用户名: 密码: 验证码:
核主泵内多相流动瞬态水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核主泵是核电站里最关键的核动力设备之一,其功能是在系统充水时赶气,在开堆前循环升温,在正常运行时确保一回路冷却剂循环以冷却堆芯,在事故工况下阻止核事故扩大等。核主泵长期稳定安全可靠的运行对冷却剂输送、堆芯冷却、热量排出及防止核电站事故发生等极为重要。本文主要工作是围绕对各种事故工况下气-汽-液多相混合物的瞬态流动变化规律进行数值模拟,并利用五孔探针、压力脉动探针及振动仪器等对其进行试验研究。主要研究工作和创造性成果有:
     1.为了确保核主泵在变流量工况下可靠运行,采用数值模拟与试验相结合的方法对核主泵在瞬变工况下,不同叶片数与导叶片数及不同分流叶片进口直径的叶轮动力特性进行研究,结果表明:在变流量过程中,当叶片数为5片、导叶片为11片时,叶轮承受的径向力最小。分流叶片进口直径为0.72D2时,压力脉动在各工况下运行最小。
     2.针对核主泵在实际运行中会出现流量瞬变问题,先对核主泵在单相变流量过渡过程时内部水动特性进行研究,再分别对流量不变、含气量增加,含气量不变、流量增加及流量与含气量同时变化过渡过程下,对核主泵内部的气液两相瞬变流动规律进行深入的研究,得到了不同瞬变过渡过程中核主泵气液两相流动的瞬态水动力特性。
     3.为了解决核主泵对惰转过渡过程提出较高的要求,对比了常规惰转、线性惰转及带惰轮惰转等三种模型在停机过渡过程中水动力特性,得出带惰轮的惰转模型在停机惰转过程中的水动力特性最稳定的结论。在此基础上,分别对单相及气液两相混合工况下的停机过渡过程中水动力特性进行了深入的研究,得到了核主泵在停机过渡过程中,叶轮流道内的压力、速度、气体体积分数、涡量、径向力等变化规律。
     4.针对隐形空化对核主泵叶轮可产生较大危害的特点,阐述了隐形空化过渡过程中汽相的流动变化规律,提出了汽体体积分数随压力的降低呈现指数函数的变化规律。采用小波变换和傅里叶变换对核主泵在不同空化阶段的压力脉动进行了分析,发现在空化初生工况时,核主泵扬程波动频率主要以低频为主,叶轮流道内压力脉动的主频以转频为主,空化所产生的压力脉动对主频影响不明显;在空化发达工况,空化所诱发的压力脉动随空化发展对主频、次主频及脉动幅值的影响越来越大,扬程脉动频率中低频脉动为主;在空化严重工况时,扬程的脉动频率以无规律变化的脉动高频为主,同时包含近乎规律变化的脉动低频。
     5.首次基于CFD数值模拟与试验相结合的方法对核主泵失水气液两相混合工况下,含气量与空化之间的影响进行了研究,发现含气量对空化影响非常明显,在相同工况下空化区域随着含气量增加而变小。系统分析了气液两相混合工况下含气量对空化断裂工况的影响,发现含气量能延缓空化断裂工况发生。
     6.首次基于流固耦合技术对核主泵空化与叶轮最大变形量之问的关系进行探索,获得了不同空化阶段对应的叶轮最大变形量的瞬态脉动变化规律及叶轮径向力不平衡变化规律。首次在考虑气液两相的基础上,对流量或含气量的瞬变对核主泵结构静力学及模态分析的影响进行研究。得到了在流量不变时,含气量与核主泵叶轮最大变形量呈现线性变化关系;含气量不变时,叶轮最大变形量随流量增加而增大的结论。
     7.利用外特性测量设备、五孔探针、压力脉动探针及虚拟仪器对核主泵在各工况下进行系统的静态及瞬态内部流场及外特性测试。通过matlab与orign对试验数据进行处理并与数值模拟数据进行对比可知,试验结果与数值模拟结果总体趋势一致。故通过采用数值模拟与试验相结合的方法可以准确掌握核主泵在各工况下运行的内部流动规律。本研究结果为核电泵及其它气.汽-液多相流动泵的研究提供了理论基础。
The reactor coolant pump is one of the most critical nuclear-powered devices in the nuclear power plant. The functions of the reactor coolant pump are to drive the gas out of the system when water-filling, to circulated and heating the nuclear reactors before it starts work, to ensure that the primary coolant circuit work normally to cool the core of the reactor, and to prevent the nuclear accidents expanding under accident conditions. The reactor coolant pump's long-term stability, safe and reliable operation are of extremely importance to the coolant delivery, cool the reactor core, exhaust the heat and prevent the occurrence of nuclear accidents. The main tasks of this dissertation are to analyze the transient flow variation of gas-liquid two-phase mixture under a variety of accident conditions by numerical simulation, and use the five-hole probe, the pressure pulsation probe and vibration instrument for test validation. Some meaningful research and creative achievements are obtained and listed as follow:
     1. In order to ensure that the reactor coolant pump can work smoothly during variable flow conditions, adopting the test and numerical simulation during the transient operating conditions to study the dynamic characteristics of the complex impeller, which has different number of blades and guide vanes and different splitter inlet. The result shows that during the process of variable flow, when the blade number is five and the guide vane number is eleven, the radial force upon the impeller is the smallest. The pressure pulsation is the minimum under a variety of conditions, as the splitter blade inlet diameter is0.72D2.
