Martinez A, Serrato B, Calderon-Mugica J C, Salgado-Garciglia R. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida)[J]. Journal of agricultural and food chemistry,2006,54(10):3521-3527.
    31. Charrouf Z, Hilali M, Jauregui O, Soufiaoui M, Guillaume D. Separation and characterization of phenolic compounds in argan fruit pulp using liquid chromatography-negative electrospray ionization tandem mass spectroscopy[J]. Food Chemistry,2007,100,1398-1401.
    32. Chen FJ, Long XH, Yu MN, Liu ZP, Liu L, Shao HB. Phenolics and antifungal activities analysis in industrial crop Jerusalem artichoke (Helianthus tuberosus L.) leaves[J]. Industrial Crops and Products.2013,47:339-345.
    33. Cheng SS, Chung MJ, Lin CY, Wang YN, Chang ST. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents[J]. Journal of agricultural and food chemistry,2011,60(1):124-128.
    34. Choudhary MI, Majeed A, Shabbir M, Ghani U, Shameel M. A succinylanthranilic acid ester and other bioactive constituents of Jolyna laminarioides[J]. Phytochemistry,1997,46(7):1215-1218.
    35. Chuyen NV, Kurata T, Kato H, FUJIMAKI M. Antimicrobial activity of Kumazasa (Sasa albo-marginata)[J]. Agricultural and Biological Chemistry,1982,46(4):971-978.
    36. Clifford MN, Zheng W, Kuhnert N. Profiling the chlorogenic acids of aster by HPLC-MSn[J]. Phytochemical Analysis,2006,17,384-393.
    37. Clifford MN, Kirkpatrick J, Kuhnert N, Roozendaal H, Salgado PR. LC-MSn analysis of the cis isomers of chlorogenic acids[J]. Food Chemistry,2008,106,379-385.
    38. Cizmarik J, Matel I. Examination of the chemical composition of propolis.1:Isolation and identification of 3,4 dihydroxycinnamic acid (caffeic acid) from propolis[J]. Experientia.1970, 26(4),713.
    39. Cushnie TPT, Lamb, AJ. Antimicrobial activity of flavonoids[J]. International Journal of Antimicrobial Agents.2005,26:343-356.
    40. Dan Y, Liu H, Gao W, Chen S. Activities of essential oils from Asarum heterotropoides var. mandshuricum against five phytopathogens[J]. Crop Protection.2010,29(3),295-299.
    41. Daouk RK, Dagher SM, Sattout EJ. Antifungal activity of the essential oil of Origanum syriacum L[J]. Journal of Food Protection.1995,58(10),1147-1149.
    42. Denoroy P. The crop physiology of Helianthus tuberosus L.:A model oriented view. Biomass Bioenergy.1996,11,11-32.
    43. Duan X, Wu G, Jiang Y. Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention[J]. Molecules,2007,12 (4),759-771.
    44. Dubey NK, Tiwari TN. Antifungal properties of Ocimum gratissimum essential oil(ethyl cinnamate chemotype)[J].Fitoterapia,Sep 2000;71(5):567-569.
    45. Duke SO, Baerson SR, Dayan FE, Rimando AM, Scheffler BE, Tellez MR, Wedge DE, Schrader KK, Akey DH, Arthur FH, Lucca A J D, Gibson DM, Harrison HF, Peterson JK, Gealy DR, Tworkoski T, Wilson CL, Morris JB. United States Department of Agriculture-Agricultural Research Service research on natural products for pest management[J]. Pest Management Science. 2003,59,708-717.
    46. Eberhard V. Control of phytophthora infestans with berberine[J]. CA,1985,107:342-346.
    47. Emile A, Waikedre J, Herrenknecht C, Fourneau C, Gantier JC, Hnawia E, Fournet A. Bioassay guided isolation of antifungal alkaloids from Melochia odorata[J]. Phytotherapy Research,2007, 21(4):398-400.
    48. Erasto P, Grierson D S, Afolayan A J. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina [J]. Journal of ethnopharmacology,2006,106(1):117-120.
    49. Espinel-Ingroff A, Fothergill A, Peter J, Rinaldi MG, Walsh TJ. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study[J]. Journal of Clinical Microbiology.2002,40(9),3204-3208.
    50. Ezoubeiri A, Gadhi C A, Fdil N, Benharref A, Jana M, Vanhaelen M. Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odora L.[J]. Journal of ethnopharmacology, 2005,99(2):287-292.
    51. Fallik E, Klein J, Grinberg S, Lomaniec E, Lurie S and Lalazar A. Effect of postharvest heat treatment of tomatoes on fruit ripening and decay caused by Botrytis cinerea[J]. Plant Disease. 1993,77(10),985-988.
    52. Fang ZX, Zhang M, Wang LX. HPLC-DAD-ESI-MS analysis of phenolic compounds in bayberries (Myrica rubra Sieb. et Zucc.). Food Chemistry.2007,100,845-852.
    53. Farkas GL, Kiraaly Z. Role of phenolic compounds in the physiology of plant diseases and disease resistance[J]. Journal of Phytopathology,1962,44(2):105-150.
    54. Favre B, Hofbauer B, Hildering K, Ryder NS. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay[J]. Journal of Clinical Microbiology.2003,41(10),4817-4819.
    55. Fogliani B, Bouraima-Madjebi S, Medevielle V, Pineau R. Screening of 50 Cunoniaceae species from New Caledonia for antimicrobial properties[J]. New Zealand Journal of Botany.2002,40(3), 511-520.
    56. Fokialakis N, Cantrell C L, Duke S O, Skaltsounis A L, Wedge D E. Antifungal activity of thiophenes from Echinops ritro[J]. Journal of agricultural and food chemistry,2006,54(5): 1651-1655.
