用户名: 密码: 验证码:
农产品及其产地环境中重金属快速检测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农产品是食品的源头,农产品质量安全关系到人民群众的身体健康和生命安全,而农产品质量安全又直接取决于农产品的产地环境。近年来,随着中国工业的快速发展以及农药化肥在农业生产中的过量施用,农产品产地环境以及主要农产品中的重金属污染问题日益严重,已成为制约我国农业可持续发展的一个突出问题。开展适用于农业生产实际需要的重金属快速检测关键技术研究,将会对农产品产地环境管理、农产品供应链全程可追溯以及保障农产品质量安全具有重要意义。
     电化学检测技术具有仪器成本低、检测速度快、便于操作、易于实现自动化等优点,因此被广泛应用于环境监测、生物样本分析以及食品药品监控等多个领域。如何利用电化学检测技术实现对农产品及其产地环境中的重金属污染进行快速、准确地检测,是当前农业信息技术研究领域内的一个热点课题。传统的电化学传感器存在诸如检测灵敏度低、稳定性差以及抗干扰能力弱等缺点,同时其检测仪器体积大、成本高,不合适在一线农业生产中推广使用。近年来,电化学、纳米材料学、微电子学和计算机科学的快速发展及多学科融合,为上述问题的解决提供了一种新的途径。
     本文以主要农产品及其产地环境中重要的土壤和灌溉水为研究对象,将纳米材料技术与电化学传感技术相结合,研究开发了多个高灵敏度、低成本的重金属传感器;针对现有电化学检测仪器存在的诸如设备成本高、体积大等问题,结合微电子技术及虚拟仪器技术,研制了用于电化学重金属快速检测的低功耗、便携式检测仪器;将开发的重金属传感器与便携式检测仪器相结合,构建了一套适合于在农村基层诸如乡镇一级农技站使用的快速、高效、低成本的重金属检测平台。具体研究内容包括以下几个方面:
     1.研制了一种高灵敏度、低成本的镉离子电化学传感器。采用导电物质分子导线作为粘合剂,制作了一种新型碳糊电极,在电极表面进一步修饰Nafion膜和锡膜,并采用方波阳极溶出伏安法对农田灌溉水中的镉离子进行检测。实验结果分析表明,利用分子导线制作的碳糊电极具有较好的导电性和电化学活性。修饰Nafion膜和锡膜使传感器具备了较好的检测灵敏度、稳定性以及抗干扰能力。在最优检测条件下,传感器的线性工作范围为1.0~80.0μg/L,线性回归方程为ip=-0.2065+0.3621c(ip:μA,c:μgL-1),检测限为0.13μg/L。利用该电极对多个农田灌溉水样本中的重金属镉进行测定,检测结果与原子吸收光谱法测量结果对照分析表明,该传感器具有良好的检测准确性和可靠性。
     2.采用新型材料离子液体作为粘合剂,结合石墨粉制作了一种新型碳糊电极,在电极表面进一步修饰金膜,然后采用方波阳极溶出伏安法对农田灌溉水中的汞离子进行了检测。实验结果分析表明,利用离子液体制作的碳糊电极具有较好的离子导电性和电化学活性。采用金膜对电极进行修饰提高了传感器对汞离子的检测灵敏性和选择性。在最优检测条件下,传感器的线性工作范围为1.0~80.0μg/L,线性回归方程为ip=0.9535+0.4955c=(ip:μA,c:μgL-1),检测限为0.16μg/L。利用该传感器对农田灌溉水样本中的汞离子浓度进行了测定,检测结果与ICP-MS检测结果对照分析表明,该传感器具有很好的检测准确性。
     3.研制了一种低成本、高灵敏度的“可抛弃”式电化学传感器,并将其用于对土壤样本中的铅和镉含量进行检测。首先采用丝网印刷技术,结合导电性浆料,制作了一种集成式丝网印刷电极,然后在工作电极表面再修饰碳纳米管/Nafion复合材料,采用原位镀铋膜的方式结合方波阳极溶出伏安法,实现了对重金属铅和镉的同步检测。实验结果分析表明,采用碳纳米管/Nafion复合物质对电极进行修饰后,可有效提高传感器的比表面积以及电子传输率,结合高灵敏、低毒的铋膜,该传感器对重金属铅和镉显示出了良好的检测灵敏性。在最优检测条件下,传感器对铅和镉的线性检测范围为1.0~80.0μg/L,铅离子的线性回归方程为ip=0.0329+0.3721c(ip:μA,c:μgL-1),检测限为0.8μg/L。镉离子的线性回归方程为ip=0.0615+0.6634c,检测限为0.5μg/L。利用该传感器对多个实际土壤样本中的生物有效态铅、镉含量进行了测定试验,结果分析表明该传感器具有集成度高、准确性好等优点,可用于对农田土壤中的铅和镉污染进行快速检验和评估。
     4.研制了一种基于石墨烯/聚对氨基苯磺酸/锡膜复合修饰的镉离子电化学传感器,并将该传感器用于对大米样本中的镉含量进行检测。制备时以玻碳电极为基底,分别采用电化学沉积法和电聚合方法在电极表面修饰石墨烯和聚合物膜,然后采用原位镀锡膜方式,结合方波阳极溶出伏安法实现了对镉离子的灵敏测量。试验结果分析表明,石墨烯修饰层能够较大的提高电极的比表面积以及表面电子传输率,聚合物修饰层能够提高传感器的阳离子交换能力和抗干扰能力,结合高灵敏、低毒的锡膜,该传感器对镉离子显示出了良好的检测灵敏性。在最优检测条件下,传感器的线性工作范围为1.0~70.Oμg/L,线性回归方程为ip=1.6239c+0.0073(ip:μA,c:μgL-1),检测限为0.05μg/L。多个实际大米样本检测结果分析表明,该传感器具有检测速度快、准确性好、重现性高等优点,可用于对农产品中的镉含量进行高精度定量分析。
     5.将微电子技术与虚拟仪器技术相结合,研发了一种便携式重金属快速检测仪器系统。该仪器基于电化学方波阳极溶出伏安法原理,由上位机软件和下位机硬件电路组成。上位机软件基于Labview平台开发,主要负责完成向仪器硬件发送检测指令和工作参数、接收下位机采集到的数据以及对检测结果进行分析和定量计算等功能。下位机以MSP430混合信号处理器为控制核心,结合恒电位电路、I/V转换电路、滤波电路、串口通信电路等硬件设备,实现了电化学分析过程中信号的激发以及检测数据的采集和传输功能。采用该仪器对多个实际土壤以及农田灌溉水样本中的铅、镉和汞离子进行了测定试验,结果分析表明,该仪器具有检测精度高、准确性好、速度快、功耗低等优点,较适合于对农产品及其产地环境中重金属进行快速检测和分析。
Agricultural products are the source of food, and the quality and safety of agricultural products is related to the health and safety of people. The quality and safety of agricultural products is directly dependent on the agricultural production environment. In recent years, with the rapid development of China's industrial and the excessive application fertilizers and pesticides in agricultural production, heavy metal pollution has become a serious problem in environment and agricultural products. The development of a heavy metal detection technology, which is rapid, accurate and suitable for agricultural use, is of great importance for the agricultural environmental management, agricultural traceability supply chain and the quality and safety of agricultural products.