     2. In the actual operation, for reactor coolant pump will encounter the flow transient problems, so the internal hydrodynamic characteristics in single-phase variable flow transition process was analysed firstly. Then the author conducted in-depth research of the gas-liquid two-phase transient flow law inside the reactor coolant pump, in the transition process of unchanged in flow rate and increase in gas content, gas content unchanged and flow increases, or the flow and gas content change together. The reactor coolant pump gas-liquid two-phase transient hydrodynamic flow characteristics under the different transient transition process are obtained.
     3. The hydrodynamic characteristics of three inertial rotation models was compared during the downtime transition process. It turn out that the hydrodynamic characteristics of the inertial rotation model with idler is the most stable one during the downtime idle process. Based on this, it continues to study deeply on the hydrodynamic characteristics of the single-phase and gas-liquid two-phase mixed conditions in the downtime transition process. From the study, the variation laws of tract pressure, speed, gas volume fraction, vorticity and radial force within the reactor coolant pump impeller are obtained during the downtime transition process.
     4. Considering the feature of invisible cavitation, which does greater harm to the reactor coolant pump impeller, the bubble phase flow variation law in the invisible cavitation transition process was elaborated, and found out that the exponential function variation law of the gas volume fraction with the pressure decreasing. The wavelet transform and Fourier transform methods are adopted to analyze the reactor coolant pump pressure pulsation in different stages of cavitation, and the characteristics of pressure pulsation in different cavitation stages was obtained. In the incipient cavitation conditions, the low frequency was predominantly factor in the fluctuation frequency of head of the reactor coolant pump,and the rotation frequency was predominantly factor in the main frequency of pressure fluctuation in impeller passages. The pressure fluctuation induced by the cavitation had little effects on the main frequency.In the developed cavitation condition,the pressure fluctuation induced by cavatation has come to matter much more to the dominant frequency, sub-main frequency and oscillation amplitude.The low and medium frequency were predominantly factors in the fluctuation frequency of head.In serious condition of cavitation,the pressure pulsations are composed of irregular high-frequency and regular the low and medium pressure pulsations.
     5. The relationship between the gas content and the cavitation was researched by CFD numerical simulation and experiment under the dehydration gas-liquid two-phase mixed conditions. The results showed that gas content on cavitation was very obvious impact. With the increase of gas content, cavitation area became smaller under the same conditions. The gas content impact on the cavitation fracture conditions was systematically analyzed under the conditions of gas-liquid two-phase. The result showed that gas content could delay the cavitation fracture conditions.
     6. Based on the fluid-structure coupling techniques to systematically study the relationship between the reactor coolant pump cavitation and the impellermaximum deformation, the variation laws of the impeller maximum deformation transient pulsation corresponding different cavitation stages and the impeller radial force imbalance variation law are obtained. The reactor coolant pump, with dynamical modal analysis and structural statics, was researched on the basis of considering the gas-liquid two-phase conditions. It was found that when the flow rate was unchanged, the gas content and the reactor coolant pump impeller maximum amount of deformation presented a linear variation, and when the gas content was unchanged with the flow rate increasing, the impeller maximum amount of deformation increased
     7. The comprehensive and systematic tests of static and transient internal flow field and the hydramic characteristics were conducted with the five-hole probe, the pressure pulsation probe, vibration instrument and the virtual instrument. It was also proved that the measured results were in accord with the calculated ones. The research results provide some reference for the reactor coolant pump or other gas-vapor-liquid multiphase pumps.