    57. Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition Food Research.2007,51,116-134.
    58. Friedman M. Chemistry, biochemistry, and dietary role of potato polyphenols. A review[J]. Journal of agricultural and food chemistry.1997,45(5),1523-1540.
    59. Furuhata K, Dogasaki C, Hara M, Fukuyama M. Inactivation of Legionella pneumophila by phenol compounds contained in coffee[J]. Bokin Bobai.2002,30(5),291-298.
    60. Gafner S, Wolfender JL, Nianga M, Stoeckli-Evans H, Hostettmann K. Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots[J]. Phytochemistry.1996,42(5):1315-1320.
    61. Geibel M, Geiger H, Treutter D. Tectochrysin 5-andgenistein 5-glucosides from the bark of Prunus cerasus[J]. Phytochemistry.1990,29(4):1351-1355.
    62. Gil-Izquierdo A, Pereira DM, Valentao P, Andrade PB, Duarte P, Barcelo AR, Sottomayor M. Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseusand their interaction with vacuolar class III peroxidase:an H2O2 affair? Journal of Experimental Botany,2011,28,1-14.
    63. Govindachari TR, Suresh G, Masilamani S, Banumathi B.Antifungal activity of some tetranortriterpenoids.Fitoterapia,Jun2000;71(3):317-20.
    64. Grayer RJ, Harborne JB. A survey of antifungal compounds from higher plants,1982-1993[J]. Phytochemistry,1994,37(1):19-42.
    65. Grayer RJ, Kokubun T. Plant-fungal interactions:the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry.2001,56:253-263.
    66. Greger H, Zechner G, Hofer O, Hadacek F, Wurz G Sulphur-containing amides from Glycosmis species with different antifungal activity[J]. Phytochemistry.1993,34(1),175-179.
    67. Gundidza M. Antifungal activity of essential oil from Artemisia afra Jacq[J]. The Central African Journal of medicine,1993,39(7):140.
    68. Hanafy MS, Rahman SM, Khalafalla MM, El-Shemy HA, Nakamoto Y, Ishimoto M, Wakasa K. Accumulation of free tryptophan in azuki bean (Vigna angularis) induced by expression of a gene (OASA1D) for a modified α-subunit of rice anthranilate synthase. Plant Science.2006,171(6): 670-676.
    69. Hanawa F, Tahara S, Antifungal nitro compounds from skunk cabbage (Lysichitum americanum)leaves treated with cupric chloride. Phytochemistry, Jan 2000;53(1):55-58.
    70. Hanawa F, Tahara S, Mizatani J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride[J]. Phytochemistry.1992,31(9):3005-3009.
    71. Hanel H, Raether W. A more sophisticated method of determining the fungicidal effect of water-insoluble preparations with a cell harvester, using miconazole as an example./Eine verbesserte Methode zur Bestimmung der Fungizidie von wasserunloslichen Praparaten mit Hilfe eines Zellerntegerates am Beispiel von Miconazol[J]. Mycoses.1988,31(3),148-154.
    72. He Z, Xia W. Analysis of phenolic compounds in Chinese olive (Canarium albumL.) fruit by RPHPLC-DAD-ESI-MS[J]. Food Chemistry.2007,105,1307-1311.
    73. Hernandez MM, Heraso C, Villarreal ML, Vargas-Arispuro I, Aranda E. Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae)[J]. Journal of ethnopharmacology. 1999,67(1):37-44.
    74. Herz W, Kumar N. Heliangolides from Helianthus maximiliani [J]. Phytochemistry,1981a,20(1): 93-98.
    75. Herz W, Kumar N. Minor sesquiterpene lactones of Helianthus pumilus [J]. Phytochemistry,1981b, 20(6):1339-1341.
    76. Hossain MA, Ismail Z, Rahman A, Kang SC. Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Industrial crops and products. 2008,27(3),328-334.
    77. Hu P, Liang QL, Luo GA, Zhao ZZ, Jiang ZH. Multi-component HPLC fingerprinting of Radix Salviae Miltiorrhizae and its LC-MS-MS identification. Chemical and pharmaceutical bulletin, 2005,53 (6),677-683.
    78. Huang X, Xie W, Gong Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba [J]. FEBS letters,2000,478(1):123-126.
    79. Hunter MD, Hull LA. Variation in concentrations of phloridzin and phloretin in apple foliage[J]. Phytochemistry.1993,34(5):1251-1255.
    80. Ishimoto M, Rahman SM, Hanafy MS, Khalafalla MM, El-Shemy HA, Nakamoto Y, Kita Y, Takanashi K, Matsuda F, Murano Y. Evaluation of amino acid content and nutritional quality of transgenic soybean seeds with high-level tryptophan accumulation[J]. Molecular Breeding.2010, 25(2):313-326.
    81. Jaiswal R, Deshpande S, Kuhnert N. Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-anlgliae leaves by LC-MSn[J]. Phytochemical Analaysis.2011a,22,432-441.
    82. Jaiswal R, Kiprotich J, Kuhnert N. Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family[J]. Phytochemistry.2011b,72,781-790.
    83. Jin UH, Lee J Y, Kang S K, Kim J K, Park W H, Kim J G, Moon S K, Kim C H. A phenolic compound,5-caffeoylquinic acid (chlorogenic acid),is a new type and strong matrix metalloproteinase-9 inhibitor:Isolation and identification from methanol extract of Euonymus alatus[J]. Life Sciences,2005,77:2760-2769.
    84. Kachlicki P, Einhorn J, Muth D, Kerhoas L, Stobiecki M. Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling[J]. Journal of Mass Spectrometry,2008,43,572-586.
