用户名: 密码: 验证码:
溶质示踪测量径流流速方法及其在融水侵蚀中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面径流流速是表征坡面水蚀动力特性的重要参数,与径流的剥蚀和输运能力直接相关。坡面薄层水流流速的测量对土壤侵蚀研究与应用方程重要。
     本研究根据电解质脉冲边界模型测量的流速随距离增长的关系,提出了电解质脉冲边界模型测量最小距离优选方法。流速越大,电解质脉冲边界模型测量流速需要的测量距离越大。当设置土壤坡度为5°、10°、15°,流量为12、24、48L/mmin时,模拟未冻土壤表面误差限为5%、10%时分别需要2.5m、2.0m的测量距离。
     在室内不同坡度(5°、10°、150)和流量(12、24、48L/mmin)条件下,用电解质脉冲边界模型以及染色剂示踪法进行冻土坡面、冰坡面径流流速测量的对比研究。结果表明,冻土坡面径流流速随坡度、流量增大。电解质脉冲边界模型测得的流速与实际流速相差5%和10%所需测量距离分别为1.7-2.7m以及1.4~2.1m。冻土坡面径流流速为0.45~0.98m/s,是未冻土壤坡面径流流速的1.43倍。冰坡面径流流速随坡度、径流增加,介于0.49-1.09m/s。未冻土壤坡面相对冰坡面,径流流速小26-51%;冻土坡面与冰坡面径流流速相比小5~23%。不同大小粒径表碛覆盖下冰坡面径流流速介于0.015~0.217m/s,随坡度增加,基本不随流量变化。
     对比了传统盐液示踪法、电解质脉冲边界模型、染色剂示踪法,研究了溶质示踪法测量流速校正系数。在设定的坡度(5°、10°、15°)、流量(12、24、48L/mmin)条件下,最大流速换算质心流速的校正系数均值大小为0.580,并且基本不随坡度变化。优势流速换算质心流速的校正系数均值为0.884,并随流量增加,受坡度影响不显著。
     用溶质示踪法测量了浅沟流速。结果表明,浅沟径流流速随流量和坡度增加。传统盐液示踪法测量得到的流速在0.55-1.60m/s之间,而染色剂示踪法测量得到的流速为0.71-1.45m/s,略小于传统盐液示踪法测量结果。水流对示踪剂稀释及紊流对视觉影响,流速快和测量距离短产生的人体视觉反应误差可能导致测量流速降低,电解质示踪法测量的流速具有其合理性。
     融水径流流速对研究融水径流剥蚀、泥沙输运过程以及开发以过程研究为基础的物理预报模型具有重要意义。
The overland flow velocity is an important parameter to characterize the dynamic characteristics of slope erosion, is a key determinant of the erosion forces and transport capabilities. The measurement of the overland velocity is important to the mechanism study of soil erosion and the soil erosion prediction mpdel.
     A method to determinate the optimum measurement distance of the Pulse Boundary Model is proposed from the relationship of velocity and distance, and applied to simulated non-frozen slope and gravel layer. For the velocity measurement of flow along the simulated non-frozen slope using an electrolyte tracer method with a Pulse Boundary Model, the minimum distances for measured velocity with an error limit of5%was2.5m and those for an error limit of10%was2.0m from the injector under the given flow rates (5°,10°,15°) and slope gradients (12,24,36L/min).