引文
[1]Jong Pil Parka, Ji Hwan Jeonga, Won Tae Kimb, et al. Debris transport evaluation during the blow-down phase of a LOCA using computational fluid dynamics [J]. Nuclear Engineering and Design,2011,241:3244-3255.
    [2]Mahmoodi R, Shahriari M, Zolfaghari A, et al. An advanced method for determination of loss of coolant accident in nuclear power plants[J]. Nuclear Engineering and Design,2011,241: 2013-2019.
    [3]杨江,田文喜,苏光辉,等.AP1000冷管段小破口失水事故分析[J].原子能科学技术,2011,45(5):541-547.
    [4]Tsukamoto H, Ohashi H. Transient characteristics of a centrifugal pump during starting period [J]. ASME Journal of Fluid Engineering,1982,104(1):6-13.
    [5]Tsukamoto H, Matsunaga S, Yoneda H, et al. Transient characteristics of a centrifugal pump during stopping period[J]. ASME Journal of Fluid Engineering,1986,108(4):392-399.
    [6]Pavel Ornahen, Ferdinand Gubina. Simulations and field tests of a reactor coolant pump emergency start-up by means of remote gas units[J], Transactions on Energy Conversion,1992, 7(4):691-697.
    [7]Lefebvre P J, Barker W P. Centrifugal pump performance during transient operation[J]. ASME Journal of Fluid Engineering,1995,117(3):123-128.
    [8]Thanapandi P, Prasad R. Centrifugal pump transient characteristics and analysis using the method of characteristics[J]. International Journal of Mechanical Sciences,1995,37(1):77-89.
    [9]Gaikwad Avinash J, Kumar Rajesh,. Vhora S F, et al. Transient analysis following tripping of a primary circulating pump for 500-MWe PHWR power plant[J]. IEEE Transactions on Nuclear Science,2003,50(2):288-293.
    [10]Carlin Edward L, Hilton Peter A, Sung Yixing. Margin assessment of AP1000 loss of flow transient[C]. International Conference on Nuclear Engineering ICONE14, USA, Florida, Miami, 2006:17-20.
    [11]Farhadi K, Bousbia-salah A, D'Auria F. A model for the analysis of pump start-up transients in Tehran Research Reactor[J]. Progress in Nuclear Energy,2007,49:499-510.
    [12]Farhadi K. Transient behaviour of a parallel pump in nuclear research reactors[J]. Progress in Nuclear Energy,2011,53:195-199.
    [13]Han J W, Lee T H, Eoh J H, et al. Investigation into the effects of a coastdown flow on the characteristics of early stage cooling of the reactor pool in KALIMER-600[J]. Annals of Nuclear Energy,2009,36:1325-1332.
    [14]张森如.主循环泵瞬态特性计算[J].核动力工程,1993,14(2):183-190.
    [15]邓绍文.秦山核电二期工程主泵瞬态计算[J].核动力工程,2001,22(6):494-496.
    [16]郭玉君,张金玲,秋穗正,等.反应堆系统冷却剂泵流量特性计算模型[J].核科学与工 程,1995,15(3):220-225,231.
    [17]张亚培,田文喜,秋穗正,等.CPR1000全厂断电事故瞬态特性分析[J].原子能科学技术,2011,45(9):1056-1059.
    [18]刘夏杰,刘军生,王德忠,等.核电事故对核主泵安全特性影响的试验研究[J].原子能科学技术,2009,43(5):448-451.
    [19]Gao Hong, Gao Feng, Zhao Xianchao, et al. Transient flow analysis in reactor coolant pump systems during flow coastdown period[J]. Nuclear Engineering and Design,2011,241: 509-514.
    [20]王勤湖,李社坤,卢文跃,等.压水堆核电站一回路工况变化对主泵主要机械性能的影响[J].核动力工程,2005,26(6)增刊:103-108.
    [21]张龙飞,张大发,王少明.转动惯量对船用核动力主泵瞬态特性的影响研究[J].船海工程,2005,34(2):55-57.
    [22]徐一鸣,徐十鸣.核主泵惰转转速计算模型的比较[J].发电设备,2011,25(4):95-98.
