用户名: 密码: 验证码:
利用动物模型研究食物潜在致敏性及其致敏机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食物过敏发病率的逐年升高使其成为一个国际研究的热点。近年来人们一直在探索能够模拟人体食物致敏的理想动物致敏模型,以评价包括转基因食品在内的多种新型食品的潜在致敏性,并用于深入研究食物致敏的相关机理。目前,人们大都是针对单一食物致敏蛋白(如卵清白蛋白和花生凝集素等)进行动物致敏研究,而忽略了食物中多种蛋白间的互作对其致敏性的影响。另外,目前也缺乏对区分不同食物潜在致敏性的动物致敏方法的研究。本文在查阅相关文献并分析不同食物潜在致敏性的基础上,选择不同致敏性的花生蛋白提取物(PPE)、牛奶蛋白提取物(CME)和马铃薯蛋白提取物(PAPE)致敏BALB/c小鼠,研究了一种可以区分这些食物潜在致敏性适宜的小鼠致敏模型。在此基础上,采用PPE经口致敏小鼠,运用数字化表达谱分析(DGE)探究了小鼠致敏反应产生的机理及anti-CD4单克隆抗体对致敏反应产生的影响及其机制。主要研究结果及结论如下:
     (1)使用PPE)、CME和PAPE分别经口致敏BALB/c小鼠,PPE使动物产生了最强烈的特异性IgE反应,最高水平的Thl-、Th2-细胞分化和Th2型细胞因子IL-4,还诱发肥大细胞在脾脏产生了最大程度的聚集和脱颗粒;CME处理组动物产生的各种免疫反应水平均显著低于PPE组(P<0.05); PAPE几乎未诱发小鼠产生致敏反应。说明本研究中选择的BALB/c小鼠及采用的致敏方法可以用以区分这些不同致敏性程度的食物总蛋白的潜在致敏性。
     (2)使用DNAStar软件和NetMHC Ⅱ2.2Server在线服务器分析三种食物蛋白提取物的潜在致敏性。PPE中含有十一种已知致敏蛋白,其中Ara h1、Ara h2、Ara h3和Arah5具有较多的抗原表位;CME中含有三种已知致敏蛋白,其中仅B-乳球蛋白含有抗原表位;PAPE中含有四种已知致敏蛋白,但几乎都不含有抗原表位。模拟胃液消化实验中,PPE含有分子量分别为17KD(Arah2和/或Ara h8)和7KD的抗模拟胃液消化的蛋白或肽段,CME中只有B-乳球蛋白具有抗消化能力,PAPE被完全消化。这说明三种食物蛋白提取物潜在致敏性程度为PPE>CME> PAPE,进一步验证了使用BALB/c小鼠致敏模型的研究结果。
     (3)经口给予C3H/HeJ小鼠PPE进行致敏,使用DGE方法分析致敏动物脾脏所有基因转录水平的变化以探究食物致敏过程相关分子机制。共鉴定出81个差异表达基因,其中有30个与免疫系统相关。这些基因主要涉及抗原呈递作用的抑制、免疫细胞迁移和粘附、T细胞激活信号的促进及B细胞受体(BCR)信号的增强。说明PPE处理激活了动物的获得性免疫反应。
     (4)在PPE经口致敏C3H/HeJ小鼠的同时给予anti-CD4抗体,发现其从体液免疫、细胞免疫和全身系统性致敏症状三个方面抑制了动物过敏的产生。使用DGE方法进一步探索其影响过敏反应的机理,鉴定出131个差异表达基因,其中35个与免疫系统相关,它们主要涉及到机体巨噬细胞活化及固有免疫反应、T细胞和B细胞成熟、增殖和分泌抗体的抑制、以及特异性Treg细胞的促进等。说明anti-CD4抗体不仅抑制了动物对PPE的获得性免疫反应,还促进了机体特异性耐受及适度固有免疫反应的产生。
The increasing incidence make food allergy become an international research hotspot. In recent years, people have been exploring to ideal animal model of sensitization to evaluate many kinds of new food allergenic potential, and to study the related mechanism of food sensitization. However, at present, people are mostly research for single food sensitization protein (such as OVA, PNA) sensitization with animal, while ignoring the effects of proteins' mutual interaction in food on allergenicity. In this research, we chose three kind of food protein extracts from peanut, milk and potato to sensitize BALB/c mice and studied an allergic murine model that can recognize potential allergenicity of different food. And on this basis, peanut protein extract were used to oral administrate C3H/HeJ mice whose immune system is more sensitive. The digital gene expression analysis method (DGE) was then used to investigate the sensitization mechanism and the influence of non-depletion anti-CD4monoclonal antibody on the allergy reaction. The main results and conclusions are as follows:
     (1) The BALB/c mice were orally sensitized with PPE, CME and PAPE respectively. Animals in PPE treatment group produced highest specific IgE, Thl-and Th2-cell, also the most severe aggregation and degranulation of mast cells in spleen. The levels of immune reaction of mice in CME group were lower than that in PPE group. The PAPE almost did not induce sensitization response in mice. This suggested that the chosen BALB/c mouse and sensitization method can be used to distinguish the different levels of potential allergenicity of food protein extracts.
     (2) DNAStar and NetMHCⅡ2.2online Server were used to analyse and predict the potential allergenicity of PPE, CME and PAPE. There are11kind of known allergic proteins in PPE, the Ara h1, Ara h2, Ara h3and Ara h5contain much epitopes. CME contains three known sensitization protein and epitopes only exist in the β-LG. On the contract, there is no epitopes in the four known sensitized protein in PAPE. The results of simulated gastric fluid digestion experiment suggest that the molecular weight of anti-digestion allergen in PPE were17KD and7KD,β-LG is the only anti-digested protein in CME, and the PAPE was completely digested. These results demonstrated that the potential allergenicity of the three protein extracts was PPE> CME> PAPE, this further validate the results obtained from BALB/c mice allergic experiment.
     (3) Orally sensitize C3H/HeJ mouse with PPE and explore the allergic related mechanism on molecular level using DGE method. The results appeared81differentially expressed genes were identified and contained30genes that are associated with immune system. These genes are mainly related to the inhibition of antigen-presenting function, immune cell migration and adhesion, promotion of T cell activation signal and enhancement of the B cell receptor (BCR) signal. This suggested that PPE processing activates the adoptive immune response of animal.