     A series of comparative flume experiments were conducted to study the flow velocity over frozen slopes and simulated ice slope with Pulse Boundary Model method and Dye Tracer method, along both the frozen slopes and non-frozen slope. The results showed that the water flow velocities over frozen slope increased with slope gradients and flow rates. The minimum distances for measured velocity with an error limit of5%was1.7-2.7m and those for an error limit of10%was1.4-2.1m from the injector under the given flow rates and slope gradients. The velocities, over frozen slopes, measured by the Pulse Boundary Model method under the given experimental conditions ranged from0.45m/s to0.98m/s, which were1.43times of those over non-frozen slopes. The velocities, over simulated ice slopes, measured by the Pulse Boundary Model method under the given three flow rates (12,24and48L/min) and three slope gradients (5°,10°and15°), ranged from0.49m/s to1.09m/s. which were5-23%higher of those over frozen slopes, and26-51%higher than those over the non-frozen slopes. The flow velocities over ice slope increased with slope gradients and flow rate, while those over ice slope covered by superglacial moraine increased with slope gradients, but stayed steady generally when the flow rate changed. The velocities, over simulated ice slopes covered by superglacial moraine, measured by the Pulse Boundary Model method under the given four flow rates (3,6,12, and24L/min) and four slope gradients (5°,10°,15°and25°), ranged from0.015m/s to0.217m/s.
     A series of comparative flume experiments were conducted to measure the shallow water flow velocity, with a computerized electrolyte tracer method and dye tracer method. Centroid velocities, leading edge velocities, peak concentration velocities and velocities estimated by Pulse Boundary Model along the flume were computed for comparison purposes. The correction factor αE by which multiplied the leading egde velocity to obtain the centroid velocity were0.530-0.629, with a mean calue of0.580. The correction factor βE by which multiplied the peak concentration velocity to obtain the centroid velocity were0.819-0.975, with a mean calue of0.884.
     A series of flume experiments were conducted to measure ephemeral gully water flow velocity with2methods, the electrolyte tracer method. The results showed that the velocity of ephemeral gully water flow increased with flow rate and slope gradient. The velocity measured by the electrolyte tracer method under the given experimental condition ranged from0.55m/s to1.60m/s, as compared with0.71m/s to1.45m/s by the dye tracer method. The velocities measured by the two methods were compared under different slope gradients and flow rates. The velocities measured by the dye tracer tended to be lower than those measured by the electrolyte tracer method. Considering the strong dilution and disturb effects of high rate water flow and strong turbulence on dye tracer, visual detection of dye movement should have caused later detection of the dye movement in water flow. All these indicate that the measured velocity of ephemeral flow seems rational.
     The study on the melt water runoff velocity is of importance to the study of the machenism of soil erosion under melt water runoff.
引文
[l]中国水土流失防治与生态安全——水土流失数据卷.北京:科学出版社,2010.
    [2]王兴奎,邵学军,李丹勋.河流动力学基础.北京:中国水利水电出版社,2002.
    [3]罗榕婷,张光辉,曹颖.坡面含沙水流水动力学特性研究进展.地理科学进展,2009,(4):567-574.
    [4]Horton R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin,1945,56(3):275-370.
    [5]江忠善,宋文经.坡面流速的试验研究.中国科学院西北水土保持研究所集刊,1988,(01):46-52.
    [6]Guy B T, Dickinson W T, Rudra R P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow. Transactions of the ASAE,1987,30(5):1378-1386.
    [7]Govers G. Relatiionship between discharge, velocity and flow area for rills eroding loose, nonlayered materials. Earth Surface Processes and Landforms,1992,17(5):515-528.
    [8]Foster G R, Huggins L F, Meyer L D. A Laboratory Study of Rill Hydraulics:I. Velocity Relationships. Transactions of the ASAE,1984,27(3):790-796.
    [9]徐敩祖,王佳澄,张立新.冻土物理学.北京:科学出版社,2010.
    [10]Kok H, McCool D K. Quantifying freeze/thaw-induced variability of soil strength. Transactions of the ASAE,1990,33(2):501-506.
    [11]Sharratt B S, Lindstrom M J, Benoit G R, et al. Runoff and soil erosion during spring thaw in the northern US Corn Belt. Journal of soil and water conservation,2000,55(4):487-494.
    [12]Sharratt B S, Lindstrom M J, Flanagan D C. Laboratory simulation of erosion from a partially frozen soil. Soil erosion research for the 21st century, Honolulu, Hawaii, USA,2001 [C]. American Society of Agricultural Engineers.
    [13]董瑞琨,许兆义,杨成永.青藏高原冻融侵蚀动力特征研究.水土保持学报,2000,(04):12-16.