    [23]王乐勤,吴大转.混流泵管路负载快速变化过程瞬态特性的试验研究[J].通用机械,2003,2:65-68.
    [24]王乐勤,吴大转,郑水英.混流泵瞬态水力性能试验研究[J].流体机械,2003,31(1):1-3,6.
    [25]王乐勤,吴大转,郑水英.混流泵开机过程瞬态水力性能的数值计算[J].流体机械,2004,32(1):10-13.
    [26]王乐勤,吴大转,郑水英,等.混流泵开机瞬态水力特性的试验与数值计算[J].浙江大学学报:工学版,2004,38(6):751-755.
    [27]吴大转,王乐勤,胡征宇.离心泵快速启动过程外部特性的试验研究[J].工程热物理学报,2006,27(1):68-70.
    [28]胡征宇,吴大转,王乐勤.离心泵快速启动过程的瞬态水力特性-外特性研究[J].浙江大学学报:工学版,2005,39(5):605-605,622.
    [29]吴大转,王乐勤.高速混流泵汽蚀特性与汽蚀性能改善方法[J].农业机械学报,2006,37(9):93-96.
    [30]李志峰,吴大转,于乐勤.基于动网格方法的圆柱启动瞬态流动数值模拟[J].浙江大学学报:工学版,2008,42(2):264-268.
    [31]Wang Leqin, Li Zhifeng, Wu Dazhuan. Transient flow past an impulsively started rotating and translating circular cylinder using dynamic mesh method[J]. International Journal of Computational Fluid Dynamies,2007,21(3-4):127-135.
    [32]李志峰,吴大转,王乐勤.圆柱和直浆叶突然启动瞬态流动的数值研究[J].工程热物理学报,2007,28(6):945-947.
    [33]王乐勤,李志峰,戴维平,等.离心泵启动过程内部瞬态流动的二维数值模拟[J].工程热物理学报,2008,29(8):1319-1322.
    [34]吴大转,许斌杰,李志峰,等.离心泵瞬态操作条件下内部流动的数值模拟和性能预测[J].工程热物理学报,2009,30(5):781.783.
    [35]李志峰,吴大转,戴维平,等.离心泵启动过程瞬态特性与流动的实验研究[J].工程热物理学报,2010,31(12):2019-2022.
    [36]Wu Dazhuan, Wang Leqin, Hao Zongrui, et al. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation[J]. Journal of Mechanical Science and Technology,2010,24(2):575-582.
    [37]Li Zhifeng, Wu Dazhuan, Wang Leqin, et al. Numerical simulation of the transient flow in a centrifugal pump during starting period[J]. ASME Journal of Fluids Engineering,2010,132: 081-102.
    [38]Wu Dazhuan, Wu Peng, Li Zhifeng, et al. The transient flow in a centrifugal pump during the discharge valve rapid opening process[J]. Nuclear Engineering and Design,2010,240: 4061-4068
    [39]Li Zhifeng, Wu Peng, Wu Dazhuan, et al. Experimental and numerical study of transient flow in a centrifugal pump during startup[J]. Journal of Mechanical Science and Technology,2011, 25(3):749-757.
    [40]Furuya O. An analytical model for prediction of two-phase(noneondensable) flow pump performance[J]. Journal of Fluids Engineering,1985,107(3):139-147.
    [41]Narabayshi Tadashi, Arai Kenji, Kubokoya Takashi, et al. Centrifugal pump behavior in steady and transient two-phase flow[J]. Journal of Nuclear Science Technology,1986,23(2):136-150.
    [42]Kiyoshi Minemura, Tomomi Uchiyama. Three-dimension calculation of air-water two-phase flow in centrifugal pump impeller based on a bubbly flow model[J]. ASME Journal of Fluids Engineering,1993,115(4):781-783.
    [43]Kiyoshi Minemura, Tomomi Uchiyama. Three-dimension calculation of air-water two-phase flow in centrifugal pump impeller based on a bubbly flow model with fixed cavity[J]. JSME Internal Journal, Series B,1994,37(4):726-735.
    [44]Prediction of reactor coolant pump performance under two-phase flow conditions[J]. Nuclear Engineering and Design,1994,26(2):179-189.
    [45]Furukawa Akinori, Shirasu Shin-ichirou, Sato Sinzi. Experiments on air-water flow pump impeller with rotating-stationary circular cascades and recirculating flow holes, JSME International Journal, Series B,1996,39(3):575-582.