     (4) Non-depletion anti-CD4monoclonal antibody was used to i.v treated C3H/HeJ mice at the same time of sensitization. We fund it inhibited the allergy reactions on three aspects of humoral immunity, cellular immunity and systemic symptoms. DGE was also used to investigate the mechanisms of this affluence.131differentially expressed genes containing35related to immune system were identified. The35genes were primarily involve of macrophage activation and the innate immune response, T cells and B cells mature, inhibition of proliferation and antibody production, and to promotion of specific Treg cells. Anti-CD4antibodies not only inhibit the adoptive immune responses of animals to the PPE, also promoted the specific tolerance and moderation of innate immune response.
引文
[1]Deaeman, R.J., Kimber, I. Food allergy:what are the issues? Toxicology Letters.2001,120 (1): 165-170
    [2]National Institute of Allergy and Infectious Diseases. Guidelines for the Diagnosis and Management of Food Allergy in the United States. NIH Publication.2010, NO:11-7700
    [3]Nordlee, J.A., Taylor, S.L., Townsend, J.A., et al. Identification of a Brazil-nut allergen in transgenic soybeans. New England Journal of Medicine.1996,334 (11):688-692
    [4]Sicherer, S.H. Epidemiology of food allergy. Journal of Allergy and Clinical Immunology.2011, 127:594-602
    [5]陈红兵,高金燕.食物过敏反应及其机制.营养学报,200,7,29(2):105-109
    [6]Untrsmayr, E., Jensen-Jarolim, E. Mechanism of type I food allergy. Pharmacology Therapy.2006, 112:787-798
    [7]Sampson, H.A. Food allergy. Part 1:immunopathogenesis and clinical disorders. Journal of Allergy and Clinical Immunology.1999,103:717-728
    [8]Pawankar, R., Canonica, GW., Holgate, S.T., et al. WAO white book on allergy 2011-2012: executive summary [Internet] Milwaukee, WI:World Allergy Organization; 2012
    [9]孙娜,周催.挪威棕色大鼠和Wistar大鼠经口暴露卵白蛋白后机体过敏反应的比较.农业生物技术学报,2013,21(12):1546-1546
    [10]Jackson, K.D., Howie, L.D., Akinbami, L.J. Trends in Allergy conditions among children:United States,1997-2011. NCHS Dtata Breif,2013,121
    [11]陈静,廖燕,张红忠,等.三城市两岁以下儿童食物过敏现状调查.中华儿科杂志,2012,50(1):5-9
    [12]李小迪.海虾、大豆和腰果等三种食品过敏原组分的分析研究:[硕士学位论文].重庆: 暨南大学,2006
    [13]Amato, G The role of outdoor air pollution and climatic changes on the rising trends in respiratory allergy. Respiratory Medicine.2001,95 (7):606-611
    [14]Gomec, L. Members of the a-amylase inhibitors family from wheat endosperm are major allergens associated with baker's asthma. FEBS Lettes.1992,261:85-88
    [15]Chandra, R.K. Food hypersensitivity and allergic disease. European Journal of Clinical Nutrition. 2002,56 (Suppl 3):S54-56
    [16]Goodman, R.E., Vieths, S., Sampson, H. A., et al. Allergenicity assessment of genetically modified crops — what makes sense? Nature Biotechnology.2008,26 (1):73-81
    [17]Aalberse, R.C. Structural biology of allergens. Journal of Allergy and Clinical Immunology.2000, 106:228-238
    [18]FAO/WHO. Evaluation of allergenicity of genetically modified foods. Report of a joint FAO/WHO expert consultation on allergenicity of foods derived from biotechnology.2001, Rome, Italy
    [19]Codex (Codex Alimentarius Commission). Reports of the sixth session of the Codex ad hoc intergovernmental task on foods derived from biotechnology.2007, CL 2006/54-FBT
    [20]Codex (Codex Alimentarius Commission). Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA animals. CAC/GL 68-2008. In:Foods derived from modern biotechnology,2nd ed. Rome, Italy:World Health Organization, Food and Agriculture Organization of the United Nations.2008, Rome, Italy
    [21]Brusic, V., Millot, M., Petrovsky, N., et al. Allergen databases. Allergy.2003,58:1093-1100
    [22]Gendel, S.M. Allergen databases and allergen semantics. Regulatory Toxicology and Pharmacology. 2009,54:S7-10
    [23]Gendel, S.M., Jenkins, J.A. Allergen sequence databases. Molecular Nutrition and Food Research. 2006,50:633-637
    [24]Mari, A. Importance of databases in experimental and clinical allergology. International Archives of Allergy and Immunology.2005,138:88-96
    [25]Schein, C.H., Ivanciuc, O., Braun, W. Bioinformatics approaches to classifying allergens and predicting cross-reactivity. Immunology and Allergy Clinics of North America.2007,27:1-27
    [26]Goodman, R.E. Practical and predictive bioinformatics methods for the identification of potentially cross-reactive protein matches. Molecular Nutrition and Food Research.2006,50:655-660
    [27]李胜涛,刘昌文,邹泽红,等.MHC-II类抗原表位预测软件的对比评价.生物医学工程研究,2010,29(2):128-132
    [28]Wang, J., Zhou, C., Tian, J., et al. The analysis of specific allergenicity of food allergens families. Food and Agricultural Immunology.2013,1-11
    [29]Ivanciuc, O., Schein, C.H., Braun, W. SDAP:database and computational tools for allergenic proteins. Nucleic Acids Research.2003,31:359-362
    [30]Fiers, M.W., Kleter, GA., Nijland, H., et al. Allermatch, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics. 2004,5:133
    [31]Nakamura, R., Teshima, R., Takagi, K., et al. Development of Allergen Database for Food Safety (ADFS):an integrated database to search allergens and predict allergenicity. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku.2005,32-36