     Electrochemical detection technology possesses many advantages such as low cost, high speed, easy to operate, etc., which was suitable for the environmental monitoring, food and bio-medical analysis. How to use electrochemical detection technology for rapid and accurate detection of heavy metal pollution in farmland environment and agricultural products is a valuable research topic in agricultural information technology. However, the traditional electrochemical sensors have some disadvantage such as low sensitivity, poor stability as well as weak anti-interference capability, while the conventional electrochemical instruments are large volume and high cost, which are not suitable for on-site use. In recent years, the rapid development and cross-integration in electrochemistry, nano-materials, microelectronics and computer science provides a new way to solve the above problem.
     In this study, we mainly focus on the research of heavy metals in major agricultural products and farmland irrigation water and soil environment. We combined the nano-materials technology with electrochemical sensing technology, and develope a variety of heavy metals electrochemical sensors which is high sensitivity, low-cost, and suitable for agricultural use. To solve some of its underlying problems in electrochemical detection devices, we combined the microelectronic technology with virtual instrument technology, and developed a low-power, portable detection equipment for electrochemical detection of heavy metal. At last, the developed sensors and portable testing instruments was constitute together and formed a fast, efficient and low-cost heavy metals detection platform which was suitable for the usage in agricultural production. The main contents include the following aspects:
     1. A high-sensitivity, low-cost cadmium ion electrochemical sensor was developed. Conductive material-molecular wires was used as a binder to produce a new type of carbon paste electrode, the electrode surface was further modified with Nafion and tin film, and then employed to determination of cadimium in agricultural irrigation water by using square wave anodic stripping voltammetry. Experimental results showed that the prepared electrode possessed excellent electrochemical performance and increased electron transfer rate due to the introduction of molecular wire as a binder, and exhibited a better sensitivity and stability as well as high resistance to surfactants due to the synergistic effect of Nafion and stannum film. Under the optimal conditions, the stripping peak currents showed a good linear relationship with the Cd(II) concentration in the range from1.0to80.0μg/L with a detection limit of0.13μg/L (S/N=3), and the linear regression equation was ip=-0.2065+0.3621c (ip:μA,c:μgL-1). The developed electrode was further applied to the determination of Cd(II) in agricultural water samples with satisfactory results. The test results show that the sensor has the advantage of high sensitivity, good accuracy, low cost and easy fabrication.
     2. A new type of carbon paste electrode was fabricated by using new materials-ionic liquid as binder. The electrode surface was further plated with gold film, and then used to determination of mercury ions in farmland water environment by square wave anodic stripping voltammetry. Experimental results showed that the prepared electrode possessed good electrical conductivity and electrochemical activity due to the introduction of ionic liquid as binder, while the gold film greatly improved the detection selectivity and sensitivity for the mercury ions. Under optimal conditions, the linear detection range of the sensor was1.0~80.0μg/L, the linear regression equation was ip=0.9535+0.4955c (i:μA,c:μgL-1), and the detection limit was0.16μg/L. The sensor was further applied to determine of mercury ion in irrigation water and the results indicted that the electrode has the advantages of high detection accuracy, low cost, and simple preparation.
     3. We developed a low-cost, high-sensitivity "disposable" electrochemical sensors, and further applied to determine lead and cadmium content in soil samples. First, an integrated screen-printed electrodes was fabricated by using screen printing technology and conductive paste, the working electrode surface was then modified with carbon nanotube/Nafion composite membranes, after in situ plating bismuth film, the electrode was used to sensitive detection of lead, cadmium ions by square wave anodic stripping voltammetry. The results showed that the carbon nanotubes/Nafion composite material greatly expanded the the surface area and improved the electron transfer rates of electrode. By combing the high sensitivity and low toxicity of bismuth film, the sensors exhibited better detection sensitivity and signal stability for the measurement of lead and cadmium. Under optimal conditions, the linear detection range of the sensor was1.0~80.0μg/L for lead and cadmium. The linear regression equation was ip=0.0329+0.3721c(ip:μA,c:μgL-1) and ip=0.0615+0.6634c for lead and cadimium with detection limit of0.8μg/L and0.5μg/L, respectively. This sensor was then applied to analysis of bioavailable lead and cadmium content in soil samples, the results show that the detection method is fast, accurate and low cost which suitable for rapid testing of lead and cadmium in farmland soils.