    [46]Sato Sinzi, Furukawa Akinoir, Takatsu yasuo, Air-water two-phase performance of centrifugal pump impellers with various blade angles, JSME International Journal, Series B,1996,39(2): 223-229.
    [47]Kim You-Raek, Tanaka Kazuhiro. Influence of tip clearance on pump performance of two phase flow in a screw centrifugal pump, Proceedings of The Third Internal Conference on Pump and Fan, Tsinghua University Press, October,1998:346-357.
    [48]Lee S, Bang Y S, Kim H J. Experimental study of two-phase pump performance using a full size nuclear reactor pump[J]. Nuclear Engineering and Design,1999,193:159-172.
    [49]Kiyoshi Minemura, Tomomi Uchiyama, Prediction of air-water two-phase flow performance of a centrifugal pump based on one-dimensional two-fluid model[J]. ASME Journal of Fluids Engineering,1998,120(3):327-334.
    [50]Poullikkas A. Compressibility and condensation effects when pumping gas-liquid mixtures[J]. Fluids Dynamics Research,1999,25:57-62.
    [51]Poullikkas A. Two phase flow performance of nuclear reactor cooling pumps[J]. Journal of the Korean Nuclear Society,2000,36(2):123-130.
    [52]Poullikkas A. Effects of two-phase liquid-gas flow on the performance of nuclear reactor cooling pumps[J]. Progress in Nuclear Energy,2003,42(1):3-10.
    [53]Hazra S B, Steiner K. Computation of dilute two-phase flow in a pump[J]. Journal of Computational and Applied Mathematics,2007,203(2):444-460.
    [54]Jose Caridad, Miguel Asuaje, Frank Kenyery, et al. Characterization of a centrifugal pump impeller under two-phase flow conditions[J]. Journal of Petroleum Science and Engineering, 2008,63:18-22.
    [55]Francois Gruselle, Johan Steimes, Patrick Hendrick. Study of a two-phase flow pump and separator system[J]. Proceedings of ASME Turbo Expo 2010:Power for Land, Sea and Air GT2010 June 14-18,2010, Glasgow, UK 1-10
    [56]王旱祥,万邦烈.电动潜油离心泵中气液两相混合物的流动分析[J].石油大学学报:自然科学版,1995,19(2):52-58.
    [57]Wu Yulin et al. Three-Dimension calculation of oil-bubble flows through a centrifugal pump impeller[C]. Proceedings of The Third Internal Conference On Pump and Fan, Tsinghua University Press, October 1998:526-532.
    [58]黄思,李汗强,班耀涛,等.叶片式气液混输泵水力设计的一种选型方法[J].石油机械,1999(12):9-11.
    [59]班耀涛,赵宏,薛敦松.螺旋轴流式油气多相泵的性能预测模型[J].工程热物理学报,2000,21(2):187-190.
    [60]黄思,吴玉林.叶片式泵内气液两相泡状流的三维数值计算[J].水利学报,2001(6):57-61.
    [61]卢金铃,席光,祁大同.气液两相流泵的研究进展[J].流体机械,2001,29(12):12-15.
    [62]卢金铃,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报,2003,24(2):237-240.
    [63]金玉珍,谢鹏,胡旭东.小流量高扬程离心旋涡泵气液混输扬程的分析[J].浙江理工大学学报,2007,24(4):420-423.
    [64]余志毅,曹树良,王国玉.叶片泵内气液两相流的三维流动数值模型[J].北京理工大学学报,2007,27(12):1057-1060,1064.
    [65]余志毅,曹树良,王国玉.叶片式混输泵内气液两相流的数值计算[J].工程热物理学 报,2007,28(1):46-48.
    [66]黄思,王宏君,郑茂溪.叶片式混输泵气液两相流及性能的数值分析[J].华南理工大学学报:自然科学版,2007,35(12):11.16.
    [67]谢鹏,朱祖超.低比转速旋涡泵的汽液混输汽蚀试验分析[J].水利学报,2009,40(12):1506-1511.
    [68]李昳,盛英英.汽液混输旋涡泵内部气相分布与性能预测研究[J].机电工程,2009,26(7):32-33,56.
    [69]李雪琴,王君,赵鹏,等.多相混输泵内汽液两相分布的随机分形模型[J].广西大学学报:自然科学版,2010,35(5):756-761.