    [14]景国臣.冻融侵蚀的类型及其特征研究.中国水土保持,2003,(10):21-22.
    [15]孙辉,秦纪洪,吴杨.土壤冻融交替生态效应研究进展.土壤,2008,40(04):505-509.
    [16]Nearing M A, Foster G R, Lane L J, et al. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE,1989,32(5):1587-1593.
    [17]Bruun H H. Hot-wire anemometry:principles and signal analysis. Measurement Science and Technology,1996,7(10).
    [18]李永祥,苑明顺,李春华.热膜技术在水流测速中的应用研究.流体力学实验与测量,1997,(04):45-50.
    [19]Liu T J, Bankoff S G. Structure of air-water bubbly flow in a vertical pipe-I. liquid mean velocity and turbulence measurements. International journal of heat and mass transfer,1993,36(4): 1049-1060.
    [20]张雅芝,王晓玲,曾爱武,等.筛板上两相流的检测——热膜流速仪的应用.化工机械,1999, (01):4042.
    [21]何振.声学多普勒流速仪量水自动测报系统在灌区明渠中的应用.江西水利科技,2013,(02):114-117.
    [22]蓝标,曲娟.声学多普勒流速剖面仪ADCP及其在水文测流中的应用.气象水文海洋仪器,2011,(04):65-68.
    [23]刘阳明,李加伟,吴高庄.声学多普勒流速仪在封冻期流量测验关键技术探索.东北水利水电,2010,(01):4-6.
    [24]王玉平,谢源源.声学多普勒流速仪在新疆河流流量测验中的应用及分析.新疆水利,2011,(06):14-17.
    [25]郑念发,邹晓天,高宇峰,等.声学多普勒流速剖面仪在水文站中的应用.东北水利水电,2010,(02):22-23.
    [26]Robinson K M, Cook K R, Hanson G J. Velocity field measurements at an overfall. Transactions of the ASAE,2000,43(3):665-670.
    [27]Nikora V I, Goring D G. ADV measurements of turbulence:Can we improve their interpretation? Journal of Hydraulic Engineering,1998,124(6):630-634.
    [28]Hyun B S, Balachandar R, Yu K, et al. Assessment of PIV to measure mean velocity and turbulence in open-channel flow. Experiments in Fluids,2003,35(3):262-267.
    [29]Bown M R, MacInnes J M, Allen R, et al. Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV. Measurement Science and Technology, 2006,17(8):2175.
    [30]刘君,刘福海,孔宪京,等.PIV技术在大型振动台模型试验中的应用.岩土工程学报,2010,(03):368-374.
    [31]罗万银,董治宝,钱广强.PIV技术及其在风沙边界层研究中的应用.中国沙漠,2007,(05):733-737.
    [32]宋戈.涡轮桨搅拌槽内湍流特性的三维PIV实验研究:[硕士学位论文].北京化工大学,2012.
    [33]万立国,任庆凯,田曦,等.PIV技术及其在两相流测量中的应用.环境科学与技术,2010,33(12F):463-467.
    [34]陈红,李聂贵,吕升奇,等.激光多普勒流速仪系统参数优化实验研究.实验流体力学,2013,(01):102-105.
    [35]范建成.智能流速仪简介.水利水运科学研究,1989,(04):111-114.
    [36]张科利,秋吉康弘,张兴奇.坡面径流冲刷及泥沙输移特征的试验研究.地理研究,1998,(02):52-59.
    [37]Mccarthy K L, Kerr W L, Kauten R J, et al. Velocity profiles of fluid/particulate mixtures in pipe flow using MRI. Journal of Food Process Engineering,1997,20(2):165-177.
    [38]刘鹏,李小昱,王为.基于光电传感器和示踪法的径流流速测量系统的研究.农业工程学报,2007,(05):116-120.
    [39]刘鹏,李小昱,王为,等.基于相关法的坡面径流流速测量系统.农业工程学报,2008,(03): 48-52.
