用户名: 密码: 验证码:
产业废弃物堆肥处理效果及碳素物质变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对日益严峻的产业废弃物处理处置问题,本研究通过选取几种代表性的产业废弃物,包括以蔬菜副产物为代表的园林园艺废弃物、以抗生素菌渣为代表的制药业废弃物和以工业污水污泥为代表的工业废弃物进行了堆肥处理的可行性研究,并通过不同的碳源添加、pH调理和外源菌剂接种,研究了不同原料及工艺控制条件对产业废弃物堆肥效果的影响,重点研究了不同碳素物质在堆肥过程中的动态变化及对堆肥效果的影响,从而为产业废弃物堆肥化处理技术研究奠定基础,为下一步的实际应用提供理论依据。主要的研究结论如下:
     1、蔬菜副产物废弃物单独堆肥由于高含水率、低C/N等原因,其堆体温度未达到50℃以上,无法满足无害化要求,含水率、有机质含量和C/N变化不大,GI值也未达到腐熟要求,说明单独蔬菜副产物不具有堆肥处理可行性。通过添加草坪草、玉米秸秆和锯末三种碳源和接种1%、3%和5%的秸秆腐熟剂,采用强制通风伴随翻堆方式,进行15天的堆肥发酵,均可满足卫生无害化标准,而且产品均已腐熟。其中添加鲜重30%玉米秸秆并接种3%秸秆腐熟剂的堆肥处理温度最高,无害化程度最好,腐熟程度更高。
     2、在泰乐菌和硫氰酸红霉素菌渣及其混合物中添加鲜重30%锯末进行堆肥发酵,在堆肥第4天温度均达到了50℃以上,且高温期均达到了无害化卫生标准要求,含水率降低到了40%以下,通过有机质分解率、C/N、氮磷钾总养分含量和GI指标分析,认为其已腐熟。而土霉素菌渣汇总添加鲜重30%的锯末进行堆肥,由于较高的土霉素残留抑菌效果明显,堆温上升十分缓慢,未能达到无害化要求。保持30%锯末添加量不变,将士霉素菌渣用量降低到45%-60%,堆肥处理可达到无害化要求,但尚未达到充分腐熟。将土霉素菌渣用量降低到30%以内,既能达到卫生无害化标准,又能满足腐熟要求。抗生素残留抑制堆肥微生物活性,同时堆肥微生物对抗生素残留亦有一定的降解,30天堆肥处理后的降解率在28.81%-49.72%范围内。
     3、以化工污泥和锯末为主要原料,通过添加柠檬酸(C6H8O7).过磷酸钙[Ca(H2PO4)2·H2O]及其两者的混合物,可将污泥pH值从8.55调节到7-8的适宜生物发酵范围内,经过30天的生物处理,物料含水率下降了17.08%-27.43%,与热干化相比生物干化可降低51%-60%的能耗,干化后产物的焚烧系统净能量明显提高。通过添加pH调理剂和接种菌剂均能增强生物干化效果。
     4、在模拟堆肥反应器中,以鸡粪和四种不同的碳源物料进行30天的堆肥发酵,碳素物质的质量损失可达到初始碳的28.04%-52.51%,其中以C0z形式的碳素损失占总碳素损失的30.21%-46.82%,CH4形式的碳素损失仅占0.11%-0.20%。堆肥过程中各碳源组份降解率为SOLW>HEM>CEL>SOLN>LIN,由于堆肥原料的碳源组份含量不同,而且各组份的降解率亦有差异,导致堆肥过程的变化趋势和堆肥产品质量差异。相关性分析发现有机碳总量与堆体质量损失量ML、C/N和GI有极高的相关性,在各碳源组份中易降解的HEM和SOLW均与TOC成正相关,与质量损失量ML和C/N和GI负相关,难降解的LIN和SOLN组份与堆肥腐熟度指标没有显著相关性。
Facing the increasingly serious problems of industrial wastes treatment and disposal, this paper selected several representative industrial wastes, including the vegetables by-products in cropping industrial, the antibiotics residues in pharmacy industry and the sludge sewage in chemical industrial, and performed a feasibility study. The effects of different carbon sources, pH conditioners and microbial inoculums on composting was studied. The machanisms of Van soest fraction composting effects was discussed.The study layed a foundation for next research and provided theoretical basis for application of industrial wastes composting.