    [70]张有忱,杨春玲,黎镜.迷宫螺旋泵气液两相流场的数值模拟及试验[J].排灌机械工程学报,2010,28(6):492-496.
    [71]朱荣生,燕浩,李继忠,等.小型气液射流泵内部流场数值模拟及优化选择[J].排灌机械工程学报,2010,28(3):207-210.
    [72]马希金,李新凯,王楠,等.混输泵动静叶间距对混输泵性能的影响[J].西华大学学报:自然科学版,2011,30(6):48-51,72.
    [73]马希金,李新凯,王楠,等.导叶叶片数对气液混输泵性能的影响[J].兰州理工大学学报,2012,38(3):51-55.
    [74]付强,袁寿其,朱荣生,等.离心泵气液固多相流动数值模拟与试验[J].农业工程学报,2012,28(14):52-57.
    [75]Freddy Jeanty, Jesus De Andrade, Miguel Asuaje, et al. Numerical simulation of cavitation in a centrifugal pump at low flow rate[C]. Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, FEDSM2009 August 2-6,2009, Vail, Colorado USA 168-173.
    [76]Kibum Kim, Kyumin Hwang, Kihyung Lee, et al. Investigation of coolant flow distribution and the effects of cavitation on water pump performance in an automotive cooling system[J]. International Journal of Energy Research,2009,33:224-234.
    [77]Ding H, Visser F C, Jiang Y, et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications[J]. ASME Journal of Fluids Engineering,2011,133:1-14.
    [78]Tan Lei, Cao Shuliang, Wang Yuming, et al. Numerical simulation of cavitation in a centrifugal pump at low flow rate[J]. Chinese Physics Letters,2012,29(1):1-6.
    [79]王国玉,吴炯杨,李向宾,等.空化紊流流动的数值计算模型及其验证[J].工程热物理学报,2005,26(6):947-950.
    [80]朱荣生,付强,李维斌.低比转数离心泵叶轮内汽蚀两相流三维数值模拟[J].农业机械学报,2006,37(5):75-79.
    [81]吴大转,焦磊,王乐勤.离心泵启动过程瞬态空化特性的试验研究[J].工程热物理学 报,2008,29(10):1682-1684.
    [82]Yu Zhiyi, Wang Guoyu, Cao Shuliang. Extended two-fluid model applied to analysis of bubbly flow in multiphase rotodynamic pump impeller[J]. Front. Mech. Eng. China,2009,4(1):53-59.
    [83]李军,刘立军,李国君,等.空化数对离心泵水力性能影响的数值研究[J].工程热物理学报,2010,31(5):773-776.
    [84]张瑶,罗先武,许洪元,等.空化数对离心泵水力性能影响的数值研究[J].工程热物理学报,2010,31(10):1671-1674.
    [85]季斌,罗先武,吴玉林,等.考虑热力学效应的高温水空化模拟[J].清华大学学报,2010,50(2):262-265.
    [86]谭磊,曹树良,桂绍波,等.带有前置导叶离心泵空化性能的试验及数值模拟[J].机械工程学报,2010,46(18):177-182.
    [87]庄保堂,罗先武,王鑫,等.立式多级筒袋泵诱导轮及首级叶轮内的空化流动模拟[J].清华大学学报:自然科学版,2011,133:267-271.
    [88]黄剑峰,张立翔,姚激,等.混流式水轮机三维空化湍流场混合数值模拟[J].中国电机工程学报,2011,31(32):115-121.
    [89]刘宜,李永乐,韩伟,等.离心泵的进口几何参数对泵空化性能的影响[J].兰州理工大学学报,2011,37(1):50-53.
    [90]段向阳,王永生,苏永生.喷水推进泵空化特征联合分类识别[J].上海交通大学学报,2011,45(9):1322-1326,1331.
    [91]刘厚林,刘东喜,王勇,等.基于Kunz模型的离心泵空化流数值计算[J].华中科技大学学报:自然科学版,2012,40(8):17-20.
    [92]高波,杨敏官,李忠,等.空化流动诱导离心泵低频振动的实验研究[J].工程热物理学报,2012,33(6):965-968.
    [93]杨敏官,孙鑫恺,高波,等.离心泵内部非定常空化流动特征的数值分析[J].江苏大学学报:自然科学版,2012,33(4):408-413.
    [94]刘厚林,刘东喜,王勇,等.三种空化模型在离心泵空化流计算中的应用评价[J].农业工程学报,2012,28(16):54-59.