    [32]Hileman, R.E., Silvanovich, A., Goodman, R.E., et al. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. International Archives of Allergy and Immunology.2002,128:280-91
    [33]Mari, A., Scala, E., Palazzo, P., et al. Bioinformatics applied to allergy:Allergen databases, from collecting sequence information to data integration. The Allergome Platform as a model. Cellular Immunology.2006,244:97-100
    [34]Tong, J.C., Lim, S.J., Muh, H.C., et al. Allergen Atlas:a comprehensive knowledge center and analysis resource for allergen information. Bioinformatics.2009,25:979-980
    [35]Fu, TJ., Abbott, U.R., Hatzos, C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid A comparative study. Journal of Agricultural and Food Chemistry.2002,50 (24):7154-7160
    [36]Bannon, G., Fu, T.J., Kimber, I., et al. Protein digestibility and relevance to allergenicity. Environmental Health Perspectives.2003,111 (8):1122
    [37]Bowman, C.C., Selgrade, M.K. Differences in allergenic potential of food extracts following oral exposure in mice reflect differences in digestibility:Potential approaches to safety assessment. Toxicology Science.2008,102,100-109
    [38]贾旭东.转基因食品致敏性评价.毒理学杂,2005,19(2):159-162
    [39]Guimaraes, V., Drumare, M.F., Lereclus, D., et al. In vitro digestion of CrylAb proteins and analysis of the impact on their immunoreactivity. Journal of Agricultural and Food Chemistry.2010, 58 (5):3222-3231
    [40]Thomas, K., Aalbers, M., Bannon, G.A., et al. A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regulatory Toxicology and Pharmacology.2004,39 (2):87-98
    [41]Liu, G.M., Huang, Y.Y., Cai, Q.F., et al. Comparative study of in vitro digestibility of major allergen, tropomyosin and other proteins between Grass prawn (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei). Journal of the Science of Food and Agriculture.2011,91 (1): 163-170
    [42]Mandalari, G., Adel-Patient, K., Barkholt, V., et al. In vitro digestibility of β-casein and β-lactoglobulin under simulated human gastric and duodenal conditions:A multi-laboratory evaluation. Regulatory Toxicology and Pharmacology.2009,55 (3):372-381
    [43]Sirtori, E., Resta, D., Arnoldi, A., et al. Cross-reactivity between peanut and lupin proteins. Food chemistry.2011.126 (3):902-910
    [44]Matsuo, H., Uemura, M., Yorozuya, M., et al. Identification of IgE-reactive proteins in patients with wheat protein contact dermatitis. Contact dermatitis.2010.63 (1):23-30
    [45]Hiemori, M., Bando, N., Ogawa, T., et al. Occurrence of IgE antibody-recognizing N-linked glycan moiety of a soybean allergen, Gly m Bd 28K. International archives of allergy and immunology. 2000,122 (4):238-245
    [46]Goodman, RE. Performing IgE serum testing due to bioinformatics matches in the allergenicity assessment of GM crops. Food and Chemical Toxicology.2008,46:S24-S34
    [47]Poulsen, L.K. Allergy assessment of foods or ingredients derived frombiotechnology, gene-modified organisms, or novel foods. Molecular nutrition & food research.2004,48:413-423
    [48]Hoff, M., Son, D.Y., Gubesch, M., et al. Serum testing of genetically modified soybeans with special emphasis on potential allergenicity of the heterologous protein CP4 EPSPS. Molecular nutrition & food research.2007,51 (8):946-955
    [49]Chen L., Lucas, J.S., Hourihane, J.O., et al. Evaluation of IgE binding to proteins of hardy (Actinidia arguta), gold (Actinidia chinensis) and green (Actinidia deliciosa) kiwifruits and processed hardy kiwifruit concentrate, using sera of individuals with food allergies to green kiwifruit. Food and Chemical Toxicology.2006,44:1100-1107
    [50]Peeters, K.A., Nordlee, J.A., Penninks, A.H., et al. Lupine allergy:not simply cross-reactivity with peanut or soy. Journal of Allergy and Clinical Immunology.2007,120 (3):647-653
    [51]魏菊荣,刘萍,隋萍,等.食物过敏症婴幼儿白细胞介素-10和转化生长因子-β水平的变化.实用儿科临床杂志,2010,25(1):41-42
    [52]黄海波,陈味味,陈伟,等.不同人群血清的中华绒螯蟹过敏原特异性IgE检测.中国生化药物杂志,2010,31(2):128-130
    [53]刘晓艳,乔海灵.多重过敏患者血清中特异性IgG抗体.中国医院药学杂志,2009,29(22):1926-1928
    [54]刘东方.肥大细胞脱颗粒机制研究进展.国外医学临床生物化学与检验分册,2004,25(2):137-139
    [55]李敏,周建,蒋春雷.IgE介导的肥大细胞脱颗粒信号转导途径的研究进展.现代生物医学进展,2009,9(18):3539-3541
    [56]Gomez, G, Gonzalez, E.C., Odom, S., et al. Impaired FceR Ⅰ-dependent gene expression and defective eicosanoid and cytokine production as consequence of Fyn-deficiency in mast cells. Journal of immunology.2005,175:7602-7610
    [57]Ladics, G.S., Van Bilsen, J.H.M., Brouwer, H.M.H., et al. Assessment of three human FceRI-transfected RBL cell-lines for identifying IgE induced degranulation utilizing peanut-allergic patient sera and peanut protein extract. Regulatory Toxicology and Pharmacology. 2008,51 (3):288-294
    [58]Untersmayr, E., Poulsen, L.K., Platzer, M.H., et al. The effects of gastric digestion on codfish allergenicity. Journal of allergy and clinical immunology.2005,115 (2):377-382
    [59]刘婉莹.体外释放组胺肥大细胞模型在过敏原分析中的应用:[硕士学位论文].重庆:暨南大学,2009
    [60]Kaul, S., Luttkopf, D., Kastner, B., et al. Mediator release assays based on human or murine immunoglobulin E in allergen standardization. Clinical & Experimental Allergy.2007,37(1): 141-150.