     4. We developed a graphene/poly(p-aminobenzene sulfonic acid)/tin film composite modified electrochemical sensors. This sensor was applied to the determination of cadmium content of rice samples. The glassy carbon electrode was used as substrate, and a graphene and polymer film was modified on the electrode surface by using electrochemical deposition and polymerization methods, respectively. After in situ depositing tin film, this sensor was used to measurement of cadmium ions by square wave anodic stripping voltammetry. It was found that the graphene layer greatly improved the specific surface area and surface electron transfer rate of the electrode, while the polymer layer enhanced the cation exchange capacity and anti-interference capability of sensor. By combing the high sensitivity, low toxicity tin film, this sensor exhibit good sensitivity and signal stability for the analysis of cadmium ion. Under optimal conditions, the linear detection range of the sensor was1.0~70.0μg/L, the linear regression equation was ip=1.6239c+0.0073(ip:μA, c:μgL-1), with detection limit of0.05ug/L. Actual rice sample analysis results showed that the method was fast, accurate and sensitive, which suitable for quantitative analysis of cadmium content in agricultural products.
     5. A portable instrument system for rapid detection of heavy metals was developed by using the microelectronics technology and virtual instrument technology. The instrument was based on the principle of electrochemical square wave anodic stripping voltammetry. The system is made up of the PC software and hardware circuit. PC software was developed on Labview software platform, which the major function was sending commands and parameters to the hardware, receiving the data, and analysis and quantitative calculation. The hardware was combined the MSP430MCU with potentiostat circuit, Ⅰ/Ⅴ converter circuit, filter circuit, serial communication circuit and other hardware devices, which achieved the generation of electrochemical excitation signal and the processing and transmission of data. This instrument was further used for analysis of lead, cadmium and mercury ions in actual soil and irrigation water samples. Experimental results showed that the system possessed many advantages such as high precision and speed, low power consumption, which was suitable for rapid evaluation and measurement of heavy metals in in real samples.
引文
[1]徐林通.土壤重金属污染防治方法综述.知识经济,2011,21:86
    [2]王舜钦,张金良.我国儿童血铅水平分析研究.环境与健康杂志,2004,06:355-360
    [3]李庆丽.重金属吸附剂的研究及其在蚝油中的应用[硕士学位论文].中国海洋大学,2009
    [4]李恬,肖素勤,吴燕飞,等.重金属汞对植物生理活动的影响和钙离子的拮抗作用.中山大学学报(自然科学版),2008,S1:111-113
    [5]李然,李嘉,赵文谦.水环境中重金属污染研究概述.四川环境,1997,01:19-23
    [6]常晋娜,瞿建国.水体重金属污染的生态效应及生物监测.四川环境,2005,04:29-33
    [7]胡必彬.我国十大流域片水污染现状及主要特征.重庆环境科学,2003,06:15-17+59-60
    [8]顾征帆,吴蔚.太湖底泥中重金属污染现状调查及评价.甘肃科技,2005,12:21-22+34
    [9]http://epaper.jinghua.cn/html/2012-02/03/content_757424.htm
    [10]http://www.legaldaily.com.cn/index_article/content/2013-08/04/content_4724223.htm?node=595 5
    [11]曾蓉.土壤重金属污染现状及修复研究.安徽农学通报(下半月刊),2012,20:20+32
    [12]中国工程院“西北水资源”项目组.西北地区水资源配置生态环境建设和可持续发展战略研究.中国工程科学,2003,04:1-26
    [13]谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价.河北农业大学学报,2002,01:38-41
    [14]周振民,朱彦云,冯飞.开封市污灌区土壤重金属污染评价.生态环境,2008,06:2267-2270.
    [15]黄兆贞,段庆钟.云南省化肥施用现状.昆明:云南科技出版社,2001,15
    [16]何玲玲,孙宏英,张代友,等.2010—2011年绵阳市市售蔬菜中农药残留调查.中国食品卫生杂志,2013,05:466-469
    [17]刘吉祥,袁秀娟,舒学军,等.宁夏主要食品中重金属污染状况调查及评价.宁夏医学杂志,2013,05:412-413
    [18]邓华,于方明,胡乐宁,黄福乐,梁娟,周振明.桂林市市售大米重金属污染状况及健康风险评价.农业部环境保护科研监测所、中国农业生态环境保护协会.农业环境与生态安全——第五届全国农业环境科学学术研讨会论文集.农业部环境保护科研监测所、中国农业生态环境保护协会,2013:5
    [19]http://baike.baidu.com/link?url=vgArEFqNIrBgTIrKEpGMmlvQ6JI-AH-zlBbPTa5q7r3mbs'wpJ qR14bUe-aKLdmnjBb2Xg4wsmGrnOPxWD2aPbq
    [20]http://newpaper.dahe.cn/dhb/html/2013-05/20/content_896250.htm?div=-1
    [21]http://news.xinhuanet.com/fortune/2012-03/09/c_122812293.htm
    [22]赵文甲,司晶星,丁莉,等.原子发射光谱、原子吸收光谱与原子荧光光谱之仪器特点及应用比较.才智,2009,23:67-68