    [95]丛明,毛建华.大型立式混流泵开式叶轮叶片的模态分析[J].水泵技术,1993,4:22-24.
    [96]王少波,刘元杰,梁醒培,等.大型混流式水轮机叶轮叶片结构动力特性分析[J].机械强度,2004.26(01):38-41.
    [97]罗永要,王正伟,梁权伟,等.混流式水轮机叶轮动载荷作用下的应力特性[J].清华大学学报(自然科学版),2005,45(02):235-237.
    [98]张立翔,陈香林,闫华,等.混流式水轮机叶轮叶片流固耦合振动特性分析[J].水电能源科学,2005,23(02):38-41.
    [99]肖若富,王止伟,罗永要,等.基于流固耦合的混流式水轮机叶轮静应力特性分析[J].水力发电学报,2007,26(03):120-123.
    [100]江帆,陈维平,王一军,等.基于动网格的离心泵内部流场数值模拟[J]. Fluid Machinery.2007,35.7:20-24.
    [101]Katsutoshi Kobayashi, Shigeyoshi Ono.Prediction of stress on pump blade by one-way coupled method of fluid and structure simulation[C].International Mechanical Engineering Congress and Exposition,2007:37-43.
    [102]Friedrich-Karl Benra,Hans Josef Dohmen,Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C].ASME 2007 Pressure Vessels and Piping Conference(PVP2007):41-48.
    [103]蔡敢为,蓝永庭,李兆军,等.混流式水轮机叶轮内流固耦合的有限元模型[J].广西大学学报(自然科学版),2008,33(01):35-39.
    [104]张丽霞,张伟,潘寄銮.基于流固耦合理论的混流式叶片动力学分析[J].清华大学学报(自然科学版),2008,48(05):773-776.
    [105]刘小兵,刘德民,曾永忠,等.基于流固耦合的水轮机振动的数值研究[J].水动力力学研究与进展,2008,23(06):715-721.
    [106]QW LIANG等,水轮机叶轮的模态响应[J].国外大电机:2006,(03):63-67.
    [107]周忠宁,李意民,谷勇霞,等.基于流固耦合的叶片动力特性分析[J].中国矿业大学学报,2009,38(03):401-405.
    [108]Stephan M Senn, Martin Seiler, Ottmar Schaefer.Blade excitation in pulse-charged mixed-flow turbocharger turbines,2009,Power for Land Sea and Air (GT2009):499-506.
    [109]陈向阳,袁丹青,杨敏官,等.基于流固耦合方法的300MWe级反应堆主泵叶片应力分析[J].机械工程学报.2010,46(04):111-115.
    [110]陈向阳,袁丹青,杨敏官,等.300MWe级核电站主泵流固耦合传热研究[J].流体机械.2010,38(01):19-22.
    [111杨敏官,王军锋,罗惕乾,等,编著.流体机械内部流动测量技术[M].北京:机械工业出版社,2006.
    [112]Paone N. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids,1989,7:371-378.
    [113]Oldenburg M. Velocity measurement in the impeller and in the volute of a centrifugal pump by particle image displacement velocimetry[C]. Proc.8th Int. Symp. On Application of Laser Techniques to Fluid Mechanics, Lisbon,1996.452-460.
    [114]Hayami H. Flow measurement in a rotation impeller passage using PIV. Proceedings of the Third International Conference on Pumps and Fans[J], Tsinghua University Press,1998:13-19.
    [115]Lee Youngho. Animation technique applied to a fixed and pitching airfoil by particle image velocimetry[C]. Proc.2nd ISFMFE, China Science & Technology Press,2000:11-17.
    [116]Balzani N. Experimental investigation of the blade-to-blade flow in a compressor rotor by digital particle image velocimetry[J]. Journal of Turbmachinery,2000,122:743-750.
    [117]Pedersen N, Larsen PS, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions-partl:Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements[J]. Journal of Fluids Engineering,2003,125(1):61-72.
    [118]Tang Fangping. PIV for propeller pumps applications. Proc.2nd ISFMFE, China Science & Technology Press,2000:128-134.
    [119]杨敏官,刘栋,顾海飞,等.盐析固-液两相流场的PIV测量方法[J].江苏大学学报(自然科学版),2007,28(4):324-327.