    [40]Abril J M, Abdel-Aal M M. A modelling study on hydrodynamics and pollutant dispersion in the Suez Canal. Ecological modelling,2000,128(1):1-17.
    [41]石辉,杨陵.小流域侵蚀产沙研究方法进展.西北林学院学报,1997,(03):103-109.
    [42]Ventura E, Nearing M A, Amore E, et al. The study of detachment and deposition on a hillslope using a magnetic tracer. Catena,2002,48(3):149-161.
    [43]Ventura Jr E, Nearing M A, Norton L D. Developing a magnetic tracer to study soil erosion. Catena,2001,43(4):277-291.
    [44]Dunkerley D L. An optical tachometer for short-path measurement of flow speeds in shallow overland flows:improved alternative to dye timing. Earth Surface Processes and Landforms,2003, 28(7):777-786.
    [45]夏卫生,刘贤赵.土壤侵蚀中细沟流的初步分析.水土保持通报,2002,(02):13-15.
    [46]王为,李小昱,张军,等.基于电导式传感器径流流速测量系统的试验研究.农业工程学报,2007,(02):1-5.
    [47]Govers G, Rauws G. Transporting capacity of overland flow on plane and on irregular beds. Earth surface processes and landforms,1986,11(5):515-524.
    [48]Guy B T, Dickinson W T, Rudra R P, et al. Hydraulics of sediment-laden sheetflow and the influence of simulated rainfall. Earth Surface Processes and Landforms,1990,15(2):101-118.
    [49]Gilley J E, Kottwitz E R, Wieman G A. Roughness coefficients for selected residue materials. Journal of irrigation and drainage engineering,1991,117(4):503-514.
    [50]Nearing M A, Simanton J R, Norton L D, et al. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surface Processes and Landforms,1999,24(8):677-686.
    [51]Fox D M, Bryan R B. The relationship of soil loss by interrill erosion to slope gradient. Catena, 2000,38(3):211-222.
    [52]King W K, Norton L. Methods of rill flow velocity dynamics. American Society of Agricultural Engneering Meeting,1992.
    [53]Luk S H, Merz W. Use of the salt tracing technique to determine the velocity of overland-flow. Soil Technology,1992,5(4):289-301.
    [54]Abrahams A D, Parsons A J, Luk S H. Field measurement of the velocity of overland flow using dye tracing. Earth surface processes and landforms,1986,11(6):653-657.
    [55]Taylor G. The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1954,223(1155):446-468.
    [56]Li G, Abrahams A D, Atkinson J F. Correction factors in the determination of mean velocity of overland flow. Earth Surface Processes and Landforms,1996,21(6):509-515.
    [57]Lei T W, Xia W S, Zhao J, et al. Method for measuring velocity of shallow water flow for soil erosion with an electrolyte tracer. Journal of Hydrology,2005,301(1):139-145.
    [58]夏卫生.电解质脉冲法测量坡面薄层恒定水流速度的研究及其初步应用:[博士学位论文].杨 凌:西北农林科技大学,2003.
    [59]夏卫生,雷廷武,刘春平,等.坡面薄层水流流速测量的比较研究.农业工程学报,2004,(02):23-26.
    [60]Lei T W, Yan Y, Shi X N, et al. Measuring velocity of water flow within a gravel layer using an electrolyte tracer method with a Pulse Boundary Model. Journal of Hydrology,2013,500(0): 37-44.
    [61]Rahma A E, Lei T, Shi X, et al. Measuring flow velocity under straw mulch using the improved electrolyte tracer method. Journal of Hydrology,2013,495:121-125.
    [62]史晓楠.土壤表层与径流系统中溶质运移过程模型及应用研究:[博士学位论文].北京:中国农业大学,2009.
    [63]Lei T W, Chuo R Y, Zhao J, et al. An improved method for shallow water flow velocity measurement with practical electrolyte inputs. Journal of Hydrology,2010,390(1):45-56.
    [64]Shi X N, Zhang F, Lei T W, et al. Measuring shallow water flow velocity with virtual boundary condition signal in the electrolyte tracer method. Journal of Hydrology,2012,452:172-179.