    85. Karavaev V A, Solntsev M K, Yurina T P, Yurina E V, Polyakova I B, Kuznetsov A M.Antifungal activity of aqueous extracts of the leaves of cowpamnip and comfrey[J]. Biology Bulletin.2001, 28(4):365-370.
    86. Kaur C, Kapoor H C. Anti-oxidant activity and total phenolic content of some Asian vegetables[J]. International Journal of Food Science & Technology,2002,37(2):153-161.
    87. Kawazoe K, Yutani A, Tamemoto K, Yuasa S, Shibata H, Higuti T, Takaishi Y. Phenylnaphthalene compounds from the subterranean part of Vitex rotundifolia and their antibacterial activity against methicillin-resistant Staphylococcus aureus[J]. Journal of natural products,2001,64(5):588-591.
    88. Kim M R, Lee S K, Kim C S, Kim KS, Moon DC. Phytochemical constituents of Carpesium macrocephalum FR-et SAV[J]. Archives of pharmacal research,2004,27(10):1029-1033.
    89. Kobayashi K,Nishino C,Tomita H.Antifungal activity of pisiferic acid derivatives against the rice blast fungus[J].Phytochemistry,1987,2612:3175-3179.
    90. Kokubun T, Harborne JB, Fagles J.2',6'-dihydroxy-4'-methoxyacetto-phenone, aphytoalexin from the roots of Sanguisorba minor [J]. Phytochemistry.1996,35(2):331-334.
    91. Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species[J]. Journal of agricultural and food chemistry,2005,53(5):1408-1416.
    92. Kristensen AK, Brunstedt J, Nielsen KK, Roepstorff P, Mikkelsen JD. Characterization of a new antifungal nonspecific lipid transfer protein (nsLTP) from sugar beet leaves[J].Plant science(Limerick).2000,155(1):31-40.
    93. Krizman M, Baricevic D, Prosek M. Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,43,481-485.
    94. Kumar V, Karunaratne V, Sanath MR, Meegalle K, MacLeod JK. Two fungicidal phenylethanones from Euodia lunu-ankenda root bark[J]. Phytochemistry,1990,29(1):243-245.
    95. Kumaran A, Karunakaran RJ. Activity-guided isolation and identification of free radical-scavenging components from an aqueous extract of Coleus aromaticus [J]. Food Chemistry,2007,100(1): 356-361.
    96. Kumaraswamy GK, Bollina V, Kushalappa AC. Metabolomics technology to phenotype resistance in barley against Gibberella zeae[J]. European Journal of plant pathology.2011,130(1),29-43.
    97. Liu H, Orjala J, Sticher O, Rali T. Acylated flavonol glycosides from leaves of Stenochlaena palustris[J]. Journal of natural products,1999,62(1):70-75.
    98. Long XH, Chi JH, Liu L, Li Q, Liu ZP. Effect of seawater stress on physiological and biochemical responses of five Jerusalem artichoke ecotypes[J]. Pedosphere.2009,19(2),208-216.
    99. Longo L, Vasapollo G. Extraction and identification of anthocyanins from Smilax aspera L. berries[J]. Food Chemistry,2006,94,226-231.
    100. Lorenzo D, Loayza I, Leigue L, Frizzo C, Dellacassa E, Moyna P. Asaricin,the main component of Ocotea opifera Mart.essential oil[J]. Natural Product Letters, Jan 2001,15(3):163-70.
    101. Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT & Brestic M. Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plants Res 2011;5(8):1272-1279.
    102. Macias FA, Torres A, Galindo JLG, Varela RM, Alvarez JA, Molinillo JM. Bioactive terpenoids from sunflower leaves cv. Peredovick(?)[J]. Phytochemistry,2002,61(6):687-692.
    103. Maddox CE, Laur LM, Tian L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa[J]. Current Microb.2010,60(1),53-58.
    104. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols:food sources and bioavailability[J]. The American Journal of Clinical Nutrition,2004,79(5),727-747.
    105. Manici LM, Lazzeri L, Palmieri S. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi [J]. Journal of Agricultural and Food Chemistry,1997,45(7):2768-2773.
    106. Marston A, Gafner F, Dossaji SF, Hostettmann K. Fungicidal and molluscicidal saponind from Dolichos kilimandscharicus [J]. Phytochemistry,1988,27(5):1325-1326.
    107. Martin MJ, Pablos F, Gonzalez AG. Simultaneous determination of caffeine and non-steroidal anti-inflammatory drugs in pharmaceutical formulations and blood plasma by reversed-phase HPLC from linear gradient elution[J]. Talanta,1999,49(2):453-459.
    108.Martinez JA. Natural Fungicides obtained from plants[J]. Fungicides for Plant and Animal Diseases.2012,13(1),12.
    109. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical biochemistry.2005,339(1):69-72.
    110. Matern U, kneusel RE. Phenolic compounds in plant disease resistance[J]. Phytoparasitica.1988, 16(2):153-170.
    111. Mattila P, Hellstrom J. Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis.2007,20,152-160.
    112. Mesgaran MD, Stern MD. Ruminal and post-ruminal protein disappearance of various feeds originating from Iranian plant varieties determined by the in situ mobile bag technique and alternative methods. Animal Feed Science and Technology.2005,118(1):31-46.
    113. Miles DH, Del Medeiros JMR, Chittawong V, Swithenbank C, Lidert Z, Weeks JA, Hedin PA. 3'-Formyl-2',4',6'-trihydroxy-5'-methyldihydrochalcone, a Prospective New Agrochemical from Psidium acutangulum[J]. Journal of natural products.1990,53(6):1548-1551.