    [61]Vogel, L., Liittkopf, D., Hatahet, L., et al. Development of a functional in vitro assay as a novel tool for the standardization of allergen extracts in the human system. Allergy.2005,60 (8):1021-1028
    [62]Dibbern Jr, DA., Palmer, G.W., Williams, P.B., et al. RBL cells expressing human FceRI are a sensitive tool for exploring functional IgE-allergen interactions:studies with sera from peanut-sensitive patients. Journal of immunological methods.2003,274 (1):37-45
    [63]Blanc, F., Adel-Patient, K., Drumare, M.F., et al. Capacity of purified peanut allergens to induce degranulation in a functional in vitro assay:Ara h 2 and Ara h 6 are the most efficient elicitors. Clinical & Experimental Allergy.2009,39 (8):1277-1285
    [64]Ermelr, W., Kock, M., Griffeys, M., et al. The atopic dog:a model for food allergy. Laboratory Animal Science.1997,47 (1):40-49
    [65]Helm, R.M, Furuta. G.T, Stanley. J.S, et al. A neonatal swine model for peanut allergy. Journal of Allergy and Clinical Immunology.2002,109 (1):136-142
    [66]Dearman, RJ., Kimber, I. Determination of protein allergenicity:studies in mice. Toxicology Letters.2001,120 (1-3):181-186
    [67]Penninks, A.H., Knipples, L.M. Determination of protein allergenicity:studies in rats. Toxicology Letters.2001,120 (1-3):171-180
    [68]Buchanan, B.B., Frick, O.L. The dog as a model for food allergy. Annuals of the New York Academy of Sciences.2002,964:173-183
    [69]Suzanne, S., Teuber, M.D., Gregorio, del V., et al. The atopic dog as a model of peanut and tree nut allergy. Journal of Allergy and Clinical Immunology.2002,12:921-927
    [70]Helm, R.M. Ermel, R.W. Frick, O.L. Nonmurine animal models of food allergy. Environment Health Perspective.2003,111:239-244
    [71]Sun, N., Zhou, C., Pu, Q.K., et al. Allergic Reactions Compared Between BN and Wistar Rats After Oral Exposure to Ovalbumin. Journal of Immunotoxicology.2013,10 (1):67-74
    [72]Ladies, G.S., Knippels, L.M.J., Penninks, A.H., et al. Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops. Regulatory Toxicology and Pharmacology.2010,56 (2):212-224
    [73]Aldemir, H., Bars, R., Herouet-Guicheney, C. Murine models for evaluating the allergenicity of novel proteins and foods. Regulatory Toxicology and Pharmacology.2009,54 (3):S52-S57
    [74]Knippels, L.M.J., Penninks, A.H., van Meeteren, M., et al. Humoral and celluar Immune Responses in Different Rat Strains on Oral Exposure to Ovalbumin. Food and Chemical Toxicology.1999,37: 881-888
    [75]Knippels, L.M., Penninks, A.H., Spanhaak, S., et al. Oral sensitization to food proteins:a Brown Norway rat model. Clinical and Experimental Allergy,1998,28 (3):368-375
    [76]Knippels, L.M., Penninks, A.H. Assessment of the allergic Potential of Food Protein Extracts and Proteins on Oral Application Using the Brown Norway Rat Model. Environmental Health Perspectives.2002,2 (2):233-238
    [77]Knippels, L.M., Penninks, A.H., Smit, J.J., et al. Immune-mediated effects upon oral challenge of ovalbumin-sensitized Brown Norway rats:further characterization of a rat food allergy model. Toxicology and applied pharmacology.1999,156 (3):161-169
    [78]Akiyama, H., Teshima, R., Sakushima, J.I., et al. Examination of oral sensitization with ovalbumin in Brown Norway rats and three strains of mice. Immunology letters.2001,78 (1):1-5
    [79]Selgrade, M.K., Bowman, C.C., Ladics, G.S., et al. Safety assessment of biotechnology products for potential risk of food allergy:implications of new research. Toxicological sciences.2009,110 (1):31-39
    [80]Dearman, R.J., Stone, S., Caddick, H.T., et al. Evaluation of protein allergenic potential in mice: dose-response analyses. Clinical and Experimental Allergy.2003,33:1586-1594
    [81]Li, X.M., Serebrisky, D., Lee, S.Y., et al. A murine model of peanut anaphylaxis:T- and B- cell responses to a major peanut allergen mimic human responses. Journal of Allergy and Clinical Immunology.2000,106:150-158
    [82]Li, X.M., Schofield, B.H., Huang, C.K., et al. A murine model of IgE-mediated cow's milk hypersensitivity. Journal of Allergy and Clinical Immunology.1999,103:206-214
    [83]Birmingham, N.P., Parvataneni, S., Hassan, H.M., et al. An adjuvant-free mouse model of tree nut allergy using hazelnut as a model tree nut. Int. Arch. Allergy Immunology.2007,144:203-210
    [84]Navuluri, L., Parvataneni, S., Hassan, H., et al. Allergic and anaphylactic response to sesame seeds in mice:Identification of Ses i 3 and basic subunit of 11s globulins as allergens. International Archievement of Allergy and Immunology.2006,140:270-276
    [85]Bowman, C.C., Selgrade, M.K. Failure to induce oral tolerance in mice is predictive of dietary allergenic potency among foods with sensitizing capacity. Toxicology Science.2008,106:435-443
    [86]Ganeshan, K., Neilsen, C.V., Hadsaitong, A., et al. Impairing oral tolerance promotes allergy and anaphylaxis:A new murine food allergy model. Journal of Allergy and Clinical Immunology. 2009,123:231-238
    [87]Adel-Patient, K., Bernard, H., Ah-Leung, S., et al. Peanut- and cow's milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy.2005,60 (5):658-664
    [88]Perrier, C., Thierry, A.C., Mercenier, A., et al. Allergen-specific antibody and cytokine responses, mast cell reactivity and intestinal permeability upon oral challenge of sensitized and tolerized mice. Clinical and Experimental Allergy.2010,40 (1):153-162
    [89]Kurashima, Y., Kunisawa, J., Higuchi, M., et al. Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. The Journal of Immunology.2007, 179 (3):1577-1585
    [90]Sicherer, S.H., Sampson, H.A. Food allergy. Journal of Allergy and Clinical Immunology.2010, 125 (2):S116-S125
    [91]Neurath, M.F., Finotto, S., Glimcher, L.H. The role of Th1/Th2 polarization in mucosal immunity. Nature medicine.2002,8 (6):567-573