     The results indicated:
     l.The research showed composting only using Vegetable by-products could not meet the hygienic standards for non-hazardous disposal and not reached mature through the index analysis of temperature, water content, TOC, C/N and GI. The Vegetable by-products composting were conducted successfully, through mixing with cut grass, maize straw and sawdust, or inoculated with1%,3%and5%cellulose-decomposing inoculants, and provided with forced ventilation and turning. Especially the effects of mixed30%(dry mass) maize straw and inoculated with3%(dry mass) cellulose-decomposing inoculants on composting was better than others.
     2.The composting effects were researched by using residues of Tylosin, erythromycin thiocyanate waste residue and the mixtures of both, adding30%sawdust. In the process of composting, the temperature reached above50℃at the4th day, and the moisture at day30reduced to below40%. The indexes of the organic matter decomposition rate, C/N, total NPK nutrients and GI indicated the compost reached the maturity. But the compost, mixing the70%oxytetracycline(OTC) waste residue and30%sawdust, could not meet the hygienic standards for non-hazardous disposal, because the higher oxytetracycline residue inhibited the bacterial activity. Basd on the30%sawdust, the composts meeted the hygienic standards for non-hazardous disposal when reduced OTC waste residue to45%-60%and increased the corresponding proportion of chicken manure, but did not reached mature. When OTC waste residue reduced to below30%, the compost maturity meet requirement. The degaradation rate of OTC waste residue at day30was ranged from28.81%and49.72%.
     3. The value of pH with sludge sewage and sawdust composting reduced from8.55to between7and8by using different conditioner, including C6H8O7, Ca(H2PO4)2·H2O and mixtures of both. Moisture of wet material decreased by17.08%-27.43%after30days biodrying of which saved the51-60%energy consumption than heat drying, and the system net energy improved obviously by biodrying. Both the pH conditioner and inoculants could accelerat the process of biodrying.
     4. After30days, the carbon mass loss accounted for28.04%-52.51%of the initial TOC, in which the CO2-C reduced30.21%-46.82%and the CH4-C reduced0.11%-0.20%. During composting the degradation rate of different Van Soest fraction was SOLW>HEM>CEL>SOLN>LIN. The content of carbon biochemical fractions in initial materials and the evolution of biochemical fractions during composting were all different, so the changing trend of the processes and the maturity of composts were also different. The correlation analysissuggesteda high link between TOC and composting pile mass loss(ML), C/N, and GI. The easy biodegradation fraction, including HEM and SOLW, were positive relation to TOC and the ML, C/N and GI were negative relation to TOC. There is no significant correlation beteween the hard biodegradation fraction including LIN and SOLN, and index of composting maturity.
引文
[1]AFNOR N F. XPU 44-162[S]. Paris, France:2005.
    [2]Amir S, Hafidi M, Lemee L, et al. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry[J]. Process Biochemistry,2006,41(2):410-422.
    [3]Analysis Technical Committee On Chemical.高频等离子体质谱法用一般原则[S].日本工业标准调查会.
    [4]Augenstein D, Wise D L, Dat N X, et al. Composting of municipal solid waste and sewage sludge: Potential for fuel gas production in a developing country[J]. Resources, Conservation and Recycling, 1996,16(1-4):265-279.
    [5]de Bertoldi M, Vallini G, Pera A. The biology of composting:A review[J]. Waste Management & Research,1983,1(2):157-176.
    [6]Dewes T. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure[J]. The Journal of Agricultural Science,1996,127(4):501-509.
    [7]Doublet J, Francou C, Poitrenaud M, et al. Sewage sludge composting:Influence of initial mixtures on organic matter evolution and N availability in the final composts[J]. Waste Management, 2010,30(10):1922-1930.
    [8]Emeterio J I, Victor G P. Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation-exchange capacity[J]. Resources, Conservation and Recycling, 1991,6(1):45-60.
    [9]Garcia C, Hernandez T, Costa F. Characterization of humic acids from uncomposted and composted sewage sludge by degradative and non-degradative techniques[J]. Bioresource Technology, 1992,41(1):53-57.