    114. Miller RV, Carroll TW, Sands DC. Effect of chemical seed treatments on symptoms caused by seed-borne barley stripe mosaic virus in Vantage barley[J]. Canadian journal of microbiology.1986, 32(2):189-192.
    115.Mishima S, Inoh Y, Narita Y, Ohta S, Sakamoto T, Araki Y, Nozawa Y. Identification of caffeoylquinic acid derivatives from Brazilian propolis as constituents involved in induction of granulocytic differentiation of HL-60 cells[J]. Bioorganic & medicinal chemistry.2005,13(20): 5814-5818.
    116. Mohamed S, Saka S, El-Sharkawy SH, Ali AM, Muid S. Antimycotic screening of 58 Malaysian plants against plant pathogens[J]. Pesticide science.1996,47(3),259-264.
    117. Mohanty SK, Sridhar R. Physiology of rice tungro virus disease:Proline accumulation due to infection. Physiologia Plantarum.1982,56(1):89-93.
    118. Monde K, Oya T, Takasugi M, Shirata A. A guaianolide phytoalexin, cichoralexin, from Cichorium intybus [J]. Phytochemistry,1990,29(11):3449-3451.
    119. Muller-Riebau F, Berger B, Yegen O. Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey[J]. Journal of Agricultural and Food Chemistry.1995,43(8):2262-2266.
    120. Nakamura C V, Ishida K, Faccin L C, Cortez DAG, Rozental S, de Souza W, Ueda-Nakamura T. In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species[J].Research in Microbiology.2004, (155):579-586.
    121. Nguefack J, Budde BB, Jakobsen M. Five essential oils from aromatic plants of Cameroon:their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytomery[J]. Letters in Applied Microbiology.2004, (39):395-400.
    122. Niu C, Qu J B, Lou H X. Antifungal bis [bibenzyls] from the Chinese liverwort Marchantia polymorpha L[J]. Chemistry & biodiversity,2006,3(1):34-40.
    123.Nychas GJE. Natural antimicrobials from plants[M]. In New methods of food preservation. US: Springer.1995:58-89.
    124. Oladiran AO, Iwu LN. Studies on the fungi associated with tomat fruit rots and effects of environment on storage[J]. Mycopathologia.1993,121(3),157-161.
    125. Pan JY, Cheng Y Y. Identification and analysis of absorbed and metabolic components in rat plasma after oral administration of 'Shuangdan' granule by HPLC-DAD-ESI-MS/MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,42,565-572.
    126. Pan L, Sinden MR, Kennedy AH, Chai H, Watson LE, Graham TL, Kinghorn AD. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke) [J]. Phytochemistry Letter.2009,2(1), 15-18.
    127. Parmar VS, Vardhan A, Nagarajan GR, Jain R. Dihydroflavonols from Prunus domestica [J]. Phytochemistry,1992,31(6):2185-2186.
    128. Pedreschi R, Cisneros-Zevallos L. Phenolic profiles of Andean purple corn (Zea mays L.)[J]. Food Chemistry,2007,100,956-963.
    129. Percival GC, Karim MS, Dixon GR. Pathogen resistance in aerial tubers of potato cultivars[J]. Plant Pathology.1999,48(6),768-776.
    130. Prats E, Galindo JC, Bazzalo ME, Leon A, Macias FA, Rubiales D, Jorrin JV. Antifungal activity of a new phenolic compound from capitulum of a head rot-resistant sunflower genotype[J]. Journal of Chemical Ecology.2007,33(12),2245-2253.
    131. Rauha J P. The search for biological activity in Finnish plant extracts containing phenolic compounds[M]. University of Helsinki,2001.
    132. Rauter A P, Martins A, Borges C, Ferreira J, Justino J, Bronze M, Coelho A V, Choi Y H, Verpoorte R. Liquid chromatography-diode array detection-electrospray ionisation mass spectrometry/nuclear magnetic resonance analyses of the anti-hyperglycemic flavonoid extract of Genista tenera structure elucidation of a flavonoid-C-glycoside[J]. Journal of Chromatography A, 2005,1089,59-64.
    133. Rodrigues S, Calhelha R C, Barreira J, Duenas M, Carvalho AM, Abreu R, Ferreira IC. Crataegus monogyna flowers and fruits phenolic extracts:Growth inhibitory activity on human tumour cell lines and chemical characterization by HPLC-DAD-ESI/MS[J]. Food Research International, 2012,49:516-523.
    134. Sang S, Lao A, Wang Y, Chin CK, Rosen RT, Ho CT. Antifungal Constituents from the Seeds of Allium fistulosum L[J]. Journal of agricultural and food chemistry,2002,50(22):6318-6321.
    135. Sanchez-Rabaneda F, Jauregui O, Casals I, Andres-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventos RM. Liquid chromatographic/electrospray ionization tandem mass spectrometric s tudy of the phenolic composition of cocoa (Theobroma cacao) [J]. Journal of Mass Spectrometry, 2003,38,35-42.
    136. Sardari S. Synthesis and antifungal activity of cournarins and angular furanocournaris[J]. Bioorganic & Medicinal Chemistry,1999,7:1933.
    137. Schieber A, Keller P, Carle R. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography [J]. Journal of Chromatography A.2001,910:265-273.
    138. Schrader K, Kiehne A, Engelhardt U H, Maier HG. Determination of Chlorogenic Acids with Lactones in Roasted Coffee[J]. Journal of Science Food Agriclutre,1996,71,392-398.
    139. Seeram N P, Lee R, Scheuller H S, Heber D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy[J]. Food Chemistry.2006,97, 1-11.
