用户名: 密码: 验证码:
少免耕播种机信息流远程监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
少免耕播种机作为能够在作物秸秆覆盖地上直接进行播种和施肥的机具,是保护性耕作的关键农业装备,成为近来研究和发展的重点。少免耕播种机作业时其能耗和作业效率很大程度上受到土壤牵引阻力的影响,通过检测其作业过程中动力等参数来分析其工作效率及能耗情况成为一种有效途径。目前针对农业机械受力监测主要采用有线方式,这种方式会带来一些问题,比如布线困难,田间恶劣工作环境造成线缆损坏,较长的线缆造成传感器信号衰减,以及可扩展性差等。此外,针对少免耕播种机工作性能的检测设备很少,这给少免耕播种机工作性能的实时检测和研究造成了极大的困难。本文围绕少免耕播种机作业过程中所受动力和速度等参数,开发了基于无线传感网络技术、嵌入式技术和计算机测控技术的少免耕播种机信息流远程监测系统。
     本课题研究思路是采用无线传感网络,对少免耕播种机的每一个检测位置都部署一个具备数据采集和传输能力的无线网络节点,各个网络节点对对应的传感器进行数据采集,然后将数据以无线方式传输至一个汇聚节点上,汇聚节点再将数据批量传输至现场便携式无线数据检测仪进行现场监测,监测仪再将数据转发远程到远程计算机监控中心,由监控中心对播种机作业动力参数进行数据处理、在线分析、实时显示以及批量存储等,实现少免耕播种机作业动力参数的近、远程同步监测。
     通过分析少免耕播种机悬挂机构的受力,提出其作业过程空间受力、旋转动力以及作业速度等参数的检测方法。设计二维轴销式测力传感器对播种机作业所受牵引力进行检测,此外还利用门架式六分力测力机构实现对其悬挂机构所受空间力的检测。设计动态转矩传感器实现对播种机作业中所受旋转动力检测。利用差分GPS速度传感器对播种机作业速度参数进行检测。
     构建了基于Zigbee的无线传感网络,用于对少免耕播种机信息流数据进行采集和无线传输。利用无线传感网络仿真工具Truetime在Matlab/Simulink环境下建立无线传感网络仿真模型,对本系统构建的少免耕播种机信息检测无线传感网络进行仿真,分析了数据丢包和网络时延对检测系统的影响。
     利用基于Zigbee的无线模块设计研制可配置型无线数据采集器,并将其组成无线传感网络进行少免耕播种机3点悬挂结构受力、动力输入轴转矩和转速以及作业速度等信息的采集和无线传输。采集器具备多通道采集能力和通道复用功能,其数据采集和无线传输软件运行在支持Zigbee协议的BoS系统上,利用滑动滤波算法对采集的模拟量数据进行滤波处理,通过改进频率测量的测周期T算法,实现对频率量的精确采集。经计量,采集器模拟通道采集精度达到0.04%,频率量采集误差为0。
     研制了基于嵌入式ARM技术的便携式无线数据检测仪,该监测仪具备两级无线传输、移动信息监测和便携易安装等特点。其配备一块7时触摸显示屏,以触控方式进行人机交互。检测仪内部集成一个Zigbee协调器,接收无线传感网络中各个数据采集器节点的数据,ARM核心处理器进行数据处理,再通过远程无线传输模块XTend(?)(?)数据传输至远程计算机监控中心。利用嵌入式WinCE6.0操作系统作为监测仪软件运行环境,开发了基于多线程技术的监测软件用于接收处理来自无线数据采集器采集的播种机参数。
     开发了计算机远程监测软件,软件包含5个子系统,即人机交互、后台数据处理、数据批量存储、历史数据查询以及其它辅助功能。人机交互界面利用MFC类库开发,后台数据处理采用了多线程技术和重叠IO技术,实现少免耕播种机作业信息参数的高效处理,数据批量存储利用线程同步技术分时批量存储数据。计算机远程监测软件可对无线数据采集器节点的网络状态进行动态监测,根据实际需要可对指定采集器节点的工作参数进行远程配置。
     在研究和开发的基础上,将该少免耕播种机信息流远程监测系统分别应用在玉米、小麦免耕播种机上进行多次试验,试验结果表明:试验数据曲线反映了少免耕播种机作业动力的变化趋势,表明该系统能够对少免耕播种机作业中的动力参数进行现场和远程监测。与其他测试系统相比,该系统使用方便,降低了田间测试的复杂程度,为少免耕播种机的监测和研究提供了良好的技术支持。
As one of the directly seeding and fertilizing machines for the crop straw covering ground, the no-tillage seeder is the key equip in the conservation tillage agriculture equipment and has become the focus of recent research and development. The energy consumption and efficiency of no-tillage seeders is directly influenced by soil traction resistance to a large extent, so it is an effective way to analyze the efficiency and energy consumption by using the dynamic parameters in the operation process. The traditional wired methods of measure need lay the cable, which is complex, and the adjustment, expansion, and maintenance of the measuring points are inconvenient. In addition, few testing equipments specially used for no-tillage seeder make more difficulties for the real-time detection and the research of the no-tillage seeder working performance. Based on wireless sensor network technology, embedded technology and computer measurement and control technology, the no-tillage seeder information remote monitoring system was developed by analyzing the parameters in the no-tillage seeder operation process, such as power and speed.