    [10]Godden B, Ball A S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes[J]. Journal of General Microbiology,1992,138(11):2441-2448.
    [ll]Golueke C G, Card B J, McGauhey P H. A critical evaluation of inoculums in composting[J]. AppI Microbiol,1954,1(2):45-53.
    [12]Hao X, Chang C, Larney F J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting[J]. Journal of Environmental Quality,2004,33(1):37-44.
    [13]Hsu J, Lo S. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure[J]. Environmental Pollution,1999,104(2):189-196.
    [14]Huang G F, Wu Q T, Wong J W C, et al. Transformation of organic matter during co-composting of pig manure with sawdust[J]. Bioresource Technology,2006,97(15):1834-1842.
    [15]Jewell W J, Dondero N C, Van Soest P J, et al. High temperature stabilization and moisture removal from animal wastes for by-product recovery[J]. Department of Agricultural and Biological Engineering, Cornell University,1984.
    [16]Ji L, Zhi X. Current Development of Composting Industry in China[J]. Biocycle,2007,8:57-59.
    [17]Jimenez E I, Garcia V P. Composting of demestic refuse and sewage sludge. Ⅰ:evolution of temperature, pH, C/N ratio and cation-exchange capacity[J]. Resources, Conservation and Recycling,1991(6):45-60.
    [18]Kabore T W, Houot S, Hien V, et al. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa[J]. Bioresource Technology,2010,101(3):1002-1013.
    [19]Khalil A I, Beheary M S, Salem E M. Monitoring of microbial populations and their cellulolytic activities during the composting of municipal solid wastes[J]. World Journal of Microbiology and Biotechnology,2001,17(2):155-161.
    [20]Lashermes G, Nicolardot B, Parnaudeau V, et al. Indicator of potential residual carbon in soils after exogenous organic matter application[J]. European journal of soil science,2009,60(2):297-310.
    [21]Lei F, VanderGheynst J S. The effect of microbial inoculation and pH on microbial community structure changes during composting[J]. Process Biochemistry,2000,35(9):923-929.
    [22]Li S F, Yu Y C, He S. Correlation between dissolved carbon and soil factors of the forest soil in southern of China[J]. Journal of Zhejiang Forestry College,2003,2(20):119-123.
    [23]MACGregor S T, Miller F C, Psarianos K M, et al. Composting Process Control Based on Interaction Between Microbial Heat Output and Temperature[J]. Applied and Environmental Microbiology, 1981,41(6):1321-1330.
    [24]Maniadakis K, Lasaridi K, Manios Y, et al. Integrated waste management through producers and consumers education:Composting of vegetable crop residues for reuse in cultivation[J]. Journal of Environmental Science and Health, Part B,2004,39(1):169-183.
    [25]Maniadakis K, Lasaridi K, Manios Y, et al. Integrated waste management through producers and consumers education:Composting of vegetable crop residues for reuse in cultivation[J]. Journal of Environmental Science and Health, Part B,2004,39(1):169-183.
    [26]Morel T L, Colin F, Germon J C. Methods for the evalution of the maturity of municipal refuse compost[M]. London & New York:Elsevier Applied Science publishers,1985.
    [27]Peltre C, Dignac M F, Derenne S, et al. Change of the chemical composition and biodegradability of the Van Soest soluble fraction during composting:A study using a novel extraction method[J]. Waste management,2010,30(12):2448-2460.
    [28]Sanchez-Monedero M A, Roig A, Paredes C, et al. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures[J]. Bioresource Technology,2001,78(3):301-308.
    [29]Smidt E, Meissl K, Schmutzer M, et al. Co-composting of lignin to build up humic substances— Strategies in waste management to improve compost quality[J]. Industrial Crops and Products, 2008,27(2):196-201.
    [30]Takai Y. The mechanism of methane fermentation in flooded paddy soil[J]. Soil Science and Plant Nutrition,1970,16(6):238-244.
    [31]Tiquia S M, Wan H C, Tam N F Y. Microbial Population Dynamics and Enzyme Activities During Composting[J]. Compost Science & Utilization,2002,10(2):150-161.
    [32]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review[J]. Bioresource Technology,2000,72(2):169-183.