    [23]袁懋,师宇华,于爱民,等.用于气相色谱的微波等离子体原子发射光谱检测器的发展.色 谱,2007,03:310-315
    [24]张霞,葛成相.电感耦合等离子体原子发射光谱法测定塑料中的镉的不确定度评价.科技创新导报,2011,21:51+53
    [25]魏良江.电感耦合等离子体原子发射光谱分析研究进展.广东微量元素科学,2010,04:1-8
    [26]万益群,柳英霞,郭岚,等.电感耦合等离子体原子发射光谱法测定当归补血汤中多种微量元素.光谱学与光谱分析,2007,01:160-164
    [27]李刚,高明远,诸堃.微波消解-电感耦合等离子体质谱法测定植物样品中微量元素.岩矿测试,2010,01:17-22
    [28]蔡述伟,程青.电感耦合等离子体质谱法(ICP-MS)测定地下水中痕量元素.净水技术,2011,04:56-58
    [29]吴梅贤,李献华,刘颖,等.电感耦合等离子体质谱法测定水中痕量元素.理化检验(化学分册),2007,05:391-393
    [30]杨莉丽,张德强,高英,等.氢化物发生-原子荧光光谱法测定中草药中的硒.光谱学与光谱分析,2003,02:368-370
    [31]吴成.氢化物发生-原子荧光光谱法测定土壤中镉.光谱学与光谱分析,2003,05:990-992
    [32]黎超,罗锦昆,彭鸿斌,等.微波消解—原子荧光光谱法测食品中铅.内蒙古中医药,2010,19:90-91
    [33]刘佳,高勋,段花花,等.激光诱导击穿光谱技术研究的新进展.激光杂志,2012,01:7-10
    [34]孙兰香,于海斌,郭前进,等.激光诱导击穿光谱在物质成分定量分析方面的实验研究进展.仪器仪表学报,2008,10:2235-2240
    [35]张大成,马新文,朱小龙,等.激光诱导击穿光谱应用于三种水果样品微量元素的分析.物理学报,2008,10:6348-6353
    [36]李斌.基于太赫兹光谱技术的土壤主要重金属含量检测可行性研究[博士学位论文].中国农业大学,2011
    [37]郭玉香,徐应明,孙有光,等.试纸法快速检测环境水体中重金属镉.农业环境科学学报,2006,02:541-544
    [38]吴献花,林洪,李海涛,等.用快速分离柱高效液相色谱法测定食品中的重金属元素的研究.食品科学,2005,06:218-220
    [39]陈冠宁,宋志峰,魏春雁.重金属检测技术研究进展及其在农产品检测中的应用.吉林农业科学,2012,06:61-64+71
    [40]孔涛,李小兵,刘国文,等.重金属离子单克隆抗体及免疫检测研究进展.中国畜牧兽医,2009,09:67-70
    [41]许贺.食品中重金属检测的方法研究与仪器研制[博士学位论文].华东师范大学,2009
    [42]于晶.铋膜碳电极阳极溶出伏安法的研究[硕士学位论文].浙江大学,2008
    [43]平建峰.基于纳米功能材料的乳品安全和品质快速检测方法与仪器研究[博士学位论文].浙江大学,2012
    [44]宋文璟,王学伟,丁家旺,等.海水重金属电化学传感器检测系统.分析化学,2012,05:670-674
    [45]刘新露,王莹,谯康全,等.新型PVC膜锌离子选择性电极研究.中国测试,2013,06:46-49
    [46]Long J.J., Yukio N. Cathodic stripping voltammetric determination of As(III) with in situ plated bismuth-film electrode using the catalytic hydrogen wave. Analytica Chimica Acta,2007(12):1-6
    [47]Sophie L., Stephanie B., Olivier Vi.. A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry. Journal of Electroanalytical Chemistry,2006,(1):93-98
    [48]狄晓威,何锡文.杯芳烃修饰玻碳电极吸附溶出伏安法测定微量铅.分析科学学报,2003,06:511-514
    [49]陈士昆,马健.槲皮素修饰碳糊电极吸附溶出伏安法测定血清中的铅.阜阳师范学院学报(自然科学版),2005,02:28-30
    [50]Christos K., Anastasios E., Ioannis R., Constantinos E.E.. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry. Electrochimica Acta,2008, (53):5294-5299
    [51]Meucci V., Laschi S., Minunni M., et al. An optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry. Talanta,2009,(77):1143-1148
    [52]王亚珍.基于乙炔黑/壳聚糖膜修饰电极的阳极溶出伏安法测定水样中铅.冶金分析,2011,12:29-34
    [53]平建峰,刘杰,于晶,等.铅、镉在铋修饰的厚膜碳浆电极上的阳极溶出伏安法检测.传感技术学报,2008,12:1973-1976
    [54]徐桂英,王凤平,唐丽娜.碳糊电极和化学修饰碳糊电极的制备及性能综述.化学研究,2008,03:108-112
    [55]韩丽.碳糊电极和化学修饰碳糊电极的制备及应用综述.甘肃高师学报,2009,05:45-47
    [56]Baumbach P.L..Eletrochemical sensor construction. UK Patent,2073891
    [57]Bobrowski A., Putek M., Zarebski J.. Antimony film electrode prepared in situ in hydrogen potassium tartrate in anodic stripping voltammetric trace detection of Cd(Ⅱ), Pb(Ⅱ), Zn(Ⅱ), T1(Ⅰ), In(Ⅲ) and Cu(Ⅱ). Electroanalysis,2012,(24):1071-1078
    [58]Georgia K., Anastasios E., Anastasios V.. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst, 2004,(129):1082-1090
    [59]Sandra C.C.M., Helena M.C., Armando C.D.. Ion-exchange and permselectivity properties of poly(sodium4-styrenesulfonate) coatings on glassy carbon:application in the modification of mercury film electrodes for the direct voltammetric analysis of trace metals in estuarine waters. Talanta,2005, (65):644-653
    [60]Zejli H., Izaoumen N., Bouchta D., et al. Electrochemically aided solid phase micro-extraction of Mercury(Ⅱ) at a Poly(3-Methylthiophene) modified gold electrode. Analytical Letters,2004,(37):1737-1754
    [61]霍兹,赵辉.纳米材料电化学.北京:科技出版社,2006
    [62]郭燕梅,王昌全,李冰.重金属镉对植物的毒害研究进展.陕西农业科学,2008,03:122-125
    [63]苏峰.海带对镉离子的生物吸附研究[硕士学位论文].湖南大学,2009
    [64]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策.云南农业大学学报,2005,03:360-365
    [65]谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展.浙江农业学报,2003,06:52-57
    [66]罗亚男,余跃生,陶晨,等.环境镉污染的生物危害效应及机制研究进展.黔南民族医专学报,2011,04:306-308
    [67]蔡巍.水环境重金属检测微传感器及自动分析仪器的研究[博士学位论文].浙江大学,2012