    [65]Olivier P, Norbert S, Raphael G, et al. An automated salt-tracing gauge for flow-velocity measurement. Earth Surface Processes and Landforms,2005,30(7):833-844.
    [66]Horton R E, Leach H R, Van Vliet R. Laminar sheet-flow. Transactions of the American Geophysical Union,1934,15:393-404.
    [67]Rouhipour H, Rose W C, Yu B, et al. Roughness coefficients and velocity estimation in well-inundated sheet and rilled overland flow without strongly eroding bed forms. Earth Surface Processes and Landforms,1999,24(3):233-245.
    [68]Pan C Z, Shangguan Z P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Catena,2006,331(1-2):178-185.
    [69]Emmett W W. The hydraulics of overland flow on hillslopes. Geological Survey Professional Paper,1970,662-A.
    [70]Takken I. Effects of roughness on overland flow and erosion:[博士学位论文]. Katholieke Universiteit Leuven,2000.
    [71]Dunkerley D. Estimating the mean speed of laminar overland flow using dye injection-uncertainty on rough surfaces. Earth Surface Processes and Landforms,2001,26(4):363-374.
    [72]Myers T G. Modeling laminar sheet flow over rough surfaces. Water Resources Research,2002, 38(11):1230.
    [73]Phelps H O. Shallow laminar flows over rough granular surfaces. Journal of the Hydraulics Division,1975,101(3):367-384.
    [74]Abrahams A D, Atkinson J F. Relation between grain velocity and sediment concentration in overland flow. Water Resources Research,1993,29(9):3021-3028.
    [75]夏卫生,刘春平,雷廷武,等.示踪法测量坡面水流速度理论缺陷分析.自然灾害学报,2007,(01):50-54.
    [76]Gabet E J, Burbank D W, Pratt-Sitaula B, et al. Modern erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters,2008,267(3):482-494.
    [77]Williams R, Robinson D A. Experimental frost weathering of sandstone by various combinations of salts. Earth surface processes and landforms,2001,26(8):811-818.
    [78]Schadt C W, Martin A P, Lipson D A, et al. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science,2003,301(5638):1359-1361.
    [79]Lipson D A, Schmidt S K. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Applied and environmental microbiology,2004,70(5):2867-2879.
    [80]Sjursen H, Michelsen A, Holmstrup M. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology,2005,28(1):79-93.
    [81]邓友生,王家澄,徐敩祖,等.土类对正冻土成冰及冷生组构影响的实验研究.冰川冻土,1995,(01):16-22.
    [82]穆彦虎,马巍,李国玉,等.冻融作用对压实黄土结构影响的微观定量研究.岩土工程学报,2011,(12):1919-1925.
    [83]Fitzhugh R D, Driscoll C T, Groffman P M, et al. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry,2001,56(2):215-238.
    [84]Miiller-Lupp W, Bolter M. Effect of soil freezing on physical and microbiological properties of permafrost-affected soils.8th International Conference on Permafrost, Proceedings. Swets and Zeitlinger,2003[C].
    [85]Bryan R B. Soil erodibility and processes of water erosion on hillslope. Geomorphology,2000, 32(3):385-415.
    [86]Benn D I, Owen L A. Himalayan glacial sedimentary environments:a framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International, 2002,97:3-25.
    [87]Hasnain S I, Thayyen R J. Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani glacier, Garhwal Himalaya, India. Journal of Hydrology,1999,218(3): 191-198.
    [88]Haritashya U K, Kumar A, Singh P. Particle size characteristics of suspended sediment transported in meltwater from the Gangotri Glacier, central Himalaya-An indicator of subglacial sediment evacuation. Geomorphology,2010,122(1):140-152.
    [89]Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development. Transactions of the ASAE,1989,32(2):565-571.
    [90]Flerchinger G N, Hanson C L, Wight J R. Modeling evapotranspiration and surface energy budgets across a watershed. Water Resources Research,1996,32(8):2539-2548.