     The research ideas were intended to monitor no-tillage seeder dynamic parameters and realize the near distance and remote monitoring using wireless sensor network. Wireless sensor network is a kind of self-organizing network, which is composed of many small nodes, and can be used for sensing, testing, collecting signal processing and controlling. Nodes were installed in each test positions to gather and transfer data, and can acquire and process sensor data, then finally send the data to the data gathering node. Data gathering node transfers the bulk data to the scene of the portable wireless data monitor for on-site monitoring. The portable wireless data monitor again transferred the data to the remote computer remote monitoring center by wireless sensor networks based on wireless multi-hop routing for data processing, online analysis, real-time display and mass storage, etc.
     An operation process parameters testing method for space force, rotating dynamics and operation speed groundwater advection was proposed, by analyzing the forces of no-tillage seeder suspension mechanism. A two-dimensional shaft pin force-measuring sensor was designed to test the traction in the sowing and using six component force measuring mechanism to test the space force of the suspension mechanism. Dynamic torque sensor is designed for machine operation by rotating the power detection and using differential GPS speed sensor to test the drill operation speed parameters.
     The Zigbee wireless sensor network is constructed for data acquisition and wireless transmission of the no-tillage seeder. A wireless sensor network simulation model is established by using wireless sensor network simulation tools Truetime under the Matlab/Simulink environment, which is used to simulate wireless sensor network system of the no-tillage seeder information detection, analyze the data packet loss and the influence of network delay on the detection system.
     Based on the Zigbee wireless module, configured type wireless data collectors was designed, which can be used for information acquisition and wireless transmission, such as no-tillage seeder for less3points suspension structure, power input shaft torque and rotational speed and operating speed. Configured type wireless data collectors had the capability of multi-channel acquisition and channel multiplexing function, whose data acquisition and wireless transmission software running on the BoS system supported by Zigbee protocol. What's more the configured type wireless data collectors were used sliding filter to filter the acquisition of analog data, and realize the frequency accurately, by improving the measuring period T algorithm of frequency measurement. Appraised by China's Institute of Metrology, Beijing, the analog acquisition error is less than or equal to0.04%and frequency signal gathering error is0.
     A portable wireless data monitor based on embedded ARM was developed, which has many advantages, such as two levels of wireless transmission, mobile information monitoring, portable and easy to install. The portable wireless data monitor with a piece of7inch touch screen allows the operator operating in a touch way. In the detector installed a built-in Zigbee coordinator to receive data from various data collector nodes in a wireless sensor network. The ARM core processor was used to processing data, and sent the data to the remote computer monitoring center through the remote wireless transmission module XTend. The drill parameters monitoring software, which runs in the embedded WinCE6.0operating environment, based on multi-threading technology was developed to process the data from the wireless data collector.
     A remote monitoring software was developed, which included five subsystems, namely, human-computer interaction, the background batch data processing, data storage, historical data query and other auxiliary functions. To efficiently process the no-tillage seeder operation information parameters, using MFC class library developing the Human-computer interaction interface, and using the multi-thread technology and overlapped I/O technology processing the background data and using the multi-thread synchronization technology storing the data time oriented. The remote monitoring software can dynamical monitor the network status of the wireless data terminal nodes, and it can configure the collector node working parameters in a long-distance according to the actual need.