    [120]许洪元,卢达熔,焦传国,等.离心泵流道中固体颗粒速度场的粒子成像测速(PIV)分析与研究[J].农业工程学报,1998,14(3):112-116.
    [121]袁寿其.低比转速离心泵理论与设计[M].北京:机械工业出版社,1997.
    [122]邹滋祥.相似理论在叶轮机械模型研究中的应用[M].北京:科学出版社,1984.
    [123]陈凤军.相似原理在循环泵技术改造中的应用[J].节能技术,2003,21(121):38-39.
    [124]Stepanoff A J. Centrifugal and axial flow pumps theory design and application[M], John wilay and sons, New York,1957.
    [125]陈次昌.离心泵叶轮主要几何尺寸的计算[J].排灌机械,1985,3(1):34-40.
    [126]张俊达,薛国富.速度系数法[J]水泵技术,1990(1):19-23.
    [127]何希杰,钟振.单级离心泵设计规律与趋势[J].排灌机械,1991,9(2):4-8.
    [128]白小榜,沙毅,李金磊.混流泵速度系数法水力设计探讨[J].水泵技术,2008,(5):11-15.
    [129]沙毅,康灿,陈燕.基于IS系列离心泵速度系数法水力设计[J].水泵技术,2005(4):20-23.
    [130]Anderson H H.Mine pumps[J]. Journal of Mining Society,1938.
    [131]Worster R C. The flow in volutcs and its effects on centrifugal pump performance[J]. Proc. I Mech. E.1963,177(31).124-126
    [132]Anderson H H.The area ratio system[J]. Word Pumps,1984(6):201-211.
    [133]郭自杰.涡壳泵面积比原理讨论[J].排灌机械,1989,7(2):1-4.
    [134]张俊达.面积比系数的统计[J].水泵技术,1991(2):28-29.
    [135]袁寿其,曹武陵,陈次昌.面积比原理和泵的性能[J].农业机械学报,1993,24(2):36-41.
    [136]孙德明,范宗霖.面积比原理在部分流泵中的应用[J].水泵技术,2002(5):3-5.
    [137]杨虎军,张大会,于春龙,等.低比转速离心泵的面积比原理[J].兰州理工大学学报,2006,32(5):53-55.
    [138]杨虎军,张人会,王春龙,等.计算离心泵面积比和蜗壳面积的方法[J].机械工程学报,2006,42(9):67-70.
    [139]张克危.流体机械原理(上册)[M].北京:机械工业出版社,2000
    [140]关醒凡.轴流泵与混流泵[M].北京:中国宇航出版社,2009.
    [141]何希杰,劳学苏.混流泵叶轮叶片设计方法[J].河北工程技术高等专科学校学报,2000(1):1-5.
    [142]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [143]李良.AP1000核反应堆用冷却剂泵水力模型的设计与研究[D].大连:大连理工大学,2010.
    [144]张栋俊.泵壳对核主泵性能的影响[D].大连:大连理工大学,2010.
    [145]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [146]Versteeg HK, Malalasekera W.An Introduction to Computational Fluid Dynamics:The Finite Volume Method. Wiley, New York,1995.
    [147]肖若富,韦彩新,韩凤琴,等.混流式水轮机转轮的动力学研究[J].大电机技术,2001,(7):41-43.
    [148]Brennen C E.Hydrodynamics of Pumps[M].Oxford:Oxford University Press and CETI Inc.,1994.
    [149]姚志峰,王福军,肖若富,等.双吸离心泵吸水室和压水室压力脉动特性试验研究[J].水利学报,2012.43(04):473-478.
    [150]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,6(39):60-67.
    [151]蒋庆磊,翟璐璐,吴大转,等.多级离心泵内叶轮出口压力脉动研究[J].工程热物理学报,2012,33(04):509-602.
    [152]张思青,胡秀成,张立翔,等.基于CFD的长短叶片水轮机压力脉动研究[J].水力发电学报,2012,31(02):216-221.
    [153]王秀礼,袁寿其,朱荣生,等离心泵汽蚀非稳定流动特性数值模拟[J].农业机械学报,2012,43(03)67-72.
    [154]杨孙圣,孔繁余,张新鹏,等.液力透平非定常压力脉动的数值计算与分析[J].农业工程学报,2012,28(07):67-72.
    [155]袁寿其,周建佳,袁建平,等.带小叶片螺旋离心泵压力脉动特性分析[J].农业机械学报,2012,43(03):83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700