    [91]Pierson F B, Flerchinger G N, Wight J R. Simulating near-surface soil temperature and water on sagebrush rangelands:A comparison of models. Transactions of the ASAE,1992,35(5): 1449-1455.
    [92]Hallet B, Hunter L, Bogen J. Rates of erosion and sediment evacuation by glaciers:A review of field data and their implications. Global and Planetary Change,1996,12(1):213-235.
    [93]Farrell O C R, Heimsath A M, Lawson D E, et al. Quantifying periglacial erosion:insights on a glacial sediment budget, Matanuska Glacier, Alaska. Earth Surface Processes and Landforms,2009, 34(15):2008-2022.
    [94]Bhutiyani M R. Sediment load characteristics of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas, India. Journal of Hydrology,2000, 227(1):84-92.
    [95]Hodgkins R, Cooper R, Wadham J, et al. Suspended sediment fluxes in a high-Arctic glacierised catchment:implications for fluvial sediment storage. Sedimentary Geology,2003,162(1):105-117.
    [96]Singh P, Ramasatri K S, Kumar N, et al. Suspended sediment transport from the Dokriani Glacier in the Garhwal Himalayas. Nordic Hydrology,2003,34(3):221-244.
    [97]Bui E N, Mazzullo J M, Wilding L P. Using quartz grain size and shape analysis to distinguish between aeolian and fluvial deposits in the Dallol Bosso of Niger (West Africa). Earth Surface Processes and Landforms,1989,14(2):157-166.
    [98]Haritashya U K, Singh P, Kumar N, et al. Suspended sediment from the Gangotri Glacier: Quantification, variability and associations with discharge and air temperature. Journal of Hydrology,2006,321(1):116-130.
    [99]文安邦,刘淑珍,范建容,等.雅鲁藏布江中游地区河流泥沙近期变化及防治对策.水土保持学报,2002,(06):148-150.
    [100]王小丹,钟祥浩,王建平.西藏高原土壤可蚀性及其空间分布规律初步研究.干旱区地理,2004,(03):343-346.
    [101]张建国,刘淑珍.界定西藏冻融侵蚀区分布的一种新方法.地理与地理信息科学,2005,(02):32-34.
    [102]张建国,刘淑珍,杨思全.西藏冻融侵蚀分级评价.地理学报,2006,(09):911-918.
    [1 03]刘淑珍,吴华,张建国,等.寒冷环境土壤侵蚀类型.山地学报,2008,(03):326-330.
    [104]Li Z X, He Y Q, Pu T, et al. Changes of climate, glaciers and runoff in China's monsoonal temperate glacier region during the last several decades. Quaternary International,2010,218(1): 13-28.
    [105]贺莉,龚建新,赵勇.新疆乌鲁木齐河水沙变化趋势分析.中国西部科技,2009,(07):1-3.
    [106]杨瑾,葛新娟.乌鲁木齐河悬移质泥沙特性.新疆水利,2005,(05):32-34.
    [107]Edwards L M, Burney J R. Soil erosion losses under freeze/thaw and winter ground cover using a laboratory rainfall simulator. Canadian Agricultural Engineering,1987,29:109-115.
    [108]Ferrick M G, Gatto L W. Quantifying the effect of a freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surface Processes and Landforms,2005,30(10):1305-1326.
    [109]范昊明,武敏,周丽丽,等.草甸土近地表解冻深度对融雪侵蚀影响模拟研究.水土保持学报, 2010,(06):28-31.
    [110]范昊明,张瑞芳,武敏,等.草甸土近地表解冻深度对坡面降雨侵蚀影响研究.水土保持学报,2010,(03):5-8.
    [111]周丽丽,范昊明,武敏,等.白浆土春季解冻期降雨侵蚀模拟.土壤学报,2010,(03):574-578.
    [112]范昊明,郭萍,武敏,等.春季解冻期白浆土融雪侵蚀模拟研究.水土保持通报,2011,(06):130-133.