    [92]Weaver, C.T., Harrington, L.E., Mangan, P.R., et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity.2006,24 (6):677-688
    [93]Cook, P.C., Jones, L.H., Jenkins, S.J., et al. Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo. Proceedings of the National Academy of Sciences.2012, 109 (25):9977-9982
    [94]Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annual review of immunology.2005,23:127-159
    [95]Rosen, H., Goetzl, E.J. Sphingosine 1-phosphate and its receptors:an autocrine and paracrine network. Nature Reviews Immunology.2005,5 (7):560-570
    [96]Matloubian, M., Lo, C.G., Cinamon, G., et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on SIP receptor 1. Nature.2004,427 (6972):355-360
    [97]Graeler, M., GOETZL, E.J. Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. The FASEB journal.2002,16 (14): 1874-1878
    [98]Kurashima, Y., Kunisawa, J., Higuchi, M., et al. Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. The Journal of Immunology.2007, 179 (3):1577-1585
    [99]Kweon, M.N., Yamamoto, M., Kajiki, M., et al. Systemically derived large intestinal CD4+Th2 cells play a central role in STAT6-mediated allergic diarrhea. Journal of Clinical Investigation. 2000,106 (2):199-206
    [100]Kweon, M.N., Takahashi, I., Yamamoto, M., et al. Development of antigen induced colitis in SCID mice reconstituted with spleen derived memory type CD4+CD45RB+T cells. Gut.2002,50 (3):299-306
    [101]Duarte, J., Caridade, M., Graca, L. CD4-blockade can induce protection from peanut-induced anaphylaxis. Frontiers in immunology.2011,2
    [102]Garidade, M., Oliveira, V.G., Agua-Doce, A., et al. The fate of CD4+T cells under tolerance-inducing stimulation:a modeling perspective. Immunology and cell biology.2013,91: 652-660
    [103]Sauer, S., Bruno, L., Hertweck, A., et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proceedings of the National Academy of Sciences.2008,105 (22): 7797-7802
    [104]van Wijk, F., Nierkens, S., de Jong, W., et al. The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins. The Journal of Immunology.2007,178 (11):6894-6900
    [105]van Wijk, F., Hoeks, S., Nierkens, S., et al. CTLA-4 signaling regulates the intensity of hypersensitivity responses to food antigens, but is not decisive in the induction of sensitization. The Journal of Immunology.2005,174 (1):174-179
    [106]Tang, Q., Boden, E.K., Henriksen, K.J., et al. Distinct roles of CTLA-4 and TGF-β in CD4+CD25+ regulatory T cell function. European journal of immunology.2004,34 (11): 2996-3005
    [107]Oliveira, V.G, Caridade, M., Paiva, R.S., et al. Sub-optimal CD4+ T-cell activation triggers autonomous TGF-β-dependent conversion to Foxp3+regulatory T cells. European journal of immunology.2011,41 (5):1249-1255
    [108]Hori, S., Nomura, T., Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003,299 (5609):1057-1061
    [109]Fontenot, J.D., Gavin, M.A., Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nature immunology.2003,4 (4):330-336
    [110]Khattri, R., Cox, T., Yasayko, S.A., et al. An essential role for Scurfin in CD4+CD25+T regulatory cells. Nature immunology.2003,4 (4):337-342
    [111]Bilate, A.M., Lafaille, J.J. Induced CD4+Foxp3+regulatory T cells in immune tolerance. Annual review of immunology.2012,30:733-758
    [112]Kanjarawi, R., Dercamp, C., Etchart, N., et al. Regulatory T cells control type I food allergy to Beta-lactoglobulin in mice. International archives of allergy and immunology.2011,156 (4): 387-396
    [113]Eddahri, F., Oldenhove, G., Denanglaire, S., et al. CD4+CD25+ regulatory T cells control the magnitude ofT-dependent humoral immune responses to exogenous antigens. European journal of immunology.2006,36 (4):855-863
    [114]Lim, H.W., Hillsamer, P., Kim, C.H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. Journal of Clinical Investigation.2004,114 (11):1640-1649
    [115]Aseffa, A., Gumy, A., Launois, P., et al. The early IL-4 response to Leishmania major and the resulting Th2 cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4+CD25+T cells. The Journal of Immunology.2002,169 (6):3232-3241
    [116]Stassen, M., Jonuleit, H., Muller, C., et al. Differential regulatory capacity of CD25+T regulatory cells and preactivated CD25+T regulatory cells on development, functional activation, and proliferation of Th2 cells. The Journal of Immunology.2004,173 (1):267-274
    [117]Sun, C.M., Hall, J.A., Blank, R.B., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. The Journal of experimental medicine.2007, 204 (8):1775-1785
    [118]Morrissy, A.S., Morin, R.D., Delaney, A., et al. Next-generation tag sequencing for cancer gene expression profiling. Genome research.2009,19 (10):1825-1835
    [119]Morozova, O., Marra, M.A. Applications of next-generation sequencing technologies in functional genomics. Genomics.2008,92 (5):255-264
    [120]de Jonge, J.D., Baken, K.A., Konings, J., et al. Gene expression changes in the mesenteric lymph nodes of rats after oral peanut extract exposure. Journal of immunotoxicology.2008,5 (4):385-394
    [121]Husain, M., Boermans, H.J., Karrow, NA. Mesenteric lymph node transcriptome profiles in BALB/c mice sensitized to three common food allergens. BMC genomics.2011,12(1):12
    [122]Husain, M., Golovan, S.P., Rupa, P., et al. Spleen transcriptome profiles of BALB/c mouse in response to egg ovomucoid sensitisation and challenge. Food and Agricultural Immunology.2012, 23 (3):227-246
    [123]Du Toit, G, Katz, Y., Sasieni, P., et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. Journal of Allergy and Clinical Immunology.2008,122: 984-991
    [124]Blanc, F., Bernard, H., Alessandri, S., et al. Update on optimized purification and characterization of natural milk allergens. Molecular and Nutrition Research.2008,52:S166-175