    140. Shahat AA, Pieters L, Apers S, Nazeif NM, Abdel-Azim NS, Berghe DV, Vlietinck AJ. Chemical and biological investigations on Zizyphus spina-christi L[J]. Phytotherapy Research.2001,15(7): 593-597.
    141. Silva da VC, Bolzani V da S, Young MCM, Lopes MN. A new antifungal phenolic glycoside derivative, iridoids and lignans from Alibertia sessilis (vell.) k. schum.(Rubiaceae)[J]. Journal-Brazilian Chemical Society,2007,18(7):1405.
    142. Sinden SL, Sanford LL, Cantelo WW, Deahl KL. Bioassays of segregating plants[J]. Journal of Chemical Ecology.1988,14(10),1941-1950.
    143. Sokovic M D, Vukojevic J, Marin P D, Brkic DD, Vajs V, Van Griensven LJ. Chemical Composition of Essential Oilsof Thymus and Mentha Speciesand Their Antifungal Activities[J]. Molecules,2009,14(1):238-249.
    144. Soylu EM, Kurt S, Soylu S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea[J]. International Journal of Food Microbiology.2010,143(3),183-189.
    145. Spring O. Sesquiterpene lactones from Helianthus tuberosus[J].Phytochemistry.1991,30(2): 519-522.
    146. Spring O, Albert K, Hager A.Three biologically active heliangolides from Helianthus annuus[J].Phytochemistry.1982,21(10):2551-2553.
    147. Stange RR, Midland SL, Holmes GJ, Sims JJ, Mayer RT. Constituents from the periderm and outer cortex of Ipomoea batatas with antifungal activity against Rhizopus stolonifer[J]. Postharvest Biology and Technology.2001,23(2),85-92.
    148. Swain T. Secondary compounds as protective agents[J]. Annual Review of Plant Physiology.1977, 28:479-501.
    149. Tabanca N, Bedir E, Ferreira D, Slade D, Wedge DE, Jacob MR, Khan IA. Bioactive constituents from Turkish Pimpinella species[J]. Chemistry & biodiversity,2005,2(2):221-232.
    150. Takechi M, Tanaka Y. Structure activity relationships of the sapohin a-hedrin[J]. Phytochemistry, 1990,29(2):451-455.
    151. Tal B, Robeson DJ. The induction, by fungal inoculation, of ayapin and scopoletin biosynthesis in Helianthus annuus [J]. Phytochemistry.1985,25(1):77-79.
    152. Talibi I, Askarne L, Boubaker H, Boudyach EH, Msanda F, Saadi B, Ait Ben Aoumar A. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot[J]. Crop Protection.2012,35,41-46.
    153. Tan RX, Kong LD, Wei HX. Secoiridoid glycosides and anantifungal nthranilate derivative from Gentiana tibetica[J].Phytochemistry,1998,47(7):1223-1226.
    154. Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T. Antioxidant activity and total phenolic content of selected Jordanian plant species[J]. Food Chemistry.2007,104(4),1372-1378.
    155. Taylor KACC, A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances[J]. Applied Biochemistry and Biotechnology.1995,53(3):207-214.
    156. Tchone M, Barwald G, Annemuller G, Fleischer LG. Separation and Identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.) [J].2006, Sciences Des Aliments,26, 394-408.
    157. Terras FRG, Schoofs HME, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF. Analysis of Two Novel Classes of Plant Antifungal Proteins from Radish (Raphanus sativus L.) Seeds[J]. Journal of Biological Chemistry.1992,267 (22):15301-15309.
    158. Tesio F, Weston LA, Ferrero A. Allelochemicals identified from Jerusalem artichoke(Helianthus tuberosus L.) residues and their potential inhibitory activity in the field and laboratory[J]. Scientia Horticulturae.2011,129,361-368.
    159. Tian C, Xu X, Liao L, Zhang J, Liu J, Zhou S. Separation and Identification of Chlorogenic Acid and Related Impurities by High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Chromatography,2007,25(4),496-500.
    160. Tolonen A, Joutsamo T, Mattlla S, Kamarainen T, Jalonen J. Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and 1H-NMR methods[J]. Phytochemical Analysis,2002,13(6),316-328.
    161.Tostao Z, Noronha J P, Cabrita E J, Medeiros J, Justino J, Bermejo J, Rauter AP. A novel pentacyclic triterpene from Leontodon filii [J]. Fitoterapia,2005,76(2):173-180.
    162. Treutter D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis[J]. Plant Biology.2005,7:581-591.
    163. Treutter D. Significance of flavonoids in plant resistance:a review[J]. Environmental Chemistry Letters.2006,4:147-157.
    164. Tripathi P, Dubey NK, Banerji R, Chansouria JPN. Evaluation of some essential oils as botanical fungitoxicants in management of post-harvest rotting of citrus ruits[J]. World Journal of Microbiology and Biotechnology,2004,20 (3):132-138.
    165. Verma RP, Hansch C. An Approach towards the Quantitative Structure-Activity Relationships of Caffeic Acid and its Derivatives[J].ChemBioChem.2004,5:1188-1195.
    166. Wang X, Sun W, Sun H, Lv H, Wu Z, Wang P, Liu L, Cao H. Analysis of the constituents in the rat plasma after oral administration of Yin Chen Hao Tang by UPLC/Q-TOF-MS/MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,46,477-490.
    167. Wanger A, Mills K, Nelson PW, Rex JH. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing:enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrobial Agents and Chemotherapy. 1995,39(11),2520-2522.
    168. Watanabe K, Ohno N, Mabry TJ. Three sesquiterpene lactones from Helianthus niveus subsp. canescens and H. argoophyllus [J]. Phytochemistry.1986,25 (1):141-143.
    169. Wedge D E, Nagle D G A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens[J]. Journal of natural products,2000,63(8):1050-1054.