    [68]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策.云南农业大学学报,2005,03:360-365
    [69]刘柳洪.兰坪铅锌矿区镉污染及其对育龄妇女生殖结局的影响[硕士学位论文].大理学院,2012
    [70]夏勇,王娜,董献堆,等.基于二次开发平台的阳极溶出伏安仪.分析化学,2009,05:776-779
    [71]朱正鑫,张宗才,张志华,等.阳极溶出伏安极谱法测定皮革中铅含量的研究.皮革科学与工程,2011,05:51-55
    [72]李耀华.水中痕量镉的双硫腙修饰电极阳极溶出伏安测定法.环境与健康杂志,2004,04:247-249
    [73]刘丹萍.水体中重金属离子的电化学检测.郧阳师范高等专科学校学报,2013,03:4-6
    [74]刘传银,李学强,陆光汉.碳糊电极在有机物电化学分析中的应用.化学研究与应用,2005,04:443-447
    [75]焦奎,张旭志,徐桂云,等.s sDNA/十八酸修饰碳糊电极的制备及伏安法表征.化学学报,2005,12:1100-1104+1034
    [76]费俊杰,黎拒难,易芬云.槲皮素化学修饰碳糊电极吸附溶出伏安法测定痕量铅.分析化学,2001,08:916-918
    [77]孙伟,王丹,张媛媛,等.电化学沉积纳米金和石墨烯修饰离子液体碳糊电极检测芦丁的研究.分析化学,2013,05:709-713
    [78]胡小艳,朱振中.基于离子液体-石蜡油混合物为黏和剂的酪氨酸酶碳糊生物传感器的研制.分析试验室,2008,11:91-94
    [79]毛庆禄,吴守国,张汉昌.固体石蜡作粘合剂的碳糊电极.分析化学,1995,23(6):648-651
    [80]Albertus F., Llerena A., Alpizar J., et al. A PVC-graphite composite electrode for electroanalytical use Preparation and some applications. Anal Chimica Acta,1997,(355):23-32
    [81]Ping J.f., Wu j., Ying Y.B., et al. Development of a novel carbon composite electrode for trace determination of heavy metals in milk. Transactions of the Asabe 2011,54(5):1829-1835
    [82]Cesarino I., Gouveia-Caridade C., Pauliukaite R., et al. Characterization and application of bismuth-film modified graphite-polyurethane composite electrodes. Electroanalysis,2010, (22):1437-1445
    [83]李延伟,姚金环,杨传路.二苯乙炔分子导线的电子输运性质.物理化学学报,2008,08:1445-1450
    [84]Tian X.J., Song J.F., Luan X.J., et al. Determination of metformin based on amplification of its voltammetric response by a combination of molecular wire and carbon nanotubes. Analytical and Bioanalytical Chemistry,2006,(386):2081-2086
    [85]Zhu W.W., Li N.B., Luo H.Q.. Simultaneous determination of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry on a stannum film electrode. Talanta,2007, (27):1733-1737
    [86]Tian Y.Q., Luo H.Q., Li N.B.. Stannum film electrode for square wave voltammetric determination of trace copper(Ⅱ). Journal of Solid State Electrochemistry,2012, (16):529-533
    [87]汪振辉,郏建波,李工安,等.多巴胺在聚茶碱/Nafion双层修饰玻碳电极上的电化学行为.分析化学,2000,05:568-572
    [88]Xu H, Zeng L.P., Xing S.J., et al. Ultrasensitive voltammetric detection of trace lead(ii) and cadmium(ii) using MWCNTs-Nafion/bismuth composite electrodes. Electroanalysis, 2008,(20):2655-2662
    [89]Zhu L.d., Tian C.Y., Yang R.L., et al. Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/Nafion composite film electrode. Electroanalysis, 2008,(20):527-533
    [90]董社英.有机药物的电化学行为及应用研究[博士学位论文].西北大学,2003
    [91]梁镇海,孙红艳,陈翠翠.2,2-二羟甲基丙醛电氧化的循环伏安研究.化工学报,2008,S1:20-24
    [92]周豪杰,吕东生,许梦清,等.用研磨微电极研究LiMn_2O_4的循环伏安行为.无机材料学报,2006,01:109-114
    [93]王杰,徐友龙,马建华,等.循环伏安沉积纳米氧化钌基超级电容器电极材料.稀有金属材料与工程,2012,08:1467-1471
    [94]Zanello P. Inorganic electrochemistry, theory, practice and application. RSC (2003)
    [95]Liu G.Z., Paddon-Row M.N., Gooding J.J..A molecular wire modified glassy carbon electrode for achieving direct electron transfer to native glucose oxidase. Electrochemistry Communications,2007,(9):2218-2223
    [96]李启隆,胡劲波.电分析化学.北京师范大学出版社,2007
    [97]袁国伟.电化学阻抗谱在电沉积研究中的应用(一).电镀与涂饰,2008,01:1-4
    [98]颜小飞.基于阻抗型免疫传感器的禽流感病毒快速检测技术研究[博士学位论文].中国农业大学,2013
    [99]田洪润,高荣孚,王华芳.以电阻抗谱法研究植物细胞膜透性生物学.广东农业科学,2013,05:142-145
    [100]余强,司云森,曾初升.交流阻抗技术及其在腐蚀科学中的应用.化学工程师,2005,09:35-37
    [101]Sun W., Wang Y. h., Zhang Y.Y., et al. Poly(methylene blue) functionalized graphene modified carbon ionic liquidelectrode for the electrochemical detection of dopamine. Analytica Chimica Acta,2012,(751):59-65
    [102]Ping J.F., Ru S.P., Luo X., et al. Direct electrochemistry of double strand DNA on ionic liquid modified screen-printed graphite electrode. Electrochimica Acta,2011,(56):4154-4158
    [103]Guzsvany V, Papp Z., Zbiljic Ja.. et al. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides. Molecules,2011,(16):4451-4466
    [104]Skogvold S. M., Mikkelsen 0., Schroder K. H.. Electrochemical Properties and Application of Mixed Silver-Bismuth Electrodes. Electroanalysis,2005,(17):1938-1944