     Various a serial of tests had been done by installing the no-tillage seeder remote monitoring system on corn and wheat no-tillage seeders, and the results showed that:tests data described the variation trend of tractive force that the no-tillage seeder loaded, which indicated that the system could realize information monitor both in short and long distance for no-tillage seeder. compared with other detecting systems, this system reduced the field test complexity for no-tillage seeder, which supplied a better and more convenient method for researchers to study no-tillage seeder.
引文
[1]戴荣,郭泺,薛达元等.中国农业人口分布格局的时空变化特征[J].中国人口·资源与环,2010,20(5):186-189.
    [2]宋戈.中国城镇化过程中土地利用问题研究[D].哈尔滨:东北农业大学,2004:1-4.
    [3]岳锋利.中国快速城市化进程中农村劳动力转移及其经济效应研究[D].北京,首都经济贸易大学,2012:1-13.
    [4]王敏杰.发展广东省农业机械社会化服务促进现代农业建设[J].农业工程学报,2011,1(03):18-21.
    [5]宗锦耀.“十二五”农机化发展规划解读[J].农业部管理干部学院学报,2011(04):20-24.
    [6]李军富.我国发展节约型农业机械化的思考[J].农机化研究,2008(01):239-241.
    [7]赵锋.广西现代农业评价指标体系研究[J].改革与战略,2006(5):10-15.
    [8]田兆锋,阎楚良.基于资源管理和Silverlight的农业装备信息网络平台[J].农业机械学报,2008,39(11),151-155.
    [9]方宪法,陈志,苏文凤等.中国农业装备产业发展战略研究[J].农业工程学报,2007(02):23-27.
    [10]陈志,方宪法,苏文凤.“十一五”我国农业装备制造业自主创新战略研究[J].农业现代化研究,2007(01):89-93.
    [11]陈志.农业装备制造业自主创新战略研究[J].农机科技推广,2006(10):6-10.
    [12]INFSO D.4 Networked Enterprise, RFID INFSO G.2Micro&Nanosystems, th RFID Working Group of the ETP EPoSS. Internet of Things in2020:A Roadmap for the future[OL]. http://www.smart-systems-integration.org/public/internet-of-things.2008.
    [13]丁英强.基于无线传感器网络的定位和跟踪算法研究[D].天津,天津大学,2009:4-10.
    [14]李中民.我国物联网发展现状及策略[J].计算机时代,2011(03):13-14.
    [15]张喜瑞,何进,李洪文等.水平拨草轮式玉米免耕播种机设计和试验[J].农业机械学报,2010(12):39-43.
    [16]陈志,李树君.加强农业装备自主创新,提升农业装备制造业核心竞争力[J],农业机械,2007(03):164-167.
    [17]蔡华,于永彦.基于自主创新战略的我国农业装备制造业研究[J],改革与战略,2009(10):23-26.
    [18]甄晓非,孟凡生.低碳经济驱动下的中国新能源产业战略发展研究[J].苏州大学学报(哲学社会科学版),2013(02):136-140.
    [19]孙彦景,丁晓慧,于满等.基于物联网的农业信息化系统研究与设计[J].计算机研究与发,2011(S2):326-331.
    [20]温家宝.《2010年政府工作报告》[N].人民日报,2010,12(25):10.
    [21]张海辉,朱江涛,吴华瑞,等.通用农业环境信息监控系统ReGA网关设计[J].农业工程学报,2012,28(3):135-141.
    [22]朱会霞,王福林,索瑞霞.物联网在中国现代农业中的应用[J].中国农学通报,2011(2):310-313.
    [23]周小波.基于物联网技术的设施农业在线测控系统设计[J].太原科技大学学报,2011,32(3):182-185.
    [24]张伟.面向精细农业的无线传感器网络关键技术研究[J].浙江大学,2013.
    [25]董宝军.精密播种机监测系统的设计与研究[D].山东大学,2011.
    [26]刘春旭,赵德春,单爱军.红外反射式播种机电子监测装置的设计[J].农机化研究,2010,117-120.
    [27]宫鹤.基于Zigbee的播种机漏播补种系统的设计[J].吉林大学,2010.
    [28]李剑锋.播种机排种自动控制系统的研究[D].甘肃农业大学,2006.
    [29]史智兴,高焕文.播种机多项性能检测及图形打印装置[J].中国农业大学学报,2002,7(4):25-29.
    [30]陈绍斌.精密播种机监测系统的研究与开发[D].西北农林科技大学,2007.