    170. Weidenborner M, Hindorf H, Jha HC, Tsotsonos P. Antifungal activity of flavonoids against storage fungi of the genus Aspergillus[J]. Phytochemistry.1990,29(4):1103-1105.
    171. Wen A, Delaquis P, Stanich K, Toivonen P. Antilisterial activity of selected phenolic acids[J]. Food Microbiology.2003,20(3),305-311.
    172. Widmer TL, Laurent N. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao[J]. European journal of plant pathology,2006,115(4):377-388.
    173.Wilkins KM, Board RG, Gould GW.Mechanisms of action of food preservation procedures[M].London:Elsevier Applied Science,1989.
    174. Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea[J]. Plant disease.1997,81(2):204-210.
    175. Yamaguchi MU,Garcia FP,Cortez DAG,Ueda-Nakamura T,Filho BPD,Nakamura CV. Antifungal effects of Ellagitannin isolated from leaves of Ocotea odorifera(Lauraceae)[J]. Antonie van Leeuwenhoek.2011,99:507-514.
    176. Yang X, Li J, Wang X, Fang W, Bidochka MJ, She R, Xiao Y, Pei Y. Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifolia seeds[J]. Peptides.2006,27(7):1726-1731.
    177. Young MCM, Braga MR, Dietrich SMC. Fungitoxic non-glycosidic iridoids from Alibertia mycrophlla[J]. Phytochemistry.1992,31(10):3433-3436.
    178. Yuan X, Cheng M, Gao M, Zhuo R, Zhang L, Xiao H. Cytotoxic constituents from the leaves of Jerusalem artichoke(Helianthus tuberosus L.) and their structure-activity relationships[J]. Phytochemistry Letters.2013, (6):21-25.
    179. Yuan X, Gao M, Xiao H, Tan C, Du Y. Free radical scavenging activities and bioactive substances of Jerusalem artichoke(Helianthus tuberosus L.) leaves[J]. Food Chemistry.2012,133,10-14.
    180. Zhang L, Fan C, Zhang X, Yin Z, Ye W. A new steroidal glycoside from Lygodium japonicum[J]. Journal of china Pharmaceutical University.2006,37(6),491-493.
    181. Zhou K, Yu L. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado[J]. LWT-Food science and Technology,2006,39(10),1155-1162.
    182. Zhou L, Li D, Jiang W, Qin Z, Zhao S, Qiu M, Wu J. Two ellagic acid glycosides from Gleditsia sinensis Lam. with antifungal activity on Magnaporthe grisea[J]. Natural product research,2007, 21(4):303-309.
    183. Zu YG, Li CY, Fu YJ, Zhao CJ. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorham-netin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD[J]. Journal of Pharmaceutical and Biomedical Analysis.2006,41,714-719.
    184.白玫,戴文英.茴香醛抗真菌实验及临床治疗研究[J]中华皮肤科杂志,1995,28(6):364-366.
    185.操海群,岳永德,花日茂,汤锋.植物源农药研究进展(综述)[J].安徽农业大学学报,2000,27(1):40-44.
    186.常军民,向阳,王岩,陈坚.蒜酶催化蒜氨酸反应产物的HPLC-MS分析[J].食品科学.2008,29(9):485-486.
    187.陈红兵,王金胜,张作刚,王建明.万寿菊根的提取物对西瓜枯萎病反应的抗性研究[J].植物病理学报.2003,33(5):439-443.
    188.陈虹静,黄元红,李容,杨军宣.淫羊藿总黄酮的3种减压回流提取工艺优选[J].中国实验方剂学杂志.2013,19(11):47-50.
    189.陈培榕.香港地区红树植物资源研究(Ⅰ):四种常见红树植物抑制植物病源真菌效能的评价[J].天然产物研究与开发.1994,6(1):5-9.
    190.陈庆园,游兴林,刁朝强.杀菌剂生物测定方法研究进展[J].贵州农业科学,2007,35(5):154-156.
    191.陈蓉,吴启南,沈蓓.不同产地芡实氨基酸组成分析与营养价值评价[J].食品科学.2011,32(15):239-244.
    192.陈体强,吴锦忠,钱爱萍.福建产太子参氨基酸成分分析[J].氨基酸和生物资源.2006,29(1):4-7.
    193.陈万义,薛振祥,王能武.新农药研究与开发[M].北京:化学农业出版社.1996
    194.陈晓东.中药减压提取法原理及突破点[J].机电信息.2008,(23):31-34.
    195.陈月开,徐军,曲运波,席国萍,张敏.氨基酸的抑菌作用研究[J].中国生化药物杂志.2001,22(1):29-30.
    196.程鹏,姜良宇,靳立梅,吴俊江,王金生,徐鹏飞,张淑珍.植物病程相关蛋白PR10研究进展[J].大豆科学.2013,32(3):415-419.
    197.方德秋,肖顺元.柠檬醛及香精油的抗菌研究概述[J].天然产物研究与开发.1994,6(2):75-87.
    198.方中达.植病研究方法[M].北京:中国农业出版社,1996.46-48.
    199.丰朝霞,张鸿.分光光度法测定茯苓中多糖总糖含量[J].时珍国医国药.2000,11(2):109-110.
    200.冯俊涛,祝木金,于平儒,李玉平,韩建华,邵红军,丁海新,张兴.西北地区植物源杀菌剂初步筛选[J].西北农林科技大学学报(自然科学版).2002,30(6):129-133,137.
    201.冯俊涛,石勇强,张兴.56种植物抑菌活性筛选试验[J].西北农林科技大学学报.2001,29(2):65-68.