    [125]Koppelman, S.J., Wensing, M., Ertmann, M., et al. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing:Ara h2 is the most important peanut allergen. Clinical and Experimental Allergy.2004,34:583-590
    [126]Miller, K., Meredith, C., Selo, I., et al. Allergy to bovine β-lactoglobulin:specificity of immunoglobulin E generated in the Brown Norway rat to tryptic and synthetic peptides. Clinical and Experimental Allergy.1999,29 (12):1696-1704
    [127]陈少锐,徐向珍,周长华,等.BN大鼠B乳球蛋白过敏模型的建立.湖北民族学院学报:医学版,2009,26(4):1-3
    [128]吕相征,刘秀梅,郭云昌,等.BALB/c小鼠食物过敏动物模型的实验研究.卫生研究,2005,34(2):211-213
    [129]Rezende, M.M., Hassing, I., Schoenmakers, M.B., et al. CD4+CD25+T regulatory cells do not transfer oral tolerance to peanut allergens in a mouse model of peanut allergy. Clinical and Experimental Allergy.2011, (41):1324-1333
    [130]Sicherer, S.H., Sampson, H.A. Food allergy. J Allergy ClinImmunol.2006,117:S470-475
    [131]Kringelum, J.V., Lundegaard, C., Lund, O., et al. Reliable B Cell Epitope Predictions:Impacts of Method Development and Improved Benchmarking. PLoS Computational Biology.2012,8(12): e1002829. doi:10.1371/journal.pcbi.1002829
    [132]van Esch, B. C., Schouten, B., de Kivit, S., et al. Oral tolerance induction by partially hydrolyzed whey protein in mice is associated with enhanced numbers of Foxp3+regulatory T-cells in the mesenteric lymph nodes. Pediatric Allergy and Immunology.2011,22 (8):820-826
    [133]Cardoso, C.R., Teixeira, G., Provinciatto, P.R., et al. Modulation of mucosal immunity in a murine model of food-induced intestinal inflammation. Clinical and Experimental Allergy.2007,38: 338-349
    [134]Perrier, C., Thierry, A.C., Mercenier, A., et al. Allergen-specific antibody and cytokiner, esponses, mast cell reactivity and intestinal permeability upon oral challenge of sensitized and tolerized mice. Clinical and Experimental Allergy.2009,40:153-162
    [135]Shen, X.L., Wu, J.M., Chen, Y. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids.2010,24 (4):285-290
    [136]刘宝霞.Th1/Th2细胞平衡与中医药免疫调节.实用医技杂志,2008,15(1):114-116
    [137]Romagnani, S. Regulation of the T cell response. Clinical and Experimental Allergy.2006,36 (11): 1357-1366
    [138]Curotto de Lafaille, M.A., Kutchukhidze, N., Shen, S., et al. Adaptive Foxp3+Regulatory T Cell-Dependent and-Independent Control of Allergic Inflammation. Immunity.2008,29 (1): 114-126
    [139]Haribhai, D., Williams, J.B., Jia, S., et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity.2011,35 (1):109-122
    [140]Hauet-Broere, F., Unger, W.W., Garssen, J., et al. Functional CD25-and CD25+mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. European journal of immunology.2003,33 (10):2801-2810
    [141]Zhang, X., Izikson, L., Liu, L., et al. Activation of CD25+ CD4+ regulatory T cells by oral antigen administration. The Journal of Immunology.2001,167 (8):4245-4253
    [142]Chen, X., Song, C.H., Liu, Z.Q., et al. Intestinal epithelial cells express galectin-9 in patients with food allergy that plays a critical role in sustaining allergic status in mouse intestine. Allergy. 2011,66(8):1038-1046
    [143]向军俭,张在军,毛露甜,等.食品过敏原体外激发小鼠致敏肥大细胞组胺释放.广东医学,2005,26(5):593-595
    [144]Lehmann, K., Schweimer, K., Reese, G., et al. Structure and stability of 2S albumin-type peanut allergens:implications for the severity of peanut allergic reactions. Biochemical journal.2006,395: 463-472
    [145]Shin, D.S., Compadre, C.M., Maleki, S.J., et al. Biochemical and structural analysis of the IgE binding sites on Ara h1, an abundant and highly allergenic peanut protein. Journal of Biological Chemistry.1998,273 (22):13753-13759
    [146]Maleki, S.J., Teuber, S.S., Cheng, H., et al. Computationally predicted IgE epitopes of walnut allergens contribute to cross-reactivity with peanuts. Allergy.2011,66 (12):1522-1529
    [147]Barre, A., Borges, J.P., Rouge, P. Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily:a structural basis for their IgE-binding cross-reactivity. Biochimie.2005,87 (6):499-506
    [148]Knippels, L.M., Penninks, A.H. Assessment of Protein Allergenicity. Annals of the New York Academy of Sciences.2002,964 (1):151-161
    [149]Knippels, L.M.J., Houben, G.F., Spanhaak, S., et al. An oral sensitization model in Brown Norway rats to screen for potential allergenicity of food proteins. Methods.1999,19 (1):78-82
    [150]向钱,贾旭东,王伟,等.BN大鼠致敏动物模型研究.中国食品卫生杂志,2008,20(5):393-396
    [151]孙拿拿,梁春来,张倩男,等.BN大鼠致敏动物模型研究.卫生研究,2012,41(3):459461
    [152]Gonipeta, B., Parvataneni, S., Tempelman, R.J., et al. An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein. Journal of dairy science.2009,92 (10):4738-4744
    [153]Berin, M.C., Sicherer, S. Food Allergy:mechanisms and therapeutics. Current Opinion in Immunology.2011,23:1-7
    [154]Elsayed, S., Hill, D.J, Do, T.V. Evaluation of the Allergenicity and Antigenicity of Bovine-Milk asl-Casein Using Extensively Purified Synthetic Peptides. Scandinavian Journal of Immunology. 2004,60 (5):486-493
    [155]李欣,陈红兵.牛奶过敏原表位研究进展.食品科学,2007,27(11):592-598
    [156]Kolarich, D., Altmann, F. N-Glycan Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Electrophoretically Separated Nonmammalian Proteins:Application to Peanut Allergen Ara h 1 and Olive Pollen Allergen Ole e 1. Analytical biochemistry.2000,285 (1): 64-75
    [157]胡纯秋,高金燕,罗春萍,等.花生过敏原Arah2.02二级结构和B细胞抗原表位预测.食品科学,2009,30(21):13-15
    [158]向钱,张馨,王伟,等.食物蛋白质消化稳定性和热稳定性研究.卫生研究,2009,38(1):53-56
    [159]Bossios, A., Theodoropoulou, M., Mondoulet, L., et al. Effect of simulated gastro-duodenal digestion on the allergenic reactivity of beta-lactoglobulin. Clinical and Translational Allergy.2011, 1 (6):1-11
    [160]Lundequist, A., Pejler, G. Biological implications of preformed mast cell mediators. Cellular and Molecular Life Sciences.2011,68 (6):965-975