    [113]Zhang G H, Luo R T, Cao Y, et al. Correction factor to dye-measured flow velocity under varying water and sediment discharges. Journal of Hydrology,2010,389(1-2):205-213.
    [114]颜燕.测量砾石层中水流速度电解质脉冲边界模型方法研究:[硕士论文].北京:中国农业大学,2012.
    [115]施雅风,刘朝海,王宗太,等.简明中国冰川目录.上海:上海科学普及出版社,2005.
    [116]Hooke R L, Miller S B, Kohler J. Character of the englacial and sub glacial drainage system in the upper part of the ablation area of storglaciaren, Sweden. Journal oJ Glaciology,1988,34(117).
    [117]Hock R, Iken A, Wangler A. Tracer experiments and borehole observations in the overdeepening of Aletschgletscher, Switzerland. Annals of Glaciology,1999,28(1):253-260.
    [118]沈洪道.河冰研究.郑州市:黄河水利出版社,2010.
    [119]茅泽育,马吉明,佘云童,等.封冻河道的阻力研究.水利学报,2002,(05):59-64.
    [120]苏珍,宋国平,王立伦.托木尔峰地区的现代冰川.天山托木尔峰地区的冰川与气象,译.乌鲁木齐:新疆人民出版社,1985.
    [121]谢昌卫,丁永建,刘时银,等.近30a来托木尔峰南麓科其喀尔冰川冰舌区变化.冰川冻土,2006,(05):672-677.
    [122]雷阿林,唐克丽.土壤侵蚀模型试验中的降雨相似及其实现.科学通报,1995,(21):2004-2006.
    [123]Cooper J R, Tait S J. Examining the physical components of boundary shear stress for water-worked gravel deposits. Earth Surface Processes and Landforms,2010,35(10):1240-1246.
    [124]Elder J W. The dispersion of marked fluid in turbulent shear flow.1959,5(04):544-560.
    [125]Li G, Abrahams A D. Effect of saltating sediment load on the determination of the mean velocity of overland flow. Water Resources Research,1997,33(2):341-347.
    [126]Grissinger H E, Murphey R C. Ephemeral Gully Erosion in the Loess Uplands, Goodwin Creek Watershed, Northern Mississippi, USA. Final Proc. Int. Conf. River Sedimentation, Beijing, China, 1989[C].
    [127]张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究.水土保持学报,1991,(02):8-13.
    [128]Poesen J. Gully Typology and Gully Control Measures in the European Loess Belt. Farm Land Erosion in Temperate Plains Environment and Hills, Amsterdam,1993[C].
    [129]Haan C T, Barfield B J, Hayes J C. Design hydrology and sedimentology for small catchments. Elsevier,1994.
    [130]Poesen J, Nachtergaele J, Verstraeten G, et al. Gully erosion and environmental change: importance and research needs. Catena,2003,50(2-4):91-133.
    [131]Brice J C. Erosion and deposition in the loess-mantled Great Plains, Medicine Creek drainage basin, Nebraska. US Government Printing Office,1966.
    [132]Imeson A C, Kwaad F. Gully types and gully prediction. Geografisch Tijdschrift,1980,14(5): 430-441.
    [133]Vandaele K, Poesen J, Govers G, et al. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology,1996,16(2):161-173.
    [134]王文龙,雷阿林,李占斌,等.土壤侵蚀链内细沟浅沟切沟流动力机制研究.水科学进展,2003,14(04):371-375.
    [135]龚家国,周祖昊,贾仰文,等.黄土区浅沟侵蚀沟槽发育及其水流水力学基本特性模拟实验研究.水土保持学报,2010,(05):92-96.
    [136]Gong J G, Jia Y W, Zhou Z H, et al. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes. Geomorphology,2011,125(1):203-213.
    [137]刘青泉,李家春,陈力,等.坡面流及土壤侵蚀动力学(Ⅰ)——坡面流.力学进展,2004,(03):360-372.
    [138]夏卫生,雷廷武,刘春平,等.降雨条件下坡面薄层水流速度特征.水利学报,2004,(11):119-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700