    202.高必达.转几丁质酶基因防植物病害研究:进展、问题与展望[J].生物工程进展.1999,19(2):21-28.
    203.韩睿,王丽慧,钟启文,孙奎,李屹.菊芋叶片提取物抑菌活性研究[J].现代农业科技.2010,(5):120-123.
    204.韩丽,韦娟,周子渝,赵强强,陈晓东,杨明.栀子减压提取工艺实验研究[J].中成药,2011,33(1):160.
    205.何成兴,吴文伟,尹可锁,郭志祥,罗雁婕.中国植物源农药研究开发进展[J].西南农业学报,2006,19(5):552-559.
    206.何志勇.橄榄酚类化合物的分离纯化和结构研究[D].江南大学博士学位论文集.2007.
    207.侯玉霞,李重九,张文吉.病毒/细胞同步侵染体系筛选抗植物病毒剂的研究[J].植物病理学报,2000,30(3):261-265.
    208.胡飞,孔垂华,徐效华,周兵.胜红蓟黄酮类物质对柑桔园主要病原菌的抑制作用[J].应用生态学报.2002,13(9):1166-1168.
    209.黄洁,宋纪蓉,徐抗震,尹涛,任莹辉.地蚕中多糖的提取与总糖含量的测定[J].食品科学.2004,25(8):104-106.
    210.姬志勤,刘伟.农药活性天然产物及其分离技术[M].北京:化学工业出版社.2009,10.
    211.姜宁,刘晓鹏,易先辉,杨松,郑小江.微波辅助提取五倍子中单宁酸的研究[J].中国实用医药,2007,2(25):81-83.
    212.蒋继志,梁宁.植物提取物对草莓根腐病病原真菌的抑制作用[J].河北大学学报(自然科学版).2005,25(4):399-404.
    213.蒋江虹,革丽亚,麦琦.全自动凯氏定氮仪测定食品中蛋白质[J].光谱仪器与分析.2006,(1-3):258-260.
    214.孔涛,张楠,林凤梅,吴祥云.不同品种菊芋块茎及茎叶营养成分分析比较[J].广东农业科学.2013,40(6):108-109,113.
    215.李建民.减压回流提取器[P].中国实用新型专利,201120459791.6,2011-11-18.
    216.李树正.农用杀菌剂生物测定方法及其评价[J].天津农业科学,1987,2:15-18.
    217.李玉平,慕小倩,冯俊涛,张兴.几种菊科植物杀菌活性的初步研究E[J].西北农林科技大学学报(自然科学版),2002,30(1):68-72.
    218.李玉平.菊科植物杀菌活性系统筛选的初步研究[D].西北农林科技大学硕士论文集.2001
    219.李忠红,倪坤仪,杜冠华.高效液相色谱-质谱法鉴定中药复方小续命汤有效成分组中醇溶性成分[J].分析化学研究报告.2007,35(2):233-239.
    220.林河通,席玛芳,陈绍军,张新锦,彭心宇,黄为平.中国南方梨果采后生理和病理及保鲜技术研究进展[J].农业工程学报.2002,1 8(3):185-188.
    221.刘海伟,刘兆普,刘玲,赵耕毛.菊芋叶片提取物抑菌活性与化学成分的研究[J].天然产物研究与开发.2007,19(3):405-409.
    222.刘玲,谌馥佳,隆小华,刘兆普,俞梦妮.菊芋叶片酚类提取物及其制备方法和应用,申请号:201310056376.X,2013-02-22.
    223.刘荣森,杨虹琦,黄郁维,张长水,孔繁伦.植物中游离氨基酸的提取、纯化及分析方法[J].河南科技大学学报:自然科学版.2007,28(3):76-79.
    224.刘永峰,陈志谊,张杰,刘邮洲,周明国.枯草芽孢杆菌B-916胞外抗菌蛋白质的性质[J].江苏农业学报.2005,21(4):288-293.
    225.戚佩坤.果蔬贮运病害[M].北京:中国农业出版社.1994.
    226.曲建博,娄红祥,范培红.TLC生物自显影技术在药物筛选中的应用[J].中草药.2005,36(1):132-137.
    227.申晓慧,姜成,张敬涛,宋英博.两种有毒植物提取物的抑菌活性研究[J].作物杂志.2009,(4):35-37.
    228.施树云.黑紫橐吾和蒙古蒲公英的化学成分研究及臭灵丹中异绿原酸的色谱制备研究[D].浙江大学博士论文集.2007.
    229.施英英,薛培俭,夏黎明.酶法提取葛根渣中异黄酮的研究[J].林产化学与工业,2006,26(1):62-64.
    230.舒茂,霍丹群,侯长军等.微波法提取川芎中有效成分阿魏酸的实验研究[J].中成药,2007,29(6):908-909.
    231.苏美灵.数种红树植物抗菌之活性试验[J].植物病理学报.1991,21(1):80-80.
    232.孙凌峰.植物精油及萜类成分的生物活性[J].江西师范大学学报(自然科学版),2000,24(2):159-163.
    233.孙文基,绳金房.天然活性成分简明手册[M].北京:中国医药科技出版社,1998.
    234.汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯.1984(1):15-21.
    235.陶仲侃,黎植昌.迅速发展的氨基酸类农药[J].化学通报.1984,3:12.
    236.田晨煦,徐小平,廖丽云,张洁,刘静,周莎.高效液相色谱—串联质谱法分离鉴定绿原酸及其相关杂质[J].色谱.2007,25(4):496-500.
    237.仝瑛.菊芋菊糖的提取纯化、抗氧化活性及菊糖复合饮料工艺研究[D].西北大学硕士学位论文集.2010:17-21.