    [105]Economou A.. Bismuth-film electrodes:recent developments and potentialities for electroanalysis. TrAC Trends in Analytical Chemistry,2005,(24):334-340
    [106]Gouveia-Caridade C., Pauliukaite R., Brett C. M. A.. Influence of Nafion coatings and surfactant on the stripping voltammetry of heavy metals at bismuth-film modified carbon film electrodes. Electroanalysis,2006,(18):854-861
    [107]Hoyer B., Florence T.M.. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry. Analytical Chemistry,1987,(59):1608-1614
    [108]Czop E., Economou A., Bobrowski A.. A study of in situ plated tin-film electrodes for the determination of trace metals by means of square-wave anodic stripping voltammetry. Electrochim Acta,2011,(56):2206-2212
    [109]Liu B.Z., Lu L.Y., Wang M., et al. A study of Nafion-coated bismuth-film electrode for the determination of Zinc, Lead, and Cadmium in blood samples. Electroanalysis, 2008,(20):2363-2369
    [110]Kefala G., Economou A., Voulgaropoulos A.. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst, 2004,(129):1082-1090
    [111]王瑞婷.农产品中不同形态汞检测方法的建立与应用研究[硕士学位论文].华中农业大学,2010
    [112]杨杰,王竹天,杨大进.食品中总汞检测方法的研究进展.中国食品卫生杂志,2008,04:346-351
    [113]肖新峰,张新申,龚正君,等.光学光谱法检测痕量汞的研究及进展.皮革科学与工程,2004,06:31-36
    [114]Bonfil Y., Brand M., Kirowa-Eisner E.. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Analytica Chimica Acta,2000,(424):65-76
    [115]Alves G.M.S., Magalhaes J.M.C.S., Salaiin P., et al. Simultaneous electrochemical determination of arsenic,copper,lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Analytica Chimica Acta,2011,(703):1-7
    [116]李兰英,吴继魁,崔静,等.利用多胸腺嘧啶DNA修饰金电极伏安法测定水溶液中的Hg2+.分析化学,2009,37(z1):15
    [117]Watson C. M., Dwyer D.J., Andle J. C., et al. Stripping Analyses of Mercury Using Gold Electrodes:Irreversible Adsorption of Mercury. Analytical Chemistry,1999,(71):3181-3186
    [118]许文娟,焦晨旭.碳糊电极和化学修饰碳糊电极制备及应用综述.应用化工,2010,05:755-757
    [119]韩媛媛,焦晨旭,许文娟,等.化学修饰碳糊电极的研究进展.化工中间体,2011,05:10-13
    [120]刘传银,李学强,陆光汉.碳糊电极在有机物电化学分析中的应用.化学研究与应用,2005,04:443-447
    [121]李翠华,刘剑洪,黎玉玲,等.新型离子液体用于碳糊电极的直接电化学研究.深圳大学学报(理工版),2009,04:351-355
    [122]孙伟,高瑞芳,毕瑞锋,等.室温离子液体六氟磷酸正丁基吡啶修饰碳糊电极的制备与表征.分析化学,2007,04:567-570
    [123]张亚,杜芳艳.对乙酰氨基酚在离子液体修饰碳糊电极上的电化学行为及其测定.分析试验室,2011,01:32-35
    [124]Liu H.t., He P., Li Z.Y., et al. An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry Communications,2005 (7):1357-1363
    [125]Abollino O., Giacomino A., Malandrino M., et al. Voltammetric determination of methylmercury and inorganic mercury with an home made gold nanoparticle electrode. Journal of Applied Electrochemistry,2009,(39):2209-2216
    [126]金玫华,张鹏,刘弢.铅酸蓄电池制造行业职业性铅危害文献分析.环境与职业医学,2010,10:641-644
    [127]张丽丽.儿童铅中毒防治的新进展.国外医学(卫生学分册),2000,03:129-133
    [128]戴耀华.中国儿童铅中毒及其研究的现状.中华流行病学杂志,2005,09:29-30
    [129]应兴华,金连登,徐霞,等.我国稻米质量安全现状及发展对策研究.农产品质量与安全,2010,06:40-43
    [130]Sandrine M., Sophie L., Nadine R., et al. Biocompatible carbon-based screen-printed electrodes for the electrochemical detection of nitric oxide. Electrochemistry Communications 2006,(8): 238-244
    [131]屠一锋,付志强,李明忠.丝素膜固定化丝网印刷酶电极.分析化学,2001,02:165-167
    [132]宋伟,张磊,石磊,等.纳米金修饰丝网印刷电极检测水中对苯二酚.环境化学,2010,01:132-136
    [133]徐肖邢,吴秋君.抗坏血酸在普鲁士蓝修饰的丝网印刷电极上的电催化氧化.分析试验室,2004,09:62-64
    [134]Fu L., Li X.L., Yu J.S., et al. Facile and simultaneous stripping determination of zinc, cadmium and lead on disposable multiwalled carbon nanotubes modified screen-printed electrode. Electroanalysis,2013, (25):567-572
    [135]于学敏,冯辉,杨慧荣,等.铋盐类药物的研发及在Hp根除治疗中的应用.中国药事,2012,04:394-403
    [136]Wang J., Lu J.M., Hocevar S.B., et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry,2000,(72)3218-3222
    [137]李冬月,郏建波,王建国.化学修饰铋膜电极的制备和应用研究进展.分析化学,2012,02:321-327
    [138]刘德盟,金妍,金庆辉,等.基于溶出伏安法的铋微阵列电极检测饮料中的铅和镉.分析化学,2011,11:1748-1752
    [139]李建平,彭图治,张雪君.铋膜电极电位溶出法测定痕量铅、镉、锌.分析化学,2002,09:1092-1095
    [140]欧朝凤,袁若,柴雅琴,等.基于硫堇/碳纳米管修饰金电极的过氧化氢生物传感器.分析化学,2007,07:1011-1014