    [33]Van Soest P J. Use of detergents in analysis of fibrous feeds:a rapid method for the determination of fiber and lignin[J]. J. Assoc. Off. Agric. Chem,1963,46:829-835.
    [34]Van Soest P U, Wine R H. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents[J]. J. Assoc. Off. Anal. Chem,1967,50(1):50-55.
    [35]Veekena A, Nieropb K, de Wildea V, et al. Characterisation of NaOH-extracted humic acids during composting of a biowaste[J]. Bioresource Technology,2000,1(72):33-41.
    [36]WAKSMAN S A, CORDON T C, HULPOI N. Influence of Temperature Upon the Microbiological Population and Decomposition Processes in Composts of Stable Manure[J]. Soil Science,1939,47(2).
    [37]Wu X, Wei Y, Zheng J, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology,2011,102(10):5924-5931.
    [38]Zucconi F, Pera A, Forte M. Evaluating toxicity of immature compost[J]. Biocycle,1981(22):54-57.
    [39]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [40]鲍艳宇,颜丽,娄翼来,等.鸡粪堆肥过程中各种碳有机化合物及腐熟度指标的变化[J].农业环境科学学报,2005(04):820-824.
    [41]毕于运,王道龙,高春雨,等.中国秸秆资源评价与利用[M].北京:中国农业科学技术出版社,2008.
    [42]蔡璐,陈同斌,高定,等.采用CTB工艺提高污泥热值的工程实例研究[J].中国给水排水,2010(19):103-105.
    [43]蔡全英,莫测辉,吴启堂,等.城市污泥堆肥处理过程中有机污染物的变化[J].农业环境保护,2001(03):186-189.
    [44]蔡全英,莫测辉,朱夕珍,等.城市污泥与稻草堆肥中邻苯二甲酸酯PAEs的研究[J].应用生态学报,2003,14(11):1993-1996.
    [45]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[G].北京:科学出版社,2006.
    [46]陈广银,王德汉,吴艳,等.落叶堆肥过程中有机物的动态变化[J].华南农业大学学报,2007(02):1-4.
    [47]陈广银,王德汉,项钱彬,等.蘑菇渣与落叶联合堆肥过程中养分变化的研究[J].农业环境科学学报,2006,25(5):1347-1353.
    [48]陈华癸.微生物学[M].北京:农业出版社,1979.
    [49]陈活虎,何品晶,吕凡,等.腐熟堆肥接种对蔬菜废物中高温好氧降解过程的影响[J].环境化学,2006,25(4):444-448.
    [50]陈明.固体废弃物利用现状及管理对策研究[J].农业与技术,2013(09):228-231.
    [51]陈群玉.污泥生物干化研究现状[J].中国资源综合利用,2011(2):35-38.
    [52]陈伟,樊传刚,王健,等.废纸造纸污泥陶粒的制备与性能表征[J].过程工程学报,2010(05):1015-1019.
    [53]成建华,张文莉.抗生素菌渣处理工艺设计[J].医药工程设计,2003(02):31-34.
    [54]池涌,李晓东,严建华.洗煤泥与污泥处理焚烧技术及工程实例[M].化学工业出版社,2006.
    [55]崔敏,冉炜,沈其荣.水溶性有机质对土壤硝化作用过程的影响[J].生态与农村环境学报,2006(03):45-50.
    [56]迪亚兹美,贝托尔迪意,比德林麦尔德.堆肥科学与技术[M].北京:化学工业出版社,2013.
    [57]丁文川,李宏,郝以琼,等.污泥好氧堆肥主要微生物类群及其生态规律[J].重庆大学学报:自然科学版,2002,25(6):113-116.
    [58]丁湘蓉.北京市生活垃圾现状与垃圾堆肥应用潜力研究[D].北京:中国农业大学,2003.
    [59]方华军,杨学明,张晓平.农田土壤有机碳动态研究进展[J].土壤通报,2003(06):562-568.
    [60]冯明谦,刘德明.高温好氧垃圾堆肥中人工接种初步研究[J].四川环境,2000,19(3):27-30.
    [61]龚建英,田锁霞,王智中,等.微生物菌剂和鸡粪对蔬菜废弃物堆肥化处理的影响[J].环境工程学报,2012(08):2813-2817.