    [31]刘成铭.基于ARM9的移动式排种器试验系统设计[D].吉林大学,2013.
    [32]杨永西.精密播种机工作状况实时监测系统研究与开发[D].吉林大学,2013.
    [33]李雷霞,郝志明,杨薇等.精密播种机排种性能检测系统的研制[J].农业工程,2012,2(8):16-19.
    [34]张平华.基于虚拟仪器的精密排种器漏播检测技术及补偿技术研究[D].华中农业大学,2006.
    [35]陆黎.磁吸式穴盘播种器自动监控系统研究[D].江苏大学,2005.
    [36]王传鹏.基于单片机的播量控制装置的研究[D].南京农业大学,2012.
    [37]籍俊杰,李谦.智能化农业与智能化农机装备[J].农业技术与装备,2012(232):27-32.
    [38]韩家麟,秦龙杰.我国农业机械市场现状及展望[J].现代制造,1997(03):4-7.
    [39]T. Braun,W. Glanzel, A. Schubert. National publication patterns and citation impact in the multidisciplinary journals Nature and Science[J]. Scientometrics.1989 (1-2).
    [40]张平华.基于虚拟仪器的精密排种器漏播检测及补偿技术研究[D].华中农业大学,2006:1-45.
    [41]赵霞,吴建强,杜永林等.物联网在现代农业中的应用研究[J].农业网络信息,2011(06):26-29.
    [42]赵璐,杨印生.农业物联网技术与农业机械化发展[J].农机化研究,2011(8):226-229.
    [43]Wolfgang Glanzel, Andras Schubert. A new classification scheme of science fields and subfields designed for scientometric evaluation purposes [J]. Scientometrics.2003(3).
    [44]Kevin W. Boyack, Richard Klavans, Katy Borner. Mapping the backbone of science[J]. Scientometrics.2005(3).
    [45]Yasuyoshi Yokokohji, Satoshi Chaen, Tsuneo Yoshikawa. Evaluation of traversability of wheeled mobile robots on uneven terrains by a fractal terrain model[J]. Advanced Robotics.2007(1).
    [46]Yanwei Yuan, Xiaochao Zhang, Huaping Zhao, et al. Simulation of a large-scale linear move irrigator using virtual reality technology. International Journal of Agricultural and Biological Engineering.2010.
    [47]邴志刚,刘景泰,陈涛等.基于智能微节点的无线传感网络研发问题综述[J].计算机工程与应用,2005(17):45-49.
    [48]倪明选,刘云浩,朱燕民.无线传感网络的基础理论及关键技术研究[J].中国基础科学,2008(01):248-252.
    [49]吴键,袁慎芳,殷悦等.基于ZigBee技术的无线传感器网络及其应用研究[J].测控技术,2008(01):267-270.
    [50]桑海泉,康荣学.无线传感网络在安全生产中的应用[J].中国安全生产科学技术,2007(05):13-17.
    [51]杨扬,朱善安.基于无线传感网络的环境监控系统的设计和实现[J].工业控制计算机,2007(09):16-19.
    [52]A Perrig, R Szewczyk, JD Tygar, V Wen, D Culler. SPINS:security protocols for sensor networks. Wireless Networks.2002:278-281
    [53]牟连佳,牟连泳.无线传感网络及其在工业领域应用研究[J].工业控制计算机.2005(01):34-37.
    [54]马保国,乔玲玲,贾寅波.无线传感器网络研究综述[J].计算机与数字工程.2008(09):266-269.
    [55]刘敏钰,吴泳,伍卫国.无线传感网络(WSN)研究[J].微电子学与计算机,2005(07):188-192.
    [56]崔琛焕.轴销式张力传感器在纸机张力在线测控系统中的的应用[J].自动化仪表,2001,22(1):23-26.
    [57]刘九卿.轴销式称重传感器及其应用[J].科技应用,2008,37(2):6-9.
    [58]刘宏璇.六分力测试方法研究[J].南京理工大学,2008.
    [59]高飞,姜曼松.一种六分力传感器的有限元计算[J].中国水运,2006,6(4):54-56.
    [60]王俊,张伏,毛鹏军等.基于虚拟仪器技术的六分理测试系统设计[J].传感器与微系统,2008,27(12):67-70.
    [61]吴俭敏,朱立成,米仪等.新型土槽试验台的研制[J].农机化研究,2011,3:92-95.