    [161]Kucuk, Z.Y., Strait, R., Khodoun, M.V., et al. Induction and suppression of allergic diarrhea and systemic anaphylaxis in a murine model of food allergy. Journal of Allergy and Clinical Immunology.2012,129 (5):1343-1348
    [162]Mortazavi, A., Williams, B.A., McCue, K., et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods.2008,5 (7):621-628
    [163]Young, M.D., Wakefield, M.J., Smyth, GK., et al. Method Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology.2010,11:R14
    [164]Kanehisa, M., Araki, M., Goto, S., et al. KEGG for linking genomes to life and the environment. Nucleic acids research.2008,36(suppl 1):D480-D484
    [165]Dohm, J.C., Lottaz, C., Borodina, T., et al. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic acids research.2008,36 (16):e105-e105
    [166]Langer, T., Rosmus, S., Fasold, H. Intracellular localization of the 90 kDA heat shock protein (HSP90a) determined by expression of a EGFP-HSP90a-fusion protein in unstressed and heat stressed 3T3 cells. Cell biology international.2003,27 (1):47-52
    [167]米刚,刘雯,李梦龙,等.复杂网络分析激酶底物信号传递机制.四川大学学报(自然科学版),2013,2(028):359-365
    [168]Kepp, O., Galluzzi, L., Martins, I., et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer and Metastasis Reviews.2011,30 (1):61-69
    [169]Chitnis, T., Salama, A.D., Grusby, M.J., et al. Defining Thl and Th2 immune responses in a reciprocal cytokine environment in vivo. The Journal of Immunology.2004,172 (7):4260-4265
    [170]Behera, A.K., Kumar, M., Lockey, R.F., et al. Adenovirus-mediated interferon y gene therapy for allergic asthma:involvement of interleukin 12 and STAT4 signaling. Human gene therapy.2002, 13 (14):1697-1709
    [171]Seidler, D.G, Mohamed, N.A., Bocian, C., et al. The role for decorin in delayed-type hypersensitivity. The Journal of Immunology.2011,187 (11):6108-6119
    [172]Mikula, M., Gotzmann, J., Fischer, A.N., et al. The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene.2003,22 (43):6725-6738
    [173]Kamel Mohamed, S.G., Sugiyama, E., Shinoda, K., et al. Interleukin-4 inhibits RANKL-induced expression of NFATcl and c-Fos:a possible mechanism for downregulation of osteoclastogenesis. Biochemical and biophysical research communications.2005,329 (3):839-845
    [174]Kim, M.S., Lee, S.M., Kim, W.D., et al. Ga 12/13 Basally Regulates p53 through Mdm4 Expression. Molecular cancer research.2007,5 (5):473-484
    [175]Jalal, C., Uhlmann-Schiffler, H., Stahl, H. Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic acids research.2007,35 (11):3590-3601
    [176]Liljedahl, M., Winqvist, O., Surh, C.D., et al. Altered antigen presentation in mice lacking H2-O. Immunity.1998,8 (2):233-243
    [177]Kakinuma, T., Ichikawa, H., Tsukada, Y, et al. Interaction between p230 and MACF1 is associated with transport of a glycosyl phosphatidyl inositol-anchored protein from the Golgi to the cell periphery. Experimental cell research.2004,298 (2):388-398
    [178]Lewandowicz, A.M., Kowalski, M.L., Pawliczak, R. Bialka regulujace przekazywanie sygnalu przez bialka G (bialka RGS) i ich znaczenie w regulacji odpowiedzi immunologicznej RGS proteins (regulators of G protein signaling) and their roles in regulation of immune response. Postepy Hig Med Dosw.2004,58:312-320
    [179]Krones-Herzig, A., Mittal, S., Yule, K., et al. Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer research.2005,65 (12):5133-5143
    [180]Ke, J., Gururajan, M., Kumar, A., et al. The role of MAPKs in B cell receptor-induced down-regulation of Egr-1 in immature B lymphoma cells. Journal of biological chemistry.2006, 281 (52):39806-39818
    [181]Kim, K.H., Min, Y.K., Baik, J.H., et al. Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. Journal of Biological Chemistry.2003,278 (16):13847-13854
    [182]Latinkic, B.V., Brien, T.P., Lau, L.F. Promoter function and structure of the growth factorinducible immediate early gene cyr61. Nucleic acids research.1991,19 (12):3261-3267
    [183]Capasso, M., Bhamrah, M.K., Henley, T., et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nature immunology.2010,11 (3):265-272
    [184]Stark, A.L., Delaney, S.M., Wheeler, H.E., et al. Functional consequences of PRPF39 on distant genes and cisplatin sensitivity. Human molecular genetics.2012,21 (19):4348-4355
    [185]Gomes, I., Aryal, D.K., Wardman, J.H., et al. GPR171 is a hypothalamic G protein-coupled receptor for BigLEN, a neuropeptide involved in feeding. Proceedings of the National Academy of Sciences.2013,110 (40):16211-16216
    [186]Rossi, L., Lemoli, R.M., Goodell, M.A. Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Experimental hematology.2013,41 (1):102-112
    [187]Callahan, M.K., Garg, M., Srivastava, P.K. Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proceedings of the National Academy of Sciences.2008,105 (5):1662-1667
    [188]Facchinetti, V., Ouyang, W., Wei, H., et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. The EMBO journal.2008,27 (14): 1932-1943
    [189]Yang, YJ., Chen, W., Edgar, A., et al. Rcanl negatively regulates FceRI-mediated signaling and mast cell function. The Journal of experimental medicine.2009,206 (1):195-207
    [190]Lang, S.A., Moser, C, Gaumann, A., et al. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-la autocrine loop, and reduces orthotopic tumor growth. Clinical Cancer Research.2007,13 (21):6459-6468
    [191]Orthwein, A., Zahn, A., Methot, S.P., et al. Optimal functional levels of activation-induced deaminase specifically require the Hsp40 DnaJal. The EMBO journal.2012,31 (3):679-691
    [192]Stark, J.L., Mehla, K., Chaika, N., et al. Structure and Function of Human DnaJ Homologue Subfamily A Member 1 (DNAJA1) and Its Relationship to Pancreatic Cancer. Biochemistry.2014, 53 (8):1360-1372
    [193]de la Casa-Esperon, E. From mammals to viruses:the Schlafen genes in developmental, proliferative and immune processes. BioMolecular Concepts.2011,2 (3):159-169