    [62]贡丽鹏,郭斌,任爱玲,等.抗生素菌渣理化特性[J].河北科技大学学报,2012(02):190-196.
    [63]郭松林,陈同斌,高定,等.城市污泥生物干化的研究进展与展望[J].中国给水排水,2010(15):102-105.
    [64]韩成卫,李忠佩,刘丽,等.溶解性有机质在红壤水稻土碳氮转化中的作用[J].生态环境,2006(06):1300-1304.
    [65]胡菊.VT菌剂在好氧堆肥中的作用机理及肥效研究[D].北京:中国农业大学资源与环境学院,2005.
    [66]胡菊,秦莉,吕振宇,等.VT菌剂接种堆肥的作用效果及生物效应[J].农业环境科学学报,2006,25(B09):604-608.
    [67]黄鼎曦,陆文静,王洪涛.农业蔬菜废物处理方法研究进展和探讨[J].环境污染治理技术与设备,2002,3(11):38-42.
    [68]黄国锋,吴启堂,黄焕忠.有机固体废弃物好氧高温堆肥化处理技术[J].中国生态农业学报,2003,11(1):159-161.
    [69]黄红丽.堆肥中木质素的生物降解及其与腐殖质形成关系的研究[D].湖南大学,2006.
    [70]蒋建国,杨勇,贾莹,等.调理剂和通风方式对污泥生物干化效果的影响[J].环境工程学报,2010(5):1167-1170.
    [71]康军.城市污泥生物干化技术及展望[J].科技资讯,2013(23):142-143.
    [72]李承强,魏源送,樊耀波,等.不同填充料污泥好氧堆肥的性质变化及腐熟度[J].环境科学,2001,22(3):60-65.
    [73]李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    [74]李吉进,郝晋珉,邹国元,等.高温堆肥碳氮循环及腐殖质变化特征研究[J].生态环境,2004,13(3):332-334.
    [75]李季,彭生平.堆肥工程实用手册[M].2.北京:化学工业出版社,2011.
    [76]林惠荣,黄明强,谢小青,等.生物干化污泥用作鸡冠花栽培基质的试验研究[J].北方园艺,2011(15):127-129.
    [77]刘安辉.蔬菜废弃物沤肥过程养分变化及肥效研究[D].山东农业大学,2011.
    [78]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版),2002(02):57-59.
    [79]马婧一,荀方飞,葛亚军.生活垃圾生物好氧预处理技术研究[J].工业安全与环保,2013(6).
    [80]莫舒颖.蔬菜残株堆肥化利用技术研究[D].中国农业科学院,2009.
    [81]牛俊玲,李彦明,陈清.固体有机废物肥料化利用技术[M].化学工业出版社,2010.
    [82]牛志蓉.污泥农用重金属累计及生物效应研究[D].北京:中国农业大学,2006.
    [83]朴哲,崔宗均,苏宝林.高温堆肥的物质转化与腐熟进度关系[J].中国农业大学学报,2001,6(3):74-78.
    [84]齐凯佳.不同通风量对污泥生物干化效果的影响[J].山西建筑,2011(6):100-102.
    [85]秦莉,沈玉君,李国学,等.不同CN比堆肥碳素物质变化规律研究[J].农业环境科学学报,2010,29(7):1388-1393.
    [86]邵立明,韩竞耀,何品晶,等.通风量和翻堆对生活垃圾好氧生物干化的影响[J].环境卫生工程,2008(3):23-25.
    [87]申进文,沈阿林,张玉亭,等.平菇栽培废料等有机肥对土壤活性有机质和土壤酶活性的影响[J].植物营养与肥料学报,2007(04):631-636.
    [88]申义珍.红霉素药渣有机无机复混肥对蔬菜品质、产量的影响[D].扬州大学,2003.
    [89]沈东升,何虹蓁,汪美贞,等.土霉素降解菌TJ-1在猪粪无害化处理中的作用[J].环境科学学报,2013(01):147-153.
    [90]孙坚,耿春雷,张作泰,等.工业固体废弃物资源综合利用技术现状[J].材料导报,2012(11):105-109.