    [62]曹源,穆建成.测速传感器的测评研究[J].铁道通信信号,2006,42(7):58-61.
    [63]李明.一种新型测速传感器检测系统的研究[J].传感器与仪器仪表,2009,25(4):132-135.
    [64]张羽鹏,王开福.红外技术在测速中的应用[J].红外技术,2008,30(11):664-668.
    [65]高玉璐.免耕播种机地轮滑移现象的研究[D].中国农业大学,2002.
    [66]戴村供.汽车试验中车速信号的测量方法[J].海峡科学,2010,(12):13-15.
    [67]杨龙.GPS测速精度研究与应用[D].国家海洋局第一海洋研究所,2007.
    [68]张宝峰,耿丽红.GPS单点测速误差分析与数据处理[J].天津理工大学学报,2010,26(3):13-16.
    [69]田世君.高灵敏度GPS定位及组合导航技术研究[D].电子科技大学,2006.
    [70]耿丽红.基于GPS的车速监测系统校准方法研究[D].天津理工大学,2010.
    [71]闫沫Zigbee协议栈的分析与设计[D].厦门大学,2007.
    [72]崔文华Zigbee协议栈的研究与实现[D].华东师范大学,2007.
    [73]李春喜.物联网Zigbee协议栈MAC层的研究与实现[D].华南理工大学,2012.
    [74]唐军辉.基于Zigbee协议栈的无线传感网络节点设计[D].东北大学,2008.
    [75]王骞.基于Zigbee技术的无线实时定位系统研究与设计[D].上海交通大学软件学院,2011.
    [76]李振兴.Zigbee定位技术及其在搜救系统中的应用研究[D].苏州理工大学,2011.
    [77]董晓瑞.基于Zigbee定位系统设计与实现[D].哈尔滨理工大学,2011.
    [78]杨思源.基于Zigbee的无线监测监控网络系统研究[D].青岛理工大学,2012.
    [79]张喆.基于Zigbee技术的无线网络的研究与开发[D].大连交通大学,2006.
    [80]耿萌Zigbee路由协议研究[D].信息工程大学,2011.
    [81]张云生,王静.网络控制系统[M].重庆大学出版社,2003.
    [82]赵贤林.基于状态空间模型的无线传感网络控制仿真研究[J].控制工程,2010,17(1):2-23.
    [83]王洁,何宁,陈超波.无线网络控制系统的建模与仿真研究[J].计算技术与自动化,2011,30(2):42-45.
    [84]赵贤林,沈明霞.基于TrueTime的无线网络功率控制系统[J].计算机工程,2010,36(10):127-130.
    [85]周友玲,杜锋,汤全武等MATLAB在电气信息类专业中的应用[M].清华大学出版社,2011.
    [86]贾莲莲.无线网络控制系统传输模型研究[D].浙江工业大学,2011.
    [87]郑广,刘电霆.网络控制系统TrueTime平台仿真研究[J].软件导刊,2012,11(5):114-116.
    [88]李克伟.时延与丢包对温室WSN测控系统稳定性的影响[D].江苏大学,2008.
    [89]北京博迅科技有限公司. Jennic解决方案[EB/OL].北京博迅科技有限公司.2009.
    [90]广州友善之臂科技有限公司Tiny210用户手册[EB/OL].广州友善之臂科技有限公司,2012.
    [91]孙鸿才.基于XTend射频模块的数传电台的研发[D].北方工业大学,2011.
    [92]北京博迅科技有限公司.Jennic编程开发概述[EB/OL].北京博迅科技有限公司.2009.
    [93]Jennic. JN-UG-3045-ZigBee-Advanced-User-Guide-1v2 [EB/OL]. Jennic Corp.2008.
    [94]张宏亮,王少克Jennic软件开发人员指南(JN51XX) [EB/OL].北京博迅科技有限公司.2009.
    [95]秦晓飞,王云宽,郑军等.交流伺服系统振动鲁棒M/T测速算法[J].电机与控制学报,2010,14(5):97-80.
    [96]金亮,张学杰.3种嵌入式操作系统内核的关键技术分析[J].云南大学学报,2006,28(S2):1-4.
    [97]徐成,秦云川,刘彦Windows CE内核定制与驱动程序开发[M].中国电力出版社,2011,89-91.
    [98]贾小勇,徐传胜,白欣.最小二乘法的创立及其思想方法[J].西北大学学报,2006,36(3):507-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700