    [194]Van Zuylen, W.J., Garceau, V., Idris, A., et al. Macrophage activation and differentiation signals regulate schlafen-4 gene expression:evidence for Schlafen-4 as a modulator of myelopoiesis. PloS one.2011,6 (1):e15723
    [195]Schouten, B., van Esch, B.C., Hofman, G.A., et al. Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey. The Journal of nutrition.2009,139 (7):1398-1403
    [196]Jones, N., Agani, F.H. Hyperoxia induces Egr-1 expression through activation of extracellular signal-regulated kinase 1/2 pathway. Journal of cellular physiology.2003,196 (2):326-333
    [197]Kammerer, R., Buchner, A., Palluch, P., et al. Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy. PLoS One.2011,6 (6):e21834
    [198]Jones, N., Agani, F.H. Hyperoxia induces Egr-1 expression through activation of extracellular signal-regulated kinase 1/2 pathway. Journal of cellular physiology.2003,196 (2):326-333
    [199]Gommeaux, J., Cano, C., Garcia, S., et al. Colitis and colitis-associated cancer are exacerbated in mice deficient for tumor protein 53-induced nuclear protein 1. Molecular and cellular biology. 2007,27 (6):2215-2228
    [200]Zhou, S., Liu, Y, Bo, H., et al. Expression profilings of 39 genes selected by ANOVA could separate precursors of murine dendritic cells and macrophages. Biochemical and biophysical research communications.2006,344 (1):438-445
    [201]Peric, M., Koglin, S., Kim, S.M.,et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. The Journal of Immunology.2008,181 (12):8504-8512
    [202]Flo, T.H., Smith, K.D., Sato, S., et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature.2004,432 (7019):917-921
    [203]张秀丽.孕妇血清及胎盘FABP4水平变化与子痫前期:[硕士毕业论文].河北:河北医科大学,2012
    [204]李凡,杨为民.脂肪细胞型脂肪酸结合蛋白与膀胱癌关系的研究.临床泌尿外科杂志,2006,21(10):796-798
    [205]Meixiu, J., Ling, Z., Xingzhe, M., et al. Tamoxifen inhibits macrophage FABP4 expression through the combined effects of the GR and PPARgamma pathways. Biochemical Journal.2013, 454 (3):467-477
    [206]操海萍.核心蛋白聚糖(decorin)在肿瘤组织中的表达及基因重组decorin的克隆与表达的研究:[博士学位论文].吉林:吉林大学,2004
    [207]吴永凯.研究两个候选肿瘤抑制因子TIMP2、Decorin在肺癌组织中的表达和血浆蛋白水平的临床意义:[博士学位论文].北京:北京协和医学院、中国医学科学院,2012
    [208]Maier, J.V., Brema, S., Tuckermann, J., et al. Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Molecular Endocrinology.2007,21 (11):2663-2671
    [209]Palacios, M.M., Bleackley, C. Characterization of Critical Residues of the Granzyme B Inhibitor, Serpina3n. The Journal of Immunology.2009,182:50-43
    [210]van Ampting, M.T., Loonen, L.M., Schonewille, A.J., et al. Intestinally secreted C-type lectin Reg3b attenuates salmonellosis but not listeriosis in mice. Infection and immunity.2012,80 (3): 1115-1120
    [211]Folch-Puy, E. REG3β contributes to the immunosuppressive microenvironment of pancreatic cancer. Oncoimmunology.2013,2 (11):e26404
    [212]Nelson, M., Burg, A., Metz, A., et al. Eosinophil-mediated lung host defense against Pneumocystis murina. The Journal of Immunology.2012,188:118-6.
    [213]Huang, J., Zheng, D.L., Qin, F.S., et al. Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. The Journal of clinical investigation.2010,120 (1):223
    [214]Jiang, Y., Oliver, P., Davies, K.E., et al. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. Journal of biological chemistry.2006,281 (17):11834-11845
    [215]Arias, C.F., Ballesteros-Tato, A., Garcia, M.I., et al. p21CIP1/WAFl controls proliferation of activated/memory T cells and affects homeostasis and memory T cell responses. The Journal of Immunology.2007,178 (4):2296-2306
    [216]Ueda, Y., Yang, K., Foster, S.J., et al. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. The Journal of experimental medicine.2004,199 (1):47-58
    [217]Bernardini, G, Sciume, G, Bosisio, D., et al. CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood.2008,111 (7):3626-3634
    [218]Achatz-Straussberger, G., Zaborsky, N., Konigsberger, S., et al. Migration of antibody secreting cells towards CXCL12 depends on the isotype that forms the BCR. European journal of immunology.2008,38 (11):3167-3177
    [219]Meiron, M., Zohar, Y., Anunu, R., et al. CXCL12 (SDF-la) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. The Journal of experimental medicine.2008,205 (11):2643-2655
    [220]Panda, H., Pelakh, L., Chuang, T.D., et al. Endometrial miR-200c is altered during transformation into cancerous states and targets the expression of ZEBs, VEGFA, FLT1, IKKβ, KLF9, and FBLN5. Reproductive Sciences.2012:19 (8):786-796
    [221]Lin, H.W., Jain, M.R., Li, H., et al. Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor a increases cyclooxygenase-2 expression, PGE. Journal of neuroinflammation.2009,6:7 doi:10.1186/1742-2094-6-7
    [222]MacMicking, J.D. DFN-inducible GTPases and immunity to intracellular pathogens. Trends in immunology.2004,25 (11):601-609
    [223]Koli, K., Saharinen, J., Karkkainen, M., et al. Novel non-TGF-B-binding splice variant of LTBP-4 in human cells and tissues provides means to decrease TGF-B deposition. Journal of cell science. 2001,114 (15):2869-2878
    [224]宁豪.TIMP-3对树突状细胞免疫功能的影响及其机制的研究:[博士学位论文].济南:山东大学,2012
    [225]Murthy, A., Shao, Y.W., Defamie, V., et al. Stromal TIMP3 regulates liver lymphocyte populations and provides protection against Thl T cell-driven autoimmune hepatitis. The Journal of Immunology.2012,188 (6):2876-2883
    [226]Chen, GY., Chen, X., King, S., et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nature biotechnology.2011,29 (5):428-435
    [227]Chi, H., Barry, S.P., Roth, R.J., et al. Dynamic regulation of pro-and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America.2006,103 (7):2274-2279
    [228]郑军华,闵志廉.鼠抗人CD3,CD4单克隆抗体治疗肾移植后急性排斥反应的疗效观察.中华器官移植杂志,2000,21(1):22-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700