    [141]郑冬云,刘晓军,朱珊莹,等.基于碳纳米管修饰金电极的多巴胺电化学传感器.传感器与微系统,2013,11:86-88
    [142]Uthaitip I., Peeyanun N., Weena S., et al. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Analytica Chimica Acta,2010,(66):854-860
    [143]车剑飞,叶欣欣,刘文婷,等.碳纳米管-聚3,4-乙撑二氧噻吩修饰电极.南京理工大学学报(自然科学版),2010,06:833-837
    [144]Zhang X.H., Zhao D.M., Feng L.J., et al. Electrochemical sensor for procaine based on a glassy carbon electrode modified with poly-amidosulfonic acid and multi-walled carbon nanotubes. Microchim Acta,2010,(169):153-159
    [145]Gao X.H., Wei W.Z., Liu Y., et al. Carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite film electrode prepared by multipulse potentiostatic electropolymerisation and its application to determination of trace heavy metal ions. Electroanalysis,2006,(18):485-492
    [146]Huang S.Q., Li L., Yang Z.B., et al. A new and general fabrication of an aligned carbon nanotube/polymer film for electrode application. Advanced Materials,2011,(23):4707-4710
    [147]Xu H., Zeng L.P., Huang D.K., et al. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes. Food Chemistry,2008,(109) 834-839
    [148]Arduini F., Calvo J.Q., Amine A., et al. Bismuth-modified electrodes for lead detection. TrAC Trends in Analytical Chemistry,2010,(29):1295-1304
    [149]Economou A., Voulgaropoulos A.. Stripping voltammetry of trace metals at bismuth-film electrodes by batch-injection analysis. Electroanalysis,2010,(22):1468-1475
    [150]林亲铁,朱伟浩,陈志良,等.土壤重金属的形态分析及生物有效性研究进展.广东工业大学学报,2013,02:113-118
    [151]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义.生态学杂志,2005,12:1499-1502
    [152]Quevauville P.. Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends in Analytical Chemistry,1998,(17):289-298
    [153]Rao C.R.M., Sahuquillo A., Sanchez J.F. L.. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air and Soil Pollution,2008,(189):291-333
    [154]Sloot V.D., Heasman L., Quevauviller P.. Harmonization of leaching/Extraction Test s. Amsterdam:Elsevier Press,1997
    [155]Svete P., Milacic P., Pihlar B.. Optimisation of an extraction procedure for determination of total water-soluble Zn, Pb and Cd and their species in soils form a mining area. Annali di Chimica, 2000,(90):323-334
    [156]李东艳,FRANCOIS M.,任玉芬,等.重金属污染土壤萃取方法选择及参数优化.地学前缘,2005,S1:189-192
    [157]Tessier A., Campbell. P.G.C, Bisson M.. Sequential extraction procedure for the specification of particulate trace metal. Analytical Chemistry,1979 (51):844-850
    [158]Benitez L.N., Dubois J.P.. Evaluation of the selectivity of sequential extraction procedures applied to the speciation of cadimium in soils. International Journal of Environmental Analytical Chemistry,1999,(74):289-303
    [159]Lu Y, Gong Z.T., Zhang G.L.. The chemical speciation of heavy metals of urban soil in Nanjing. Environmental Chemistry,2003, (20):131-136
    [160]Forstner U.. Metal pollution in aquatic environment. Second Edition. Berlin:Springer-Verlag, 1981
    [161]冯素萍,李鑫,赵祥峰,等.大明湖底泥沉积物中重金属形态分析.现代科学仪器,2006,06:96-98
    [162]曹慧聪,王金达,张学林.BCR法在污染农田黑土重金属形态分布研究中的应用.水土保持学报,2006,20(6):163-166
    [163]陈春霄,姜霞,战玉柱,等.太湖表层沉积物中重金属形态分布及其潜在生态风险分析,中国环境科学,2011,31(11):1842-1848
    [164]Beni V., Newton H.V., Arrigan D.W.M., et al. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts. Analytica Chimica Acta,2004,(502):195-206
    [165]章海波,骆永明,赵其国,等.香港土壤研究Ⅶ.BCR提取法研究重金属的形态及其潜在环境风险.土壤学报,2010,05:865-871
    [166]http://gd.qq.com/zt2013/gedami/index.htm
    [167]http://news.163.com/13/0731/17/954L5G7300014Q4P.html
    [168]http://www.yicai.com/news/2013/09/2988392.html
    [169]Liu X., Xie L.L., Li H.L.. Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol-gel hybrid membranes for determination of dopamine and uric acid. Journal of Electroanalytical Chemistry,2012,(682):158-163
    [170]Ma X.Y., Chao M.Y., Wang Z.X.. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chemistry,2013,(138):739-744
    [171]Parvin M.H.. Graphene paste electrode for detection of chlorpromazine. Electrochemistry Communications,2011,(13):366-369