    238.王璧生,戚佩坤.芒果蒂腐病病原菌的鉴定及采后药剂试验[J].华南农业大学学报.1994,15(3):55-60.
    239.王丹红,周黎榕,傅弘毅,朱曙梅.采用模块式消化,全自动凯氏定氮仪测定食品中蛋白质[J].福建分析测试.20.04,13(2):1949-1950.
    240.王锦亮,江东福.云南血竭的化学成分及抗真菌活性[J].云南植物研究.1995,17(3):336-340.
    241.王晶,周禾.植物黄酮类化合物生物学功能及浸提纯化[J].中国饲料.2006,(11):25-27.
    242.王磊.核桃青皮次生物质的抑菌活性研究[D].西北农林科技大学硕士论文集.2010.
    243.王双英,穆青.薄层色谱直接生物自显影方法(TLC-Bioautography)在抗菌剂分析中的应用[J].国外医药抗生素分册.2012,33(2):67-69.
    244.王远红,吕志华,姜廷福,刘畅,郭少媛.梅花参中多糖提取工艺及含量测定的研究[J].中国 海洋大学学报(自然科学版).2005,35(6):987-990.
    245.吴光旭,刘爱媛,陈维信.开口箭提取物对荔枝霜疫霉菌的抑制作用及其对荔枝果实的贮藏效果[J].中国农业科学.2006,39(8):1703-1708.
    246.吴光旭,杨小玲,刘爱媛,陈维信.开口箭提取物对采后香蕉抗炭疽病菌活性的研究[J].农业工程学报.2007,23(7):235-240.
    247.吴婧.菊芋叶黄酮类化合物的提取及其抗氧化性,抗肿瘤和抑菌性的研究.兰州理工大学硕士学位论文集.2010,32.
    248.吴钜文,陈建峰.植物源农药及其安全性[J].植物保护,2002,28(4):39-41.
    249.吴文君.从天然产物到新农药创制——原理.方法[M].北京:化学工业出版社.2006,3:29-89.
    250.谢万钦,王晶,李翠凤.植物转脂蛋白的抗病机制研究进展[J].自然科学进展.2006,16(8):928-932.
    251.杨光明,王栋,张芳芳,童丽,蔡宝昌.镰形棘豆总黄酮和总酚的含量测定[J].药学与临床研究.2009,17(5):376-379.
    252.杨征敏,吴文君,王明安,周文明.苦皮藤假种皮中的杀菌活性成分研究[J].农药学学报,2001,3(2):93-96.
    253.于海龙,王栋.Folin-酚法测定苏木中总酚含量[J].中国现代实用医学杂志,2007,6(3):7-8.
    254.于平儒.苦豆子等植物样品抑菌活性筛选[D].杨凌:西北农林科技大学植物保护学院,2000.
    255.袁高庆,黎起秦,王静,秦健,曹祖恒,林纬.植物源杀菌剂研究进展Ⅰ:抑菌植物资源[J].广西农业科学.2010,41(1):30-34.
    256.袁晓艳,高明哲,王锴,肖红斌,谭成玉,杜昱光.高效液相色谱—质谱法分析菊芋叶中的绿原酸类化合物[J].色谱.2008,26(3):335-338.
    257.张东明.酚酸化学[M].北京:化学工业出版社.2008,12:1,211-222.
    258.张平平,刘金福,王昌禄,叶艳婷,谢金海.苦瓜提取物的抑菌活性研究[J].天然产物研究与开发.2008,20:721-724.
    259.张尚明,卢万秘,付定一.向日葵茎芯多糖对小鼠免疫功能的增强作用[J].中国免疫学杂志,1993,9(6):383-383.
    260.张伟,艾启俊,吴小虎.鹿蹄草素对两种果品致腐真菌的抑菌作用及其扫描电镜观察[J].食品科技,2008,33(1):182-185.
    261.张忠义,雷正杰,王鹏等.超临界CO2提取—分子蒸馏对白术挥发油的提取分离和GC-MS分析[J].分析测试学报.2003,22(4):61-64.
    262.赵纯森,黄俊斌,周茂繁.朴叶中抑菌活性成分鉴别及其防病效果[J].华中农业大学学报.1994,13(4):373-377.
    263.赵家永,邓先明,温兴莲.21世纪植物源农药开发利用现状与展望[J].植物医生,2002,15(1):2-3.
    264.赵建,曲文岩,林德杰,孔令娥,黄啟良,李凤敏,折冬梅.α-氨基酸在农药合成中的应用[J].农药学学报.2010,12(4):371-382.
    265.郑晓涛,隆小华,刘玲,陈良,刘兆普.菊芋叶总黄酮提取工艺优化及含量动态变化[J].天然产物研究与开发.2012,24:1642-1645,1689.
    266.郑永权,姚建仁,邵向东.苦参杀虫抑菌活性成分研究[J].农药学学报.1999,1(3):91-93.
    267.秩青译.使用天然抗菌化合物保护作物[J].农药译丛,1996,18(3):9-12.
    268.周立刚,张颖君,蔡艳,刘玉青,王锦亮,王君健,杨崇仁.黄酮和甾体类化合物的抗真菌活性[J].天然产物研究与开发.1997,9(3):24-29.
    269.周建宏.油茶主要病害的植物源药剂研究[D].中南林业科技大学,2011.
    270.周仕涛.我国植物源农药的研究及前景[J].西南农业学报.2004,17(4):525-529.
    271.周卫平.生物化学在农药研究开发中的涵义[J].农药译丛.1999,21(1):34-37.
    272.祝顺琴,胡凯,谈锋.曼地亚红豆杉枝叶制备紫杉醇浸膏的优化工艺及中试条件的选择[J].西南师范大学学报(自然科学版).2005,30(2):321-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700