    [91]孙永明,李国学,张夫道,等.中国农业废弃物资源化现状与发展战略[J].农业工程学报,2005(08):169-173.
    [92]孙振钧,孙永明.我国农业废弃物资源化与农村生物质能源利用现状与发展[J].中国农业科技导报,2006,1(8):6-13.
    [93]田旸,杨凤林,柳丽芬,等.堆肥技术处理有机污染土壤的研究进展[J].环境污染治理技术与设备,2002,3(12):31-37.
    [94]王桂珍,李兆君,张树清,等.土霉素在鸡粪好氧堆肥过程中的降解及其对相关参数的影响[J].环境科学,2013(02):795-803.
    [95]王桂珍,李兆君,张树清,等.碳氮比对鸡粪堆肥中土霉素降解和堆肥参数的影响[J].中国农业科学,2013(07):1399-1407.
    [96]王洪涛,陆文静.农业固体废物处理处置与资源化技术[M].中国科学出版社,2006.
    [97]王湖坤.工业污泥处理与利用分析[J].工业安全与环保,2005(03):23-25.
    [98]王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003(06):109-112.
    [99]王磊,张乃明,杨育华,等.滇池流域花卉蔬菜废弃物对湖泊水质影响的模拟研究[J].环境科学导刊,2010,29(004):42-45.
    [100]王连峰,潘根兴,石盛莉,等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报,2002(01):29-34.
    [101]王伟,严捍东.工业污泥烧制陶粒的工艺研究进展[J].工业用水与废水,2013(01):1-4.
    [102]王兴润,金宜英,聂永丰.国内外污泥热干燥工艺的应用进展及技术要点[J].中国给水排水, 2007(08):5-8.
    [103]魏源送,王敏健,王菊思.堆肥技术及进展[J].环境科学进展,1999(03):12-24.
    [104]吴华圃,胡宁宝,李慧英,等.无公害番茄的虫害及其综合防治技术[J].内蒙古农业科技,2006(7):16-18.
    [105]吴银宝,廖新俤,汪植三,等.猪粪堆肥微生物及其对堆制腐熟的影响[J].家畜生态,2003,24(1):34-38.
    [106]吴银宝,汪植三,廖新俤,等.猪粪堆肥臭气产生与调控的研究[J].农业工程学报,2001,17(5):82-87.
    [107]武天云,Jeff J. Schoenau,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004(04):717-722.
    [108]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用[J].环境科学,2001(05):122-125.
    [109]席旭东,晋小军,张俊科.蔬菜废弃物快速堆肥方法研究[J].中国土壤与肥料,2010(03):62-66.
    [110]夏岿然,夏淑梅.固体废物的处理及综合利用[J].黑龙江环境通报,2002(01):46-47.
    [111]谢文林,谢小青,黄明强,等.生物干化污泥有机肥在茶园的应用试验初报[J].蚕桑茶叶通讯,2011(1):33-35.
    [112]徐大勇,黄为一.人工接种堆肥和自然堆肥微生物区系与分子多态性的变化[J].生态与农村环境学报,2006,22(1):29-33.
    [113]徐礼来,闫祯,崔胜辉.城市生活垃圾产量影响因素的路径分析——以厦门市为例[J].环境科学学报,2013,33(4):1180-1185.
    [114]徐明岗,于荣,王伯仁.土壤活性有机质的研究进展[J].土壤肥料,2000(06):3-7.
    [115]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002(01):83-90.
    [116]薛智勇,汤江武.防治肥料面源污染系列讲座畜禽废弃物的无害化处理与资源化利用技术进展[J].浙江农业科学,2002(1):45-47.
    [117]杨帆,李国学,江滔,等.蚯蚓辅助堆肥处理蔬菜废弃物及其温室气体减排效果[J].农业工程学报,2012,28(16):190-196.
    [118]杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,2008,45(5):925-932.
    [119]于荣,徐明岗,王伯仁.土壤活性有机质测定方法的比较[J].土壤肥料,2005(02):49-52.
    [120]余旺,黄绍松,孙水裕,等.接种菌剂和外加能源对污泥生物干化效果的影响[J].环境污染与防治,2012,34(8):39-43.
    [121]俞元春,李淑芬.江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J].土壤,2003(05):424-428.