    [172]郑龙珍,李引弟,熊乐艳,等.石墨烯-聚多巴胺纳米复合材料制备过氧化氢生物传感器.分析化学,2012,01:72-76
    [173]周忠亮.纳米材料电化学传感器及环境监测应用研究[博士学位论文].北京工业大学,2010
    [174]Zhang X.H., Zhao D.M., Feng L.j., et al. Electrochemical sensor for procaine based on a glassy carbon electrode modified with poly-amidosulfonic acid and multi-walled carbon nanotubes. Microchim Acta,2010, (169):153-159
    [175]Lin X.Q., Kang G.F., Lu L.P.. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Bioelectrochemistry,2007,(70):235-244
    [176]Xie X.Y., Luo H.Q., Li N.B.. Determination of azo compounds by differential pulse voltammetry at a bismuth/poly(p-aminobenzene sulfonic acid) film electrode and application for detection in food stuffs. Journal of Electroanalytical Chemistry,2010,(639):175-180
    [177]Lu Q., Dong X.C., Li L. J., et al. Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet-enzyme composite film. Talanta, 2010,(82):1344-1348
    [178]Hummers W.S., Offeman R. E.. Preparation of graphitic oxide. Journal of the American Chemical Society,1958(80):1339-1339
    [179]Kovtyukhova N.I., Ollivier P.J., Martin B.R., et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials, 1999,(11):771-778
    [180]王吉秀,祖艳群,陈海燕,等.中药材圆果中重金属检测的消解方法研究.云南农业大学学报(自然科学版),2011,06:856-860
    [181]刘传娟,刘凤枝,蔡彦明,等.前处理方法-ICP-MS测定土壤中的重金属.分析试验室,2009,S1:91-94
    [182]杨雪娇,黄伟,林涛,等.不同前处理方法检测食品中的重金属含量.现代食品科技,2008,10:1051-1054+1011
    [183]Es'haghi Z., Khalili M., Khazaeifar A., et al. Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique:Hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry.Electrochimica Acta,2011,(56):3139-3146
    [184]朱果逸.痕量重金属电化学检测综述.现代科学仪器,2013,04:21-29
    [185]魏佳莉,章颖强,李雅卓,等.基于两电极体系的水质检测分析平台设计.传感技术学报,2012,10:1327-1332
    [186]沈颐涵.微型DPSA-1仪-SPCE同步快速检测食品中铅镉铜[硕士学位论文].浙江工商大学,2010
    [187]马颢珺,左航,白明.水中重金属在线监测技术发展概述.环境科学与管理,2011,08:130-132
    [188]周晓东,陈云飞,胡继明.水中重金属离子的压电传感检测.分析测试学报,2012,09:1110-1114
    [189]邹绍芳,范影乐,王平.基于微电极阵列的自动环境监测电子舌的设计.仪器仪表学报,2007,09:1641-1645
    [190]秦树人.虚拟仪器——测试仪器从硬件到软件.振动测试与诊断,2000,01:4-9+71
    [191]孙连荣,关开澄,王成,等.虚拟仪器及其应用.大庆石油学院学报,2003,02:47-51+131-132
    [192]赵江滨,刘世元,胡友民,等.组件化虚拟仪器软件系统性能研究.仪器仪表学报,2009,10:2131-2138
    [193]应怀樵.虚拟仪器的研发方向——“六高”的虚拟仪器库时代.振动与冲击,2007,06:174-177+192
    [194]李云飞.一种面向现场应用的虚拟仪器设计方法.仪器仪表学报,2009,02:242-246.
    [195]韩磊,宋诗哲.基于虚拟仪器的便携式腐蚀电化学测试装置.仪器仪表学报,2008,05:903-907
    [196]王承,何志伟,许东芹.虚拟仪器——现代仪器发展的新阶段.测控技术,2001,10:9-11
    [197]陆起涌,李向华,张忠海.基于计算机的虚拟仪器测试平台设计.仪器仪表学报,2003,S1:546-548+562
    [198]陈敏,汤晓安.虚拟仪器软件LabVIEW与数据采集.小型微型计算机系统,2001,04:501-503
    [199]应怀樵.虚拟仪器与计算机采集测试分析仪器的发展和展望.测控技术,2000,08:4-6
    [200]徐春生,王太勇,冷永刚,等.基于SoC和FPGA的便携式变步长随机共振仪.仪器仪表学报,2008,08:1767-1771
    [201]李仁发,刘彦,徐成.多处理器片上系统任务调度研究进展评述.计算机研究与发展,2008,09:1620-1629
    [202]艾学忠,纪慧超,张玉良.基于C8051F410片上系统的逆变电源设计.化工自动化及仪表,2010,08:63-65
    [203]荣蓉.基于SoC嵌入式片上系统应用研究.煤炭技术,2012,06:218-219
    [204]徐春生,王太勇,邓辉,等.机械设备故障诊断用便携式数据采集分析系统.农业机械学报,2007,10:170-173
    [205]蒋彭龙.片上系统技术在航天领域的发展和应用.导弹与航天运载技术,2010,05:17-20
    [206]慈艳柯,陈秀英,吴孙桃,等.片上系统的设计技术及其研究进展.半导体技术,2001,07:12-16
    [207]洪锡高,周玉洁.片上系统设计方法和低功耗设计.微型机与应用,2005,10:22-25
    [208]周端,王国平,顾新.片上系统的技术与发展.计算机工程,2002,09:4-5
    [209]金根娣,杨阿喜,张跃.铋膜玻碳电极阳极溶出伏安法测定异烟肼的研究.化工时刊,2001,12:35-37
    [210]郎桂利.铋膜电极在几种重金属电化学测定中的应用[硕士学位论文].河北师范大学,2013
    [211]苗力孝,马红艳,孙雪花,等.方波溶出伏安法快速测定染发剂中对苯二胺.延安大学学报(自然科学版),2008,03:71-74
    [212]郑莉.葛根素在碳纳米管糊电极上的阳极伏安行为及其测定.西安石油大学学报(自然科学版),2009,02:71-73+77+2+1
    [213]刘辉,朱效华,冶保献.对乙酰氨基酚的方波溶出伏安行为及其分析应用.郑州大学学报(理学版),2010,01:116-119
    [214]姚毓升,解永平,文涛.三电极电化学传感器的恒电位仪设计.仪表技术与传感器,2009,09:23-25
    [215]王翠翠,周真,秦勇,等.电流型电化学传感器恒电位仪电路的研究.传感器世界,2009,02:36-39
    [216]鲁连钢.滤除50Hz工频干扰的滤波电路设计.辽宁师专学报(自然科学版),2012,01:90-92
    [217]冯丹,程孟飞,施展,等.VISA系统设计及性能分析.华中科技大学学报(自然科学版),2007,07:8-11
    [218]段晋军,位恒曦,常晓明.基于LabVIEW NI-VISA实现PC与C8051F320的USB数据通信.电子技术应用,2013,08:17-19
    [219]黄艳,肖铁军,黄建文.虚拟仪器技术中的VISA及其实现.江苏理工大学学报(自然科学版),2000,01:13-16
    [220]田耕,阮林波,渠红光.基于VISA技术的自动测试软件研制.核电子学与探测技术,2009,06:1397-1400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700