    [122]袁京,李国学,张红玉,等.基于转运站满负荷的北京市新东西城区生活垃圾物流优化方案研究[J].环境科学,2013,34(9):3633-3640.
    [123]张红娟.抗生素菌渣堆肥化处理研究[D].郑州大学,2010.
    [124]张树清,张夫道,刘秀梅,等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006(02):337-343.
    [125]张相锋,王洪涛,聂永丰,等.高水分蔬菜废物和花卉、鸡舍废物联合堆肥的中试研究[J].环境科学,2003(02):147-151.
    [126]张雪英,周顺桂,周立祥,等.堆肥处理对污泥腐殖物质形态及其重金属分配的影响[J].生态学杂志,2004,23(1):30-33.
    [127]张益,陶华.垃圾渗滤液处理技术及工程实例[M].北京:化学工业出版社,2002.
    [128]张园,耿春女,何承文,等.堆肥过程中有机质和微生物群落的动态变化[J].生态环境学报,2011,20(11):1745-1752.
    [129]赵其国.土壤圈物质循环研究与土壤学的发展[J].土壤,1991(01):1-3.
    [130]中国人民共和国住房和城乡建设部.GB/T23486城镇污水处理厂污泥处置园林绿化用泥质[S].北京:中国标准出版社,2009.
    [131]中国人民共和国住房和城乡建设部.GB/T24600城镇污水处理厂污泥处置土地改良用泥质[S].北京:中国标准出版社,2009.
    [132]中国水网.中国污泥处理处置市场分析报告(2013版)[Z].201323.
    [133]中国统计局.中国统计年鉴[EB/OL].http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm.
    [134]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T12206-2006城镇燃气热值和相对密度测定方法[S].北京:中国标准出版社,2006.
    [135]中华人民共和国环境保护部.制药工业污染防治技术政策[EB/OL].http://kjs.mep.gov.cn/hjbhbz/bzwb/wrfzjszc/201203/t20120319_224790.htm.
    [136]中华人民共和国农业部.NY525-2012有机肥料[S].北京:中国标准出版社,2012.
    [137]中华人民共和国卫生部.GB7959-2012粪便无害化卫生要求[S].北京:中国标准出版社,2012.
    [138]中华人民共和国卫生部.GB/T5009.116-2003禽、畜肉中土霉素、四环素、金霉素残留最的测定[S].北京:中国国家标准化管理委员会,2003.
    [139]周保华,高勤,王洪华,等.青霉素、上霉素菌渣研究利用现状及特性分析[J].河北工业科技,2011(05):291-294.
    [140]李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252-256.
    [141]孙晓.污泥含水率对污泥干化能耗成本的影响评价:全国城镇污水处理及污泥处理处置技术高级研讨会,昆明,2009[C].
    [142]陈活虎,何品晶,邵立明,等.生物质分类表征蔬菜废物高温好氧降解特征及其动力学描述[J].农业环境科学学报,2006,25(03):802-806.
    [143]郭梦婷,邓友华,冯小晏,等.土霉素残留对猪粪堆肥过程中理化性质的影响[J].环境污染与防治,2012,34(2):50-54.
    [144]郭夏丽,席晓黎,张红娟,等.抗生素菌渣堆肥进程中微生物群落的变化[J].环境工程学报,2012,6(12):4671-4675.
    [145]韩建勋,郭梦婷,张紫微,等.猪粪中土霉素环境风险及好氧降解技术研究进展[J].能源环境保护,2012,26(5):19-23.
    [146]李国建,钱新东.堆肥腐熟度指标的探讨[J].城市环境与城市生态,1990,3(2):27-30.
    [147]刘晓光,董滨,戴翎翎,等.污泥中重金属的稳定化研究进展与去除方法简述[J].四川环境, 2012,31(3):98-105.
    [148]邵立明,何品晶,陈活虎.生物质分类表征温度对蔬菜废物好氧降解过程的影响[J].环境科学学报,2006,26(08):1302-1307.
    [149]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报,2006,26(1):265-270.
    [150]张陇利,刘青,徐智,等.复合微生物菌剂对污泥堆肥的作用效果研究[J].环境工程学报,2008,2(